Home Nano structured silver particles as green catalyst for remediation of methylene blue dye from water
Article
Licensed
Unlicensed Requires Authentication

Nano structured silver particles as green catalyst for remediation of methylene blue dye from water

  • Anindita De ORCID logo EMAIL logo and Preeti Jain EMAIL logo
Published/Copyright: April 24, 2023
Become an author with De Gruyter Brill

Abstract

Anthropogenic dyes are one of the major pollutants often found in industrial wastewater. They are very stable as they contain robust aromatic moiety and are highly hazardous to human health and livelihood. There are several methods for the treatment of dye-containing wastewater. However, these techniques have severe limitations in terms of cost, the time required, and the generation of secondary waste. In this regard, silver nanoparticle-based catalysts can prove to be highly useful. In the present study, silver nanoparticles were synthesized by a green method, and the condition of synthesis was optimized by varying different parameters such as the concentration ratio of metal salt and plant extract, temperature, and pH of the reaction medium. The biogenic silver nanoparticles can act as a catalyst in the reductive degradation reaction of an anthropogenic dye (methylene blue) in the presence of sodium borohydride. The synthesized nanoparticles were highly active against methylene blue and degraded the dye within a few minutes. Thus, this work represents a very stable and efficient system for dye-containing wastewater treatment.


Corresponding authors: Anindita De and Preeti Jain, Department of Chemistry & Biochemistry, School of Basic Sciences and Research, Sharda University, Greater Noida, India, E-mail: (A. De), (P. Jain). (A. De)

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors are grateful to Sharda University for providing financial support and lab facility to carry out this work.

  3. Conflict of interest statement: The authors declare that there is no competing interest.

References

1. De, A., Kalita, D. Crit. Rev. Anal. Chem. 2021, 51, 1–17. https://doi.org/10.1080/10408347.2021.1970507.Search in Google Scholar PubMed

2. Wang, Y., O’Connor, D., Shen, Z., Lo, I. M., Tsang, D. C., Pehkonen, S., Pu, S., Hou, D. J. Clean. Prod. 2019, 226, 540–549. https://doi.org/10.1016/j.jclepro.2019.04.128.Search in Google Scholar

3. Elahi, N., Kamali, M., Baghersad, M. H. Talanta 2018, 184, 537. https://doi.org/10.1016/j.talanta.2018.02.088.Search in Google Scholar PubMed

4. Mohammadi, L., Pal, K., Bilal, M., Rahdar, A., Fytianos, G., Kyzas, G. Z. J. Mol. Struct. 2021, 5, 129857. https://doi.org/10.1016/j.molstruc.2020.129857.Search in Google Scholar

5. Zhao, Y., Yang, L., Ma, C. Front. Mater. Sci. 2020, 14, 145–154. https://doi.org/10.1007/s11706-020-0504-x.Search in Google Scholar

6. Li, J., Liang, X., King, D. M., Jiang, Y. B., Weimer, A. W. Appl. Catal., B 2010, 97, 220–226. https://doi.org/10.1016/j.apcatb.2010.04.003.Search in Google Scholar

7. Asthana, N., Pal, K. Nanofabrication for Smart Nanosensor Applications; Elsevier: Amsterdam, 2020; pp 349–397.10.1016/B978-0-12-820702-4.00015-5Search in Google Scholar

8. Barhoum, A., Pal, K., Rahier, H., Uludag, H., Kim, I. S., Bechelany, M. Appl. Mater. Today 2019, 17, 1–35. https://doi.org/10.1016/j.apmt.2019.06.015.Search in Google Scholar

9. Beyene, H. D., Werkneh, A. A., Bezabh, H. K., Ambaye, T. G. Sustainable Mater. Technol. 2017, 13, 18–23. https://doi.org/10.1016/j.susmat.2017.08.001.Search in Google Scholar

10. Adil, S. F., Assal, M. E., Khan, M., Al-Warthan, A., Siddiqui, M. R. H., Liz-Marzán, L. M. Dalton Trans. 2015, 44, 9709–9717. https://doi.org/10.1039/C4DT03222E.Search in Google Scholar

11. Asiya, S. I., Pal, K., Kralj, S., El-Sayyad, G. S., de Souza, F. G., Narayanan, T. Mater. Today Chem. 2020, 17, 100327. https://doi.org/10.1016/j.mtchem.2020.100327.Search in Google Scholar

12. Siddiquee, M. A., ud din Parray, M., Mehdi, S. H., Alzahrani, K. A., Alshehri, A. A., Malik, M. A., Patel, R. Mater. Chem. Phys. 2020, 242, 122493. https://doi.org/10.1016/j.matchemphys.2019.122493.Search in Google Scholar

13. Khandegar, V., Saroha, A. K. J. Environ. Manag. 2013, 128, 949–963. https://doi.org/10.1016/j.jenvman.2013.06.043.Search in Google Scholar PubMed

14. Dutta, A. K., Maji, S. K., Adhikary, B. Mater. Res. Bull. 2014, 49, 28–34. https://doi.org/10.1016/j.materresbull.2013.08.024.Search in Google Scholar

15. de Lima, R. O. A., Bazo, A. P., Salvadori, D. M. F., Rech, C. M., de Palma Oliveira, D., de Aragão Umbuzeiro, G. Mutat. Res., Genet. Toxicol. Environ. Mutagen. 2007, 626, 53–60. https://doi.org/10.1016/j.mrgentox.2006.08.002.Search in Google Scholar PubMed

16. Katheresan, V., Kansedo, J., Lau, S. Y. J. Environ. Chem. Eng. 2018, 6, 4676–4697. https://doi.org/10.1016/j.jece.2018.06.060.Search in Google Scholar

17. Anjaneyulu, Y., Chary, N. S., Suman Raj, D. S. Rev. Environ. Sci. Biotechnol. 2005, 4, 245–273. DOI https://doi.org/10.1007/s11157-005-1246-z.Search in Google Scholar

18. Malik, M. A., Alshehri, A. A., Patel, R. J. Mater. Res. Technol. 2021, 12, 455. https://doi.org/10.1016/j.jmrt.2021.02.063.Search in Google Scholar

19. Malik, M. A., Alshehri, A. A., Abomuti, M. A., Danish, E. Y., Patel, R. Toxics 2021, 9, 103. https://doi.org/10.3390/toxics9050103.Search in Google Scholar PubMed PubMed Central

20. Siddiquee, M. A., ud din Parray, M., Kamli, M. R., Malik, M. A., Mehdi, S. H., Imtiyaz, K., Rizvi, M. M. A., Rajor, H. K., Patel, R. J. Mater. Res. Technol. 2021, 13, 2066. https://doi.org/10.1016/j.jmrt.2021.05.078.Search in Google Scholar

21. De, A., Jain, P., Manna, A. K., Srivastava, V., Das, R. Inorg Nano-Met. Chem. 2021, 51, 1. https://doi.org/10.1080/24701556.2021.2007129.Search in Google Scholar

22. Vijayaraghavan, K., Ashokkumar, T. J. Environ. Chem. Engg. 2017, 5, 4866. https://doi.org/10.1016/j.jece.2017.09.026.Search in Google Scholar

23. Singh, N. B., Jain, P., De, A., Tomar, R. Curr. Pharmaceut. Biotechnol. 2021, 22, 1705. https://doi.org/10.2174/1389201022666210412142734.10.2174/1389201022666210412142734Search in Google Scholar PubMed

24. Stuart, B., Ando, D. J., George, W. O., McIntyre, P. S. Modern Infrared Spectroscopy; ACOL (University of Greenwich) by Wiley: Amsterdam. 1996.Search in Google Scholar

25. Indana, M. K., Gangapuram, B. R., Dadigala, R., Bandi, R., Guttena, V. J. Anal. Sci. Technol. 2016, 7, 1–9. https://doi.org/10.1186/s40543-016-0098-1.Search in Google Scholar

26. Mallick, K., Witcomb, M., Scurrell, M. Mater. Chem. Phys. 2006, 97, 283–287. https://doi.org/10.1016/j.matchemphys.2005.08.011.Search in Google Scholar

27. De, A., Kalita, D., Jain, P. ChemistrySelect 2021, 6, 10776. https://doi.org/10.1002/slct.202101987.Search in Google Scholar

28. Asthana, N., Pal, K., Aljabali, A. A., Tambuwala, M. M., de Souza, F. G., Pandey, K. J. Mol. Struct. 2021, 1229, 129592. https://doi.org/10.1016/j.molstruc.2020.129592.Search in Google Scholar

29. Yusoff, N. H., Pal, K., Narayanan, T., de Souza, T. F. G. J. Mol. Struct. 2021, 1232, 129954. https://doi.org/10.1016/j.molstruc.2021.129954.Search in Google Scholar

30. Pal, K., Si, A., El-Sayyad, G. S., Elkodous, M. A., Kumar, R., El-Batal, A. I., Kralj, S., Thomas, S. Crit. Rev. Solid State Mater. Sci. 2021, 46, 385. https://doi.org/10.1080/10408436.2020.1805295.Search in Google Scholar

Received: 2021-11-11
Accepted: 2022-07-22
Published Online: 2023-04-24
Published in Print: 2023-07-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. International conference on energy and advanced materials
  4. Review
  5. Analysis of different printing technologies for metallization of crystalline silicon solar cells
  6. Original Papers
  7. DFT investigation of nonlinear optical response of organic compound: acetylsalicylic acid
  8. Experimental (FT‐Raman, FT‐IR and NMR) and theoretical (DFT) calculations, thermodynamic parameters, molecular docking and NLO (non-linear optical) properties of N‐(2,6‐dimethylphenyl)‐1‐piperazineacetamide
  9. Investigation of nonlinear optical responses of organic derivative of imidazole: imidazole-2-carboxaldehyde
  10. Mach–Zehnder interferometric analysis of planar polymer waveguide having an adlayer of WS2 for biosensing applications
  11. Linear mode conversion of terahertz radiation into terahertz surface plasmon wave over a graphene-free space interface
  12. Generation of second harmonic terahertz surface plasmon wave over a rippled graphene surface
  13. Investigation on structural, magnetic and optical properties of Sm–Co Co-substituted BiFeO3 samples
  14. Synthesis and optical characterization of Sr and Ti doped BiFeO3 multiferroics
  15. A comparative study on structural, magnetic and optical properties of rare earth ions substituted Bi1−xR x FeO3 (R: Ce3+, Sm3+ and Dy3+) nanoparticles
  16. Thermal, structural and optical properties of Pb1−xLa x TiO3 prepared using modified sol–gel route
  17. Biophotonic sensor design for the detection of reproductive hormones in females by using a 1D defective annular photonic crystal
  18. Spin density wave and antiferromagnetic transition in EuFe2As2: a high field transport and heat capacity study
  19. Impact of top metal electrodes on current conduction in WO3 thin films
  20. Atomistic simulation of Stoner–Wohlfarth (SW) particle
  21. Optimization of Coulomb glass system using quenching and annealing at small disorders
  22. Analytical modeling of adsorption isotherms for pristine and functionalized carbon nanotubes as gas sensors
  23. Effect of polymer blending on the electrochemical properties of porous PVDF/PMMA membrane immobilized with organic solvent based liquid electrolyte
  24. Structural, electronic, and thermal studies of Poly(ethylene oxide) based solid-state polymer electrolyte
  25. Milling route for the synthesis of nano-aluminium hydroxide for the development of low-density polymer composites
  26. Thermal properties of AlN (nano) filled LDPE composites
  27. Thermophysical characterization of mustard husk (MSH) and MSH char synthesized by the microwave pyrolysis of MSH
  28. Nano structured silver particles as green catalyst for remediation of methylene blue dye from water
  29. AlGaN/GaN heterostructures for high power and high-speed applications
  30. Role of interfacial electric field on thermal conductivity of In x Al1−xN/GaN superlattice (x = 0.17)
  31. Sensitivity assessment of dielectric modulated GaN material based SOI-FinFET for label-free biosensing applications
  32. Temperature-dependent analysis of heterojunction-free GaN FinFET through optimization of controlling gate parameters and dielectric materials
  33. Modelling of the exploding wire technique, a novel approach utilized for the synthesis of nanomaterials
  34. Rotating magnetic field configuration for controlled particle flux in material processing applications
  35. News
  36. DGM – Deutsche Gesellschaft für Materialkunde
Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8644/html
Scroll to top button