Home Thermal, structural and optical properties of Pb1−xLa x TiO3 prepared using modified sol–gel route
Article
Licensed
Unlicensed Requires Authentication

Thermal, structural and optical properties of Pb1−xLa x TiO3 prepared using modified sol–gel route

  • Anju Dixit ORCID logo EMAIL logo , Avanish Kumar , Devendra Singh and Pramod S. Dobal
Published/Copyright: April 14, 2023
Become an author with De Gruyter Brill

Abstract

La doped lead titanate ceramic compositions Pb1−xLa x TiO3 (PLT) for x = 0.0, 0.05, 0.1, 0.2 and 0.3 were synthesized by an acrylic acid modified sol-gel route. The microstructure, surface morphology, and optical properties of the resulting compositions were studied by using TGA, X-ray diffraction, Raman Spectroscopy, and UV–Vis spectroscopy. It was found that the acrylic acid acts as a strong gelling agent and the organic residue gets removed completely below 450 °C. Very smooth ceramic powders characterized by single perovskite phase were obtained. A reduction in the tetragonality ratio from 1.0698 to 1.0033 was observed with increasing La content from x = 0.0 to x = 0.3. The effect of reduced tetragonality was corroborated by the peak shift of soft modes in Raman spectra and approximately 2 cm−1 downshift of E(TO1) mode was observed for each atomic weight percent La addition in lead titanate. The average grain size was found decreasing marginally with the increasing La content in PLT. Using the UV–vis data, a slight but systematic increase in the direct absorption edge (band gap) from 3.155 eV to 3.234 eV was observed with increasing La content in the PLT compositions.


Corresponding author: Anju Dixit, Department of Physics, School of Basic Sciences, UIET, C.S.J.M. University, Kanpur, 208024, India, E-mail:

Acknowledgments

Authors are thankful to Shri A. K. Pandey, Dr. Swati Chopra, Mr. Ajit Shankar Singh of DMSRDE Kanpur for their valuable feedback and assistance during this work.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bhalla, A. S., Saxena, A., Guo, R., Taylor, G. W. Ferroelectrics 2020, 569, 348. https://doi.org/10.1080/00150193.2020.1847141.Search in Google Scholar

2. Scott, J. F. Science 2007, 315, 954. https://doi.org/10.1126/science.1129564.Search in Google Scholar PubMed

3. Ma, X.-H., Li, H.-Y., Kweon, S.-H., Jeong, S.-Y., Lee, J.-H., Nahm, S. ACS Appl. Mater. Interfaces 2019, 11, 5240. https://doi.org/10.1021/acsami.8b18428.Search in Google Scholar PubMed

4. Thornton, A. L. Proc. SPIE 1982, 0307, 32. https://doi.org/10.1117/12.965902.Search in Google Scholar

5. Mikolajick, T., Slesazeck, S., Mulaosmanovic, H., Park, M. H., Fichtner, S., Lomenzo, P. D., Hoffmann, M., Schroeder, U. J. Appl. Phys. 2021, 129, 100901. https://doi.org/10.1063/5.0037617.Search in Google Scholar

6. Zhang, S., Li, F., Jiang, X., Kim, J., Luo, J., Geng, X. Prog. Mater. Sci. 2015, 68, 1. https://doi.org/10.1016/j.pmatsci.2014.10.002.Search in Google Scholar PubMed PubMed Central

7. Iijima, K., Takayama, R., Tomita, Y., Ueda, I. J. Appl. Phys. 1986, 60, 2914. https://doi.org/10.1063/1.337078.Search in Google Scholar

8. Zhao, Q., Liu, Y., Shi, W., Ren, W., Zhang, L., Yao, X. Appl. Phys. Lett. 1996, 69, 458. https://doi.org/10.1063/1.118138.Search in Google Scholar

9. Dobal, P. S., Katiyar, R. S. J. Raman Spectrosc. 2002, 33, 405. https://doi.org/10.1002/jrs.876.Search in Google Scholar

10. Chen, J., Xing, X., Yu, R., Liu, G. J. Am. Ceram. Soc. 2005, 88, 1356. https://doi.org/10.1111/j.1551-2916.2005.00314.x.Search in Google Scholar

11. Lemziouka, H., Omari, L. H., Moubah, R., Abid, M., Lassri, H., Sayouri, S. Mater. Res. Bull. 2017, 92, 85. https://doi.org/10.1016/j.materresbull.2017.04.009.Search in Google Scholar

12. Bajpai, K. K., Sreenivas, K., Gupta, A. K., Shukla, A. K. Ceram. Int. 2019, 45, 14111. https://doi.org/10.1016/j.ceramint.2019.04.111.Search in Google Scholar

13. de Camargo, S. S., Botero, É. R., Andreeta, É. R. M., Garcia, D., Eiras, J. A., Nunes, L. A. O. Appl. Phys. Lett. 2005, 86, 241112. https://doi.org/10.1063/1.1944905.Search in Google Scholar

14. Mansour, S., Eid, A., Abd El-Latif, L., Rashad, M., Afifi, M., Turner, J. Int. J. Appl. Ceram. Technol. 2018, 15, 766. https://doi.org/10.1111/ijac.12835.Search in Google Scholar

15. Fox, G., Krupanidhi, S., More, K., Allard, L. J. Mater. Res. 1992, 7, 3039. https://doi.org/10.1557/JMR.1992.3039.Search in Google Scholar

16. Gurkovich, S. R., Blum, J. B. Ferroelectrics 1985, 62, 189. https://doi.org/10.1080/00150198508225992.Search in Google Scholar

17. Harshan, V. N., Kotru, S. Ferroelectrics 2011, 130, 73. https://doi.org/10.1080/10584587.2011.637011.Search in Google Scholar

18. Scarisoreanu, N., Dinescu, M., Craciun, F., Verardi, P., Moldovan, A., Purice, A., Galassi, C. Appl. Surf. Sci. 2006, 252, 4553. https://doi.org/10.1016/j.apsusc.2005.07.140.Search in Google Scholar

19. Kathiresanet, M. Mater. Res. Express 2020, 7, 026406. https://doi.org/10.1088/2053-1591/ab6e80.Search in Google Scholar

20. Hendricks, W. C., Desu, S. B., Peng, C. H. Chem. Mater. 1994, 6, 1955. https://doi.org/10.1021/cm00047a011.Search in Google Scholar

21. Yang, C., Zhang, S., Liu, J., Wu, M. Integrated Ferroelectrics Int. J. 2003, 52, 223. https://doi.org/10.1080/10584580390254970.Search in Google Scholar

22. Shin, J.-S., Shin, J.-S., Lee, W.-J. Jpn. J. Appl. Phys. 1997, 36, 6909. https://doi.org/10.1143/JJAP.36.6909.Search in Google Scholar

23. Talwar, P., Tandon, R. P., Mansingh, A. Proceedings of 1994 IEEE International Symposium on Applications of Ferroelectrics 1994; p. 105.Search in Google Scholar

24. Majumder, S. B., Jain, M., Katiyar, R. S. Thin Solid Films 2002, 402, 90. https://doi.org/10.1016/S0040-6090(01)01713-8.Search in Google Scholar

25. Shimizu, Y., Udayakumar, K. R., Cross, L. E. J. Am. Ceram. Soc. 1991, 74, 3023. https://doi.org/10.1111/j.1151-2916.1991.tb04296.x.Search in Google Scholar

26. Dobal, P. S., Bhaskar, S., Majumder, S. B., Katiyar, R. S. J. Appl. Phys. 1999, 86, 828. https://doi.org/10.1063/1.370810.Search in Google Scholar

27. Milne, S. J., Pyke, S. H. J. Am. Ceram. Soc. 1991, 74, 1407. https://doi.org/10.1111/j.1151-2916.1991.tb04120.x.Search in Google Scholar

28. Bhaskar, S., Majumder, S. B., Dobal, P. S., Krupanidhi, S. B., Katiyar, R. S.Int. J. 2001, 36, 245. https://doi.org/10.1080/10584580108015546.Search in Google Scholar

29. Bhaskar, S., Majumder, S. B., Jain, M., Dobal, P. S., Katiyar, R. S. J. Mater. Sci. Eng. B 2001, 87, 178. https://doi.org/10.1016/S0921-5107(01)00739-5.Search in Google Scholar

30. Chaudhari, V. A., Bichile, G. K. Cogent Chemistry 2015, 1, 1075323. https://doi.org/10.1080/23312009.2015.1075323.Search in Google Scholar

31. Bhaskar, S., Majumder, S. B., Dobal, P. S., Katiyar, R. S., Krupanidhi, S. B. J. Appl. Phys. 2001, 89, 5637. https://doi.org/10.1063/1.1365062.Search in Google Scholar

32. Goldschmidt, V. M. Naturwissenschaften 1926, 14, 477. https://doi.org/10.1007/BF01507527.Search in Google Scholar

33. Chatzichristodoulou, C., Norby, P., Hendriksen, P. V. J. Electroceram. 2015, 34, 100. https://doi.org/10.1007/s10832-014-9916-2.Search in Google Scholar

34. Chang, T.-I., Wang, S.-C., Liu, C.-P., Lin, C.-F., Huang, J.-L.. J. Am. Ceram. Soc. 2008, 91, 2545. https://doi.org/10.1111/j.1551-2916.2008.02522.x.Search in Google Scholar

35. Chen, S.-Y., Chen, I.-W. J. Am. Ceram. Soc. 1994, 77, 2337. https://doi.org/10.1111/j.1151-2916.1994.tb04603.x.Search in Google Scholar

36. Kitaoka, K., Kozuka, H., Yoko, T. J. Am. Ceram. Soc. 1998, 81, 1189. https://doi.org/10.1111/j.1151-2916.1998.tb02467.x.Search in Google Scholar

37. Tani, T., Payne, D. A. J. Am. Ceram. Soc. 1994, 77, 1242. https://doi.org/10.1111/j.1151-2916.1994.tb05398.x.Search in Google Scholar

38. Mai, M., Lin, C., Xiong, Z., Xue, H., Chen, L. J. Phys.: Conf. Ser. 2009, 152, 012077. https://doi.org/10.1088/1742-6596/152/1/012077.Search in Google Scholar

39. Materials Data on TiPbO3 by Materials Project (mp-20459). [Online] LBNL, Berkeley, CA (accessed Jul 15, 2020). https://doi.org/10.17188/1195590.Search in Google Scholar

40. Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., Persson, K. A. Apl. Mater. 2013, 1, 011002. https://doi.org/10.1063/1.4812323.Search in Google Scholar

41. Fang, J., Wang, J., Gan, L.-M., Ng, S.-C. Mater. Lett. 2002, 52, 304. https://doi.org/10.1016/S0167-577X(01)00411-6.Search in Google Scholar

42. Lobmann, P., Glaubitt, W., Fricke, J. J. Am. Ceram. Soc. 1997, 80, 2658. https://doi.org/10.1111/j.1151-2916.1997.tb03168.x.Search in Google Scholar

43. Materials Data on TiPbO3 by Materials Project (mp-19845). [Online] LBNL, Berkeley, CA (accessed Jul 14, 2020). https://doi.org/10.17188/1195038.Search in Google Scholar

44. Holzwarth, U., Gibson, N. Nat. Nanotechnol. 2011, 6, 534. https://doi.org/10.1038/nnano.2011.145.Search in Google Scholar PubMed

45. Mote, V., Purushotham, Y., Dole, B. J. Theor. Appl. Phys. 2012, 6, 6. https://doi.org/10.1186/2251-7235-6-6.Search in Google Scholar

46. Shirane, G., Axe, D. J., Remeika, J. P., Harada, J. Phys. Rev. B 1970, 2, 155. https://doi.org/10.1103/PhysRevB.2.155.Search in Google Scholar

47. Burns, G., Scott, B. A. Phys. Rev. B 1973, 7, 3088. https://doi.org/10.1103/PhysRevB.7.3088.Search in Google Scholar

48. Foster, C. M., Li, Z., Grimsditch, M., Chan, S. K., Lam, D. J. Phys. Rev. B 1993, 48, 10160. https://doi.org/10.1103/PhysRevB.48.10160.Search in Google Scholar PubMed

49. Burns, G., Scott, B. A. Phys. Rev. Lett. 1970, 25, 167. https://doi.org/10.1103/PhysRevLett.25.167.Search in Google Scholar

50. Dobal, P. S., Das, R. R., Roy, B., Katiyar, R. S., Jain, S., Agrawal, D. C. J. Raman Spectrosc. 2000, 31, 965. https://doi.org/10.1002/1097-4555(200011)31:11%3C965::AID-JRS624%3E3.0.CO;2-P.10.1002/1097-4555(200011)31:11<965::AID-JRS624>3.0.CO;2-PSearch in Google Scholar

51. Yamamoto, T., Igarashi, H., Okazaki, K. J. Am. Ceram. Soc. 1983, 66, 363. https://doi.org/10.1111/j.1151-2916.1983.tb10050.x.Search in Google Scholar

52. Wood, D. L., Tauc, J. Phys. Rev. B 1972, 5, 3144. https://doi.org/10.1103/PhysRevB.5.3144.Search in Google Scholar

53. Tauc, J., Ed. Amorphous Liquid Semiconductors; Springer: Boston, 1974.10.1007/978-1-4615-8705-7Search in Google Scholar

54. Mansoor, M. A., Ismail, A., Yahya, R., Arifin, Z., Tiekink, E. R., Weng, N. S., Mazhar, M., Esmaeili, A. R. Inorg. Chem. 2013, 52, 5624. https://doi.org/10.1021/ic302772b.Search in Google Scholar PubMed

55. Mostafa, M., Alrowaili, Z. A., Rashwan, G. M., Gerges, M. K. Heliyon 2020, 6, e03389. https://doi.org/10.1016/j.heliyon.2020.e03389.Search in Google Scholar PubMed PubMed Central

56. Molak, A., Szeremeta, A. Z. J. Koperski: Electron.Mater. 2022, 3, 101. https://doi.org/10.3390/electronicmat3010010.Search in Google Scholar

57. Sun, C. Q., Tay, B. K., Li, S., Sun, X. W., Lau, S. P., Chen, T. P. Mater. Phys. Mech. 2001, 4, 129.Search in Google Scholar

58. Schuppler, S., Friedman, S. L., Macrus, M. A., Adler, D. L., Xie, Y. H., Ross, F. M., Chabal, Y. J., Harris, T. D., Brus, L. E., Brown, W. L., Chaban, E. E., Szajowski, P. F., Christman, S. B., Citrin, P. H. Phys. Rev. B 1995, 52, 4910. https://doi.org/10.1103/PhysRevB.52.4910.Search in Google Scholar

59. Rizwanet, M., Usman, Z., Shakil, M., Gillani, S. S. A., Azeem, S., Jin, H. B., Cao, C. B., Mehmood, R. F., Nabi, G., Asghar, M. A. Mater. Res. Express 2020, 7, 015920. https://doi.org/10.1088/2053-1591/ab6802.Search in Google Scholar

Received: 2021-12-23
Accepted: 2022-04-13
Published Online: 2023-04-14
Published in Print: 2023-07-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. International conference on energy and advanced materials
  4. Review
  5. Analysis of different printing technologies for metallization of crystalline silicon solar cells
  6. Original Papers
  7. DFT investigation of nonlinear optical response of organic compound: acetylsalicylic acid
  8. Experimental (FT‐Raman, FT‐IR and NMR) and theoretical (DFT) calculations, thermodynamic parameters, molecular docking and NLO (non-linear optical) properties of N‐(2,6‐dimethylphenyl)‐1‐piperazineacetamide
  9. Investigation of nonlinear optical responses of organic derivative of imidazole: imidazole-2-carboxaldehyde
  10. Mach–Zehnder interferometric analysis of planar polymer waveguide having an adlayer of WS2 for biosensing applications
  11. Linear mode conversion of terahertz radiation into terahertz surface plasmon wave over a graphene-free space interface
  12. Generation of second harmonic terahertz surface plasmon wave over a rippled graphene surface
  13. Investigation on structural, magnetic and optical properties of Sm–Co Co-substituted BiFeO3 samples
  14. Synthesis and optical characterization of Sr and Ti doped BiFeO3 multiferroics
  15. A comparative study on structural, magnetic and optical properties of rare earth ions substituted Bi1−xR x FeO3 (R: Ce3+, Sm3+ and Dy3+) nanoparticles
  16. Thermal, structural and optical properties of Pb1−xLa x TiO3 prepared using modified sol–gel route
  17. Biophotonic sensor design for the detection of reproductive hormones in females by using a 1D defective annular photonic crystal
  18. Spin density wave and antiferromagnetic transition in EuFe2As2: a high field transport and heat capacity study
  19. Impact of top metal electrodes on current conduction in WO3 thin films
  20. Atomistic simulation of Stoner–Wohlfarth (SW) particle
  21. Optimization of Coulomb glass system using quenching and annealing at small disorders
  22. Analytical modeling of adsorption isotherms for pristine and functionalized carbon nanotubes as gas sensors
  23. Effect of polymer blending on the electrochemical properties of porous PVDF/PMMA membrane immobilized with organic solvent based liquid electrolyte
  24. Structural, electronic, and thermal studies of Poly(ethylene oxide) based solid-state polymer electrolyte
  25. Milling route for the synthesis of nano-aluminium hydroxide for the development of low-density polymer composites
  26. Thermal properties of AlN (nano) filled LDPE composites
  27. Thermophysical characterization of mustard husk (MSH) and MSH char synthesized by the microwave pyrolysis of MSH
  28. Nano structured silver particles as green catalyst for remediation of methylene blue dye from water
  29. AlGaN/GaN heterostructures for high power and high-speed applications
  30. Role of interfacial electric field on thermal conductivity of In x Al1−xN/GaN superlattice (x = 0.17)
  31. Sensitivity assessment of dielectric modulated GaN material based SOI-FinFET for label-free biosensing applications
  32. Temperature-dependent analysis of heterojunction-free GaN FinFET through optimization of controlling gate parameters and dielectric materials
  33. Modelling of the exploding wire technique, a novel approach utilized for the synthesis of nanomaterials
  34. Rotating magnetic field configuration for controlled particle flux in material processing applications
  35. News
  36. DGM – Deutsche Gesellschaft für Materialkunde
Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8731/html
Scroll to top button