Startseite Temperature-dependent analysis of heterojunction-free GaN FinFET through optimization of controlling gate parameters and dielectric materials
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Temperature-dependent analysis of heterojunction-free GaN FinFET through optimization of controlling gate parameters and dielectric materials

  • Ajay Kumar ORCID logo EMAIL logo und Amit Kumar Goyal
Veröffentlicht/Copyright: 14. April 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This work presents the temperature-dependent analysis of heterojunction-free gallium nitride (GaN) FinFET through optimization of controlling gate parameters and dielectric materials. The temperature-dependent performance evaluation presents in terms of the transfer characteristic, transconductance, subthreshold swing (SS), and drain-induced barrier lowering (DIBL). Further, parametric assessment has been performed by gate length (Lg) and oxide thickness (tox) variation for optimization. Moreover, the different gate dielectric materials (Al2O3, ZrO2, and Si3N4) have also been used for different temperatures to optimize suitable gate dielectric material for improved performance of the device. Thus, GAN FinFET can be considered a promising component in high temperatures in IC and RF amplifiers.


Corresponding author: Ajay Kumar, ECE Department, Jaypee Institute of Information Technology, Noida, India, E-mail: .

Acknowledgment

The authors are thankful to JIIT for supporting this work.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Chhabra, A., Kumar, A., Chaujar, R. Vacuum 2019, 160, 467. https://doi.org/10.1016/j.vacuum.2018.12.007.Suche in Google Scholar

2. Chhabra, A., Kumar, A., Chaujar, R. 2018 International Conference On Advances in Communication and Computing Technology (ICACCT), 2018, pp. 483–486. https://doi.org/10.1109/ICACCT.2018.8529390.Suche in Google Scholar

3. Gupta, N., Kumar, A. ECS J. Solid State Sci. Technol. 2020, 9, 123009. https://doi.org/10.1149/2162-8777/abcf14.Suche in Google Scholar

4. Sahay, S., Kumar, M. J. IEEE Trans. Electron. Dev. 2017, 64, 3007. https://doi.org/10.1109/TED.2017.2702067.Suche in Google Scholar

5. Colinge, J.-P., Gao, M., Romano-Rodriguez, A., Maes, H., Claeys, C. Electron Devices Meeting, 1990. IEDM’90. Technical Digest., International, 1990; p 595.Suche in Google Scholar

6. Farzana, E., Chowdhury, S., Ahmed, R., Khan, M. Z. R. Appl. Nanosci. 2013, 3, 109. https://doi.org/10.1007/s13204-012-0090-z.Suche in Google Scholar

7. Xue, Y., Jiang, Y., Li, F., Zhong, R., Wang, Q. Appl. Nanosci. 2019, 1, 1433–1440. https://doi.org/10.1007/s13204-019-01226-8.Suche in Google Scholar

8. Colinge, J., Lee, C., Akhavan, N. D., Yan, R., Ferain, I., Razavi, P., Kranti, A., Yu, R. Semiconductor-On-Insulator Materials for Nanoelectronics Applications. Springer: Switzerland, 2011; pp. 187–200.10.1007/978-3-642-15868-1_10Suche in Google Scholar

9. Colinge, J.-P., Lee, C.-W., Afzalian, A., Akhavan, N. D., Yan, R., Ferain, I., Razavi, P., O’neill, B., Blake, A., White, M. Nat. Nanotechnol. 2010, 5, 225. https://doi.org/10.1038/nnano.2010.15.Suche in Google Scholar PubMed

10. Tripathi, P. M., Soni, H., Chaujar, R., Kumar, A. IET Circuits, Devices Syst. 2020, 14, 915. https://doi.org/10.1049/iet-cds.2020.0041.Suche in Google Scholar

11. Kumar, A., Gupta, N., Tripathi, S. K., Tripathi, M., Chaujar, R. AEÜ - Int. J. Electron. Commun. 2020, 115, 153052. https://doi.org/10.1016/j.aeue.2019.153052.Suche in Google Scholar

12. Teng, M., Yue, H., Chi, C., Xiaohua, M. J. Semiconduct. 2010, 31, 064002. https://doi.org/10.1088/1674-4926/31/6/064002.Suche in Google Scholar

13. Hahn, H., Reuters, B., Geipel, S., Schauerte, M., Benkhelifa, F., Ambacher, O., Kalisch, H., Vescan, A. J. Appl. Phys. 2015, 117, 104508. https://doi.org/10.1063/1.4913857.Suche in Google Scholar

14. Im, K.-S., Ha, J.-B., Kim, K.-W., Lee, J.-S., Kim, D.-S., Hahm, S.-H., Lee, J.-H. IEEE Electron. Device Lett. 2010, 31, 192. https://doi.org/10.1109/LED.2009.2039024.Suche in Google Scholar

15. Park, T.-s., Yoon, E., Lee, J.-H. Phys. E Low-dimens. Syst. Nanostruct. 2003, 19, 6. https://doi.org/10.1016/S1386-9477(03)00285-6.Suche in Google Scholar

16. Im, K.-S., Jo, Y.-W., Lee, J.-H., Cristoloveanu, S., Lee, J.-H. IEEE Electron. Device Lett. 2013, 34, 381. https://doi.org/10.1109/LED.2013.2240372.Suche in Google Scholar

17. Sahay, S., Kumar, M. J. IEEE Trans. Electron. Dev. 2017, 64, 1330. https://doi.org/10.1109/TED.2016.2645640.Suche in Google Scholar

18. Gupta, N., Chaujar, R. Superlattices and Microstruct. 2016, 97, 660. https://doi.org/10.1016/j.spmi.2016.07.021.Suche in Google Scholar

19. Gupta, N., Chaujar, R. Appl. Phys. A 2016, 122, 1. https://doi.org/10.1007/s00339-016-0239-9.Suche in Google Scholar

20. Roy, S. D., Kumar, M. J. IEEE Trans. Device Mater. Reliab. 2006, 6, 306. https://doi.org/10.1109/TDMR.2006.876600.Suche in Google Scholar

Received: 2021-11-23
Accepted: 2023-01-21
Published Online: 2023-04-14
Published in Print: 2023-07-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. International conference on energy and advanced materials
  4. Review
  5. Analysis of different printing technologies for metallization of crystalline silicon solar cells
  6. Original Papers
  7. DFT investigation of nonlinear optical response of organic compound: acetylsalicylic acid
  8. Experimental (FT‐Raman, FT‐IR and NMR) and theoretical (DFT) calculations, thermodynamic parameters, molecular docking and NLO (non-linear optical) properties of N‐(2,6‐dimethylphenyl)‐1‐piperazineacetamide
  9. Investigation of nonlinear optical responses of organic derivative of imidazole: imidazole-2-carboxaldehyde
  10. Mach–Zehnder interferometric analysis of planar polymer waveguide having an adlayer of WS2 for biosensing applications
  11. Linear mode conversion of terahertz radiation into terahertz surface plasmon wave over a graphene-free space interface
  12. Generation of second harmonic terahertz surface plasmon wave over a rippled graphene surface
  13. Investigation on structural, magnetic and optical properties of Sm–Co Co-substituted BiFeO3 samples
  14. Synthesis and optical characterization of Sr and Ti doped BiFeO3 multiferroics
  15. A comparative study on structural, magnetic and optical properties of rare earth ions substituted Bi1−xR x FeO3 (R: Ce3+, Sm3+ and Dy3+) nanoparticles
  16. Thermal, structural and optical properties of Pb1−xLa x TiO3 prepared using modified sol–gel route
  17. Biophotonic sensor design for the detection of reproductive hormones in females by using a 1D defective annular photonic crystal
  18. Spin density wave and antiferromagnetic transition in EuFe2As2: a high field transport and heat capacity study
  19. Impact of top metal electrodes on current conduction in WO3 thin films
  20. Atomistic simulation of Stoner–Wohlfarth (SW) particle
  21. Optimization of Coulomb glass system using quenching and annealing at small disorders
  22. Analytical modeling of adsorption isotherms for pristine and functionalized carbon nanotubes as gas sensors
  23. Effect of polymer blending on the electrochemical properties of porous PVDF/PMMA membrane immobilized with organic solvent based liquid electrolyte
  24. Structural, electronic, and thermal studies of Poly(ethylene oxide) based solid-state polymer electrolyte
  25. Milling route for the synthesis of nano-aluminium hydroxide for the development of low-density polymer composites
  26. Thermal properties of AlN (nano) filled LDPE composites
  27. Thermophysical characterization of mustard husk (MSH) and MSH char synthesized by the microwave pyrolysis of MSH
  28. Nano structured silver particles as green catalyst for remediation of methylene blue dye from water
  29. AlGaN/GaN heterostructures for high power and high-speed applications
  30. Role of interfacial electric field on thermal conductivity of In x Al1−xN/GaN superlattice (x = 0.17)
  31. Sensitivity assessment of dielectric modulated GaN material based SOI-FinFET for label-free biosensing applications
  32. Temperature-dependent analysis of heterojunction-free GaN FinFET through optimization of controlling gate parameters and dielectric materials
  33. Modelling of the exploding wire technique, a novel approach utilized for the synthesis of nanomaterials
  34. Rotating magnetic field configuration for controlled particle flux in material processing applications
  35. News
  36. DGM – Deutsche Gesellschaft für Materialkunde
Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8668/html
Button zum nach oben scrollen