Abstract
La doped lead titanate ceramic compositions Pb1−xLa x TiO3 (PLT) for x = 0.0, 0.05, 0.1, 0.2 and 0.3 were synthesized by an acrylic acid modified sol-gel route. The microstructure, surface morphology, and optical properties of the resulting compositions were studied by using TGA, X-ray diffraction, Raman Spectroscopy, and UV–Vis spectroscopy. It was found that the acrylic acid acts as a strong gelling agent and the organic residue gets removed completely below 450 °C. Very smooth ceramic powders characterized by single perovskite phase were obtained. A reduction in the tetragonality ratio from 1.0698 to 1.0033 was observed with increasing La content from x = 0.0 to x = 0.3. The effect of reduced tetragonality was corroborated by the peak shift of soft modes in Raman spectra and approximately 2 cm−1 downshift of E(TO1) mode was observed for each atomic weight percent La addition in lead titanate. The average grain size was found decreasing marginally with the increasing La content in PLT. Using the UV–vis data, a slight but systematic increase in the direct absorption edge (band gap) from 3.155 eV to 3.234 eV was observed with increasing La content in the PLT compositions.
Acknowledgments
Authors are thankful to Shri A. K. Pandey, Dr. Swati Chopra, Mr. Ajit Shankar Singh of DMSRDE Kanpur for their valuable feedback and assistance during this work.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Bhalla, A. S., Saxena, A., Guo, R., Taylor, G. W. Ferroelectrics 2020, 569, 348. https://doi.org/10.1080/00150193.2020.1847141.Search in Google Scholar
2. Scott, J. F. Science 2007, 315, 954. https://doi.org/10.1126/science.1129564.Search in Google Scholar PubMed
3. Ma, X.-H., Li, H.-Y., Kweon, S.-H., Jeong, S.-Y., Lee, J.-H., Nahm, S. ACS Appl. Mater. Interfaces 2019, 11, 5240. https://doi.org/10.1021/acsami.8b18428.Search in Google Scholar PubMed
4. Thornton, A. L. Proc. SPIE 1982, 0307, 32. https://doi.org/10.1117/12.965902.Search in Google Scholar
5. Mikolajick, T., Slesazeck, S., Mulaosmanovic, H., Park, M. H., Fichtner, S., Lomenzo, P. D., Hoffmann, M., Schroeder, U. J. Appl. Phys. 2021, 129, 100901. https://doi.org/10.1063/5.0037617.Search in Google Scholar
6. Zhang, S., Li, F., Jiang, X., Kim, J., Luo, J., Geng, X. Prog. Mater. Sci. 2015, 68, 1. https://doi.org/10.1016/j.pmatsci.2014.10.002.Search in Google Scholar PubMed PubMed Central
7. Iijima, K., Takayama, R., Tomita, Y., Ueda, I. J. Appl. Phys. 1986, 60, 2914. https://doi.org/10.1063/1.337078.Search in Google Scholar
8. Zhao, Q., Liu, Y., Shi, W., Ren, W., Zhang, L., Yao, X. Appl. Phys. Lett. 1996, 69, 458. https://doi.org/10.1063/1.118138.Search in Google Scholar
9. Dobal, P. S., Katiyar, R. S. J. Raman Spectrosc. 2002, 33, 405. https://doi.org/10.1002/jrs.876.Search in Google Scholar
10. Chen, J., Xing, X., Yu, R., Liu, G. J. Am. Ceram. Soc. 2005, 88, 1356. https://doi.org/10.1111/j.1551-2916.2005.00314.x.Search in Google Scholar
11. Lemziouka, H., Omari, L. H., Moubah, R., Abid, M., Lassri, H., Sayouri, S. Mater. Res. Bull. 2017, 92, 85. https://doi.org/10.1016/j.materresbull.2017.04.009.Search in Google Scholar
12. Bajpai, K. K., Sreenivas, K., Gupta, A. K., Shukla, A. K. Ceram. Int. 2019, 45, 14111. https://doi.org/10.1016/j.ceramint.2019.04.111.Search in Google Scholar
13. de Camargo, S. S., Botero, É. R., Andreeta, É. R. M., Garcia, D., Eiras, J. A., Nunes, L. A. O. Appl. Phys. Lett. 2005, 86, 241112. https://doi.org/10.1063/1.1944905.Search in Google Scholar
14. Mansour, S., Eid, A., Abd El-Latif, L., Rashad, M., Afifi, M., Turner, J. Int. J. Appl. Ceram. Technol. 2018, 15, 766. https://doi.org/10.1111/ijac.12835.Search in Google Scholar
15. Fox, G., Krupanidhi, S., More, K., Allard, L. J. Mater. Res. 1992, 7, 3039. https://doi.org/10.1557/JMR.1992.3039.Search in Google Scholar
16. Gurkovich, S. R., Blum, J. B. Ferroelectrics 1985, 62, 189. https://doi.org/10.1080/00150198508225992.Search in Google Scholar
17. Harshan, V. N., Kotru, S. Ferroelectrics 2011, 130, 73. https://doi.org/10.1080/10584587.2011.637011.Search in Google Scholar
18. Scarisoreanu, N., Dinescu, M., Craciun, F., Verardi, P., Moldovan, A., Purice, A., Galassi, C. Appl. Surf. Sci. 2006, 252, 4553. https://doi.org/10.1016/j.apsusc.2005.07.140.Search in Google Scholar
19. Kathiresanet, M. Mater. Res. Express 2020, 7, 026406. https://doi.org/10.1088/2053-1591/ab6e80.Search in Google Scholar
20. Hendricks, W. C., Desu, S. B., Peng, C. H. Chem. Mater. 1994, 6, 1955. https://doi.org/10.1021/cm00047a011.Search in Google Scholar
21. Yang, C., Zhang, S., Liu, J., Wu, M. Integrated Ferroelectrics Int. J. 2003, 52, 223. https://doi.org/10.1080/10584580390254970.Search in Google Scholar
22. Shin, J.-S., Shin, J.-S., Lee, W.-J. Jpn. J. Appl. Phys. 1997, 36, 6909. https://doi.org/10.1143/JJAP.36.6909.Search in Google Scholar
23. Talwar, P., Tandon, R. P., Mansingh, A. Proceedings of 1994 IEEE International Symposium on Applications of Ferroelectrics 1994; p. 105.Search in Google Scholar
24. Majumder, S. B., Jain, M., Katiyar, R. S. Thin Solid Films 2002, 402, 90. https://doi.org/10.1016/S0040-6090(01)01713-8.Search in Google Scholar
25. Shimizu, Y., Udayakumar, K. R., Cross, L. E. J. Am. Ceram. Soc. 1991, 74, 3023. https://doi.org/10.1111/j.1151-2916.1991.tb04296.x.Search in Google Scholar
26. Dobal, P. S., Bhaskar, S., Majumder, S. B., Katiyar, R. S. J. Appl. Phys. 1999, 86, 828. https://doi.org/10.1063/1.370810.Search in Google Scholar
27. Milne, S. J., Pyke, S. H. J. Am. Ceram. Soc. 1991, 74, 1407. https://doi.org/10.1111/j.1151-2916.1991.tb04120.x.Search in Google Scholar
28. Bhaskar, S., Majumder, S. B., Dobal, P. S., Krupanidhi, S. B., Katiyar, R. S.Int. J. 2001, 36, 245. https://doi.org/10.1080/10584580108015546.Search in Google Scholar
29. Bhaskar, S., Majumder, S. B., Jain, M., Dobal, P. S., Katiyar, R. S. J. Mater. Sci. Eng. B 2001, 87, 178. https://doi.org/10.1016/S0921-5107(01)00739-5.Search in Google Scholar
30. Chaudhari, V. A., Bichile, G. K. Cogent Chemistry 2015, 1, 1075323. https://doi.org/10.1080/23312009.2015.1075323.Search in Google Scholar
31. Bhaskar, S., Majumder, S. B., Dobal, P. S., Katiyar, R. S., Krupanidhi, S. B. J. Appl. Phys. 2001, 89, 5637. https://doi.org/10.1063/1.1365062.Search in Google Scholar
32. Goldschmidt, V. M. Naturwissenschaften 1926, 14, 477. https://doi.org/10.1007/BF01507527.Search in Google Scholar
33. Chatzichristodoulou, C., Norby, P., Hendriksen, P. V. J. Electroceram. 2015, 34, 100. https://doi.org/10.1007/s10832-014-9916-2.Search in Google Scholar
34. Chang, T.-I., Wang, S.-C., Liu, C.-P., Lin, C.-F., Huang, J.-L.. J. Am. Ceram. Soc. 2008, 91, 2545. https://doi.org/10.1111/j.1551-2916.2008.02522.x.Search in Google Scholar
35. Chen, S.-Y., Chen, I.-W. J. Am. Ceram. Soc. 1994, 77, 2337. https://doi.org/10.1111/j.1151-2916.1994.tb04603.x.Search in Google Scholar
36. Kitaoka, K., Kozuka, H., Yoko, T. J. Am. Ceram. Soc. 1998, 81, 1189. https://doi.org/10.1111/j.1151-2916.1998.tb02467.x.Search in Google Scholar
37. Tani, T., Payne, D. A. J. Am. Ceram. Soc. 1994, 77, 1242. https://doi.org/10.1111/j.1151-2916.1994.tb05398.x.Search in Google Scholar
38. Mai, M., Lin, C., Xiong, Z., Xue, H., Chen, L. J. Phys.: Conf. Ser. 2009, 152, 012077. https://doi.org/10.1088/1742-6596/152/1/012077.Search in Google Scholar
39. Materials Data on TiPbO3 by Materials Project (mp-20459). [Online] LBNL, Berkeley, CA (accessed Jul 15, 2020). https://doi.org/10.17188/1195590.Search in Google Scholar
40. Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., Persson, K. A. Apl. Mater. 2013, 1, 011002. https://doi.org/10.1063/1.4812323.Search in Google Scholar
41. Fang, J., Wang, J., Gan, L.-M., Ng, S.-C. Mater. Lett. 2002, 52, 304. https://doi.org/10.1016/S0167-577X(01)00411-6.Search in Google Scholar
42. Lobmann, P., Glaubitt, W., Fricke, J. J. Am. Ceram. Soc. 1997, 80, 2658. https://doi.org/10.1111/j.1151-2916.1997.tb03168.x.Search in Google Scholar
43. Materials Data on TiPbO3 by Materials Project (mp-19845). [Online] LBNL, Berkeley, CA (accessed Jul 14, 2020). https://doi.org/10.17188/1195038.Search in Google Scholar
44. Holzwarth, U., Gibson, N. Nat. Nanotechnol. 2011, 6, 534. https://doi.org/10.1038/nnano.2011.145.Search in Google Scholar PubMed
45. Mote, V., Purushotham, Y., Dole, B. J. Theor. Appl. Phys. 2012, 6, 6. https://doi.org/10.1186/2251-7235-6-6.Search in Google Scholar
46. Shirane, G., Axe, D. J., Remeika, J. P., Harada, J. Phys. Rev. B 1970, 2, 155. https://doi.org/10.1103/PhysRevB.2.155.Search in Google Scholar
47. Burns, G., Scott, B. A. Phys. Rev. B 1973, 7, 3088. https://doi.org/10.1103/PhysRevB.7.3088.Search in Google Scholar
48. Foster, C. M., Li, Z., Grimsditch, M., Chan, S. K., Lam, D. J. Phys. Rev. B 1993, 48, 10160. https://doi.org/10.1103/PhysRevB.48.10160.Search in Google Scholar PubMed
49. Burns, G., Scott, B. A. Phys. Rev. Lett. 1970, 25, 167. https://doi.org/10.1103/PhysRevLett.25.167.Search in Google Scholar
50. Dobal, P. S., Das, R. R., Roy, B., Katiyar, R. S., Jain, S., Agrawal, D. C. J. Raman Spectrosc. 2000, 31, 965. https://doi.org/10.1002/1097-4555(200011)31:11%3C965::AID-JRS624%3E3.0.CO;2-P.10.1002/1097-4555(200011)31:11<965::AID-JRS624>3.0.CO;2-PSearch in Google Scholar
51. Yamamoto, T., Igarashi, H., Okazaki, K. J. Am. Ceram. Soc. 1983, 66, 363. https://doi.org/10.1111/j.1151-2916.1983.tb10050.x.Search in Google Scholar
52. Wood, D. L., Tauc, J. Phys. Rev. B 1972, 5, 3144. https://doi.org/10.1103/PhysRevB.5.3144.Search in Google Scholar
53. Tauc, J., Ed. Amorphous Liquid Semiconductors; Springer: Boston, 1974.10.1007/978-1-4615-8705-7Search in Google Scholar
54. Mansoor, M. A., Ismail, A., Yahya, R., Arifin, Z., Tiekink, E. R., Weng, N. S., Mazhar, M., Esmaeili, A. R. Inorg. Chem. 2013, 52, 5624. https://doi.org/10.1021/ic302772b.Search in Google Scholar PubMed
55. Mostafa, M., Alrowaili, Z. A., Rashwan, G. M., Gerges, M. K. Heliyon 2020, 6, e03389. https://doi.org/10.1016/j.heliyon.2020.e03389.Search in Google Scholar PubMed PubMed Central
56. Molak, A., Szeremeta, A. Z. J. Koperski: Electron.Mater. 2022, 3, 101. https://doi.org/10.3390/electronicmat3010010.Search in Google Scholar
57. Sun, C. Q., Tay, B. K., Li, S., Sun, X. W., Lau, S. P., Chen, T. P. Mater. Phys. Mech. 2001, 4, 129.Search in Google Scholar
58. Schuppler, S., Friedman, S. L., Macrus, M. A., Adler, D. L., Xie, Y. H., Ross, F. M., Chabal, Y. J., Harris, T. D., Brus, L. E., Brown, W. L., Chaban, E. E., Szajowski, P. F., Christman, S. B., Citrin, P. H. Phys. Rev. B 1995, 52, 4910. https://doi.org/10.1103/PhysRevB.52.4910.Search in Google Scholar
59. Rizwanet, M., Usman, Z., Shakil, M., Gillani, S. S. A., Azeem, S., Jin, H. B., Cao, C. B., Mehmood, R. F., Nabi, G., Asghar, M. A. Mater. Res. Express 2020, 7, 015920. https://doi.org/10.1088/2053-1591/ab6802.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- International conference on energy and advanced materials
- Review
- Analysis of different printing technologies for metallization of crystalline silicon solar cells
- Original Papers
- DFT investigation of nonlinear optical response of organic compound: acetylsalicylic acid
- Experimental (FT‐Raman, FT‐IR and NMR) and theoretical (DFT) calculations, thermodynamic parameters, molecular docking and NLO (non-linear optical) properties of N‐(2,6‐dimethylphenyl)‐1‐piperazineacetamide
- Investigation of nonlinear optical responses of organic derivative of imidazole: imidazole-2-carboxaldehyde
- Mach–Zehnder interferometric analysis of planar polymer waveguide having an adlayer of WS2 for biosensing applications
- Linear mode conversion of terahertz radiation into terahertz surface plasmon wave over a graphene-free space interface
- Generation of second harmonic terahertz surface plasmon wave over a rippled graphene surface
- Investigation on structural, magnetic and optical properties of Sm–Co Co-substituted BiFeO3 samples
- Synthesis and optical characterization of Sr and Ti doped BiFeO3 multiferroics
- A comparative study on structural, magnetic and optical properties of rare earth ions substituted Bi1−xR x FeO3 (R: Ce3+, Sm3+ and Dy3+) nanoparticles
- Thermal, structural and optical properties of Pb1−xLa x TiO3 prepared using modified sol–gel route
- Biophotonic sensor design for the detection of reproductive hormones in females by using a 1D defective annular photonic crystal
- Spin density wave and antiferromagnetic transition in EuFe2As2: a high field transport and heat capacity study
- Impact of top metal electrodes on current conduction in WO3 thin films
- Atomistic simulation of Stoner–Wohlfarth (SW) particle
- Optimization of Coulomb glass system using quenching and annealing at small disorders
- Analytical modeling of adsorption isotherms for pristine and functionalized carbon nanotubes as gas sensors
- Effect of polymer blending on the electrochemical properties of porous PVDF/PMMA membrane immobilized with organic solvent based liquid electrolyte
- Structural, electronic, and thermal studies of Poly(ethylene oxide) based solid-state polymer electrolyte
- Milling route for the synthesis of nano-aluminium hydroxide for the development of low-density polymer composites
- Thermal properties of AlN (nano) filled LDPE composites
- Thermophysical characterization of mustard husk (MSH) and MSH char synthesized by the microwave pyrolysis of MSH
- Nano structured silver particles as green catalyst for remediation of methylene blue dye from water
- AlGaN/GaN heterostructures for high power and high-speed applications
- Role of interfacial electric field on thermal conductivity of In x Al1−xN/GaN superlattice (x = 0.17)
- Sensitivity assessment of dielectric modulated GaN material based SOI-FinFET for label-free biosensing applications
- Temperature-dependent analysis of heterojunction-free GaN FinFET through optimization of controlling gate parameters and dielectric materials
- Modelling of the exploding wire technique, a novel approach utilized for the synthesis of nanomaterials
- Rotating magnetic field configuration for controlled particle flux in material processing applications
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Editorial
- International conference on energy and advanced materials
- Review
- Analysis of different printing technologies for metallization of crystalline silicon solar cells
- Original Papers
- DFT investigation of nonlinear optical response of organic compound: acetylsalicylic acid
- Experimental (FT‐Raman, FT‐IR and NMR) and theoretical (DFT) calculations, thermodynamic parameters, molecular docking and NLO (non-linear optical) properties of N‐(2,6‐dimethylphenyl)‐1‐piperazineacetamide
- Investigation of nonlinear optical responses of organic derivative of imidazole: imidazole-2-carboxaldehyde
- Mach–Zehnder interferometric analysis of planar polymer waveguide having an adlayer of WS2 for biosensing applications
- Linear mode conversion of terahertz radiation into terahertz surface plasmon wave over a graphene-free space interface
- Generation of second harmonic terahertz surface plasmon wave over a rippled graphene surface
- Investigation on structural, magnetic and optical properties of Sm–Co Co-substituted BiFeO3 samples
- Synthesis and optical characterization of Sr and Ti doped BiFeO3 multiferroics
- A comparative study on structural, magnetic and optical properties of rare earth ions substituted Bi1−xR x FeO3 (R: Ce3+, Sm3+ and Dy3+) nanoparticles
- Thermal, structural and optical properties of Pb1−xLa x TiO3 prepared using modified sol–gel route
- Biophotonic sensor design for the detection of reproductive hormones in females by using a 1D defective annular photonic crystal
- Spin density wave and antiferromagnetic transition in EuFe2As2: a high field transport and heat capacity study
- Impact of top metal electrodes on current conduction in WO3 thin films
- Atomistic simulation of Stoner–Wohlfarth (SW) particle
- Optimization of Coulomb glass system using quenching and annealing at small disorders
- Analytical modeling of adsorption isotherms for pristine and functionalized carbon nanotubes as gas sensors
- Effect of polymer blending on the electrochemical properties of porous PVDF/PMMA membrane immobilized with organic solvent based liquid electrolyte
- Structural, electronic, and thermal studies of Poly(ethylene oxide) based solid-state polymer electrolyte
- Milling route for the synthesis of nano-aluminium hydroxide for the development of low-density polymer composites
- Thermal properties of AlN (nano) filled LDPE composites
- Thermophysical characterization of mustard husk (MSH) and MSH char synthesized by the microwave pyrolysis of MSH
- Nano structured silver particles as green catalyst for remediation of methylene blue dye from water
- AlGaN/GaN heterostructures for high power and high-speed applications
- Role of interfacial electric field on thermal conductivity of In x Al1−xN/GaN superlattice (x = 0.17)
- Sensitivity assessment of dielectric modulated GaN material based SOI-FinFET for label-free biosensing applications
- Temperature-dependent analysis of heterojunction-free GaN FinFET through optimization of controlling gate parameters and dielectric materials
- Modelling of the exploding wire technique, a novel approach utilized for the synthesis of nanomaterials
- Rotating magnetic field configuration for controlled particle flux in material processing applications
- News
- DGM – Deutsche Gesellschaft für Materialkunde