Home Impact of top metal electrodes on current conduction in WO3 thin films
Article
Licensed
Unlicensed Requires Authentication

Impact of top metal electrodes on current conduction in WO3 thin films

  • Savita Sharma ORCID logo , Monika Tomar and Sudha Gulati ORCID logo EMAIL logo
Published/Copyright: May 15, 2023
Become an author with De Gruyter Brill

Abstract

Using radio-frequency (rf) sputtering technique tungsten oxide (WO3) thin films (∼150 nm) were deposited in a gas mixture of Ar and O2 at 10 mTorr pressure on indium tin oxide (ITO) and corning glass substrates. The films were annealed at 400 °C. Structural and optical properties of films were studied. Metal–insulator–metal (MIM) structure was made by depositing metal electrode (Ag, Al, Au) on the prepared WO3 thin films (on ITO substrate) using thermal evaporation technique. Electrical properties of the MIM structure were studied by plotting current versus voltage (IV) curves for Ag, Al and Au metal electrodes. Current conduction mechanism in WO3 film was determined by plotting and fitting IV data in different equations of current mechanisms.


Corresponding author: Sudha Gulati, Physics Department, Kalindi College, University of Delhi, Delhi 110008, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Authors are thankful to Late Prof. Vinay Gupta for all the guidance and support to carry out the research work.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Liwen, S., Liao, M., Sumiya, M. A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures. Sensors 2013, 1, 10482–10518. https://doi.org/10.3390/s130810482.Search in Google Scholar PubMed PubMed Central

2. Keem, K., Kim, H., Kim, G. T., Lee, J. S., Min, B., Cho, K., Sung, M. Y., Kim, S. Photocurrent in ZnO nanowires grown from Au electrodes. Appl. Phys. Lett. 2004, 8, 4376–4378. https://doi.org/10.1063/1.1756205.Search in Google Scholar

3. Soci, C., Zhang, A., Xiang, B., Dayeh, S. A., Aplin, D. P. R., Park, J., Bao, X. Y., Lo, Y. H., Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003–1009. https://doi.org/10.1021/nl070111x.Search in Google Scholar PubMed

4. Qiu, C. H., Pankove, J. I. Deep levels and persistent photoconductivity in GaN thin film. Appl. Phys. Lett. 1997, 70, 1983–1985. https://doi.org/10.1063/1.118799.Search in Google Scholar

5. Monroy, E., Omnes, F., Calle, F. Wide-bandgap semiconductor ultraviolet photodetectors. Semicond. Sci. Technol. 2003, 18, R33–R51. https://doi.org/10.1088/0268-1242/18/4/201.Search in Google Scholar

6. Dong, C., Zhao, R., Yao, L., Ran, Y., Zhang, X., Wan, Y. A review on WO3 based gas sensors: morphology control and enhanced sensing properties. J. Alloys Compd. 2020, 820, 153194. https://doi.org/10.1016/j.jallcom.2019.153194.Search in Google Scholar

7. Shao, D., Yu, M., Lian, J., Sawyer, S. An ultraviolet photodetector fabricated from WO3 nanodiscs/reduced graphene oxide composite material. Nanotechnology 2013, 24, 295701. https://doi.org/10.1088/0957-4484/24/29/295701.Search in Google Scholar PubMed

8. Hai, Z., Akbari, M. K., Xue, C., Xu, H., Hyde, L., Zhuiykov, S. Wafer-scaled monolayer WO3 windows ultra-sensitive, extremely-fast and stable UV-A photodetection. Appl. Surf. Sci. 2017, 405, 169–177. https://doi.org/10.1016/j.apsusc.2017.02.031.Search in Google Scholar

9. Stubhan, T., Li, N., Luechinger, N. A., Halim, S. C., Matt, G. J., Brabec, C. J. High fill factor polymer solar cells incorporating a low temperature solution processed WO3 hole extraction layer. Adv. Energy Mater. 2012, 2, 1433–1438. https://doi.org/10.1002/aenm.201200330.Search in Google Scholar

10. Ali, F., Pham, N. D., Fan, L., Tiong, V., Ostrikov, K., Bell, J. M., Wang, H., Tesfamichael, T. Low hysteresis perovskite solar cells using an electron-beam, evaporated WO3-x thin film as the electron transport layer. ACS Appl. Energy Mater. 2019, 2, 5456–5464. https://doi.org/10.1021/acsaem.9b00547.Search in Google Scholar

11. Habazaki, H., Hayashi, Y., Konno, H. Characterization of electrodeposited WO3 films and its application to electrochemical wastewater treatment. Electrochim. Acta 2002, 47, 4181–4188. https://doi.org/10.1016/S0013-4686(02)00435-8.Search in Google Scholar

12. Apolinario, A., Lopes, T., Costa, C., Jo, J. P. A., Mendes, A. M. Multilayered WO3 nanoplatelets for efficient photoelectrochemical water splitting : the role of the annealing ramp. ACS Appl. Energy Mater. 2019, 2, 1040–1050. https://doi.org/10.1021/acsaem.8b01530.Search in Google Scholar

13. Rao, M. Structure and properties of WO3 thin films for electrochromic device application. J. Non oxide Glasses 2013, 5, 1–8.Search in Google Scholar

14. Sberveglieri, G., Depero, L., Groppelli, S., Nelli, P. WO3 sputtered thin films for NOx monitoring. Sens. Actuators, B 1995, 26/27, 89. https://doi.org/10.1016/0925-4005(94)01563-W.Search in Google Scholar

15. Granqvist, C. G. Electrochromic tungsten oxide films: review of progress 1993-1998. Sol. Energy Mater. Sol. Cells 2000, 60, 201. https://doi.org/10.1016/s0927-0248(99)00088-4.Search in Google Scholar

16. Yao, Y., Zou, L., Wang, Q., Liu, C. A review on the properties and applications of WO3 nanostructure-based optical and electronic devices. Nanomaterials 2021, 11, 2136. https://doi.org/10.3390/nano11082136.Search in Google Scholar PubMed PubMed Central

17. Wang, S., Wang, C., Chen, F., Li, H., Shen, S., Bor, Y., Wei, N. Electrical and physical characteristics of WO3/Ag/WO3 sandwitch structure fabricated with magnetic- control sputtering metrology. Sensors 2018, 18, 2803–2814. https://doi.org/10.3390/s18092803.Search in Google Scholar PubMed PubMed Central

18. Munro, B., Kramer, S., Zapp, P., Krug, H. Characterization of Electrochromic WO3-layers prepared by sol-gel nanotechnology. J. Sol-Gel Sci. Technol. 1998, 13, 673–678. https://doi.org/10.1023/A:1008684720378.10.1023/A:1008684720378Search in Google Scholar

19. Chernseddine, A. Sol-gel processing of an entirely new family of mixed valence glasses. J. Non-Cryst. Solids 1992, 147–148, 313–319. https://doi.org/10.1016/S0022-3093(05)80636-2.Search in Google Scholar

20. Lee, K. Preparation and electrochromicproperties of WO3 coating deposited by the sol–gel method. Sol. Energy Mater. Sol. Cells 1999, 57, 21–30. https://doi.org/10.1016/S0927-0248(98)00162-7.Search in Google Scholar

21. Sivakumar, R., Jayachandran, M., Sanjeeviraja, C. Studies on the effect of substrate temperature on (VI–VI) textured tungsten oxide (WO3) thin films on glass, SnO2:F substrates by PVD: EBE technique for electrochromic devices. Mater. Chem. Phys. 2004, 87, 439–445. https://doi.org/10.1016/j.matchemphys.2004.06.028.Search in Google Scholar

22. Leitzke, D. W., Cholant, C. M., Landarin, D. M., Lucio, C. S., Krüger, L. U., Gündel, A., Flores, W. H., Rodrigues, M. P., Balboni, R. D. C., Pawlicka, A., Avellaned, C. O. Electrochemical properties of WO3 sol-gel thin films on indium tin oxide/poly(ethylene terephthalate) substrate. Thin Solid Films 2019, 683, 8–15. https://doi.org/10.1016/j.tsf.2019.05.018.Search in Google Scholar

23. Demir, K. C. Corrosion behavior of electrodeposited WO3 thin films. Ceram. Int. 2020, 46, 4358. https://doi.org/10.1016/j.ceramint.2019.10.159.Search in Google Scholar

24. Parshina, L. S., Novodvorsky, O. A., Khramova, O. D., Lotin, A. A., Shchur, P. A. PLD of thin WO3 films for solid-state electrochromic cells. J. Phys.: Conf. Ser. 2019, 1164, 012003. https://doi.org/10.1088/1742-6596/1164/1/012003.Search in Google Scholar

25. Ribeiro, F. N., Obermüller, T., Blatnik, M., Mohammadi, M., Fortunelli, A., Netzer, F. P., Surnev, S. The ultrathin WO3 bilayer on a Ag (100) surface: a model for the structure of 2D WO3 nanosheets. J. Phys. Chem. C 2019, 123, 27584–27593. https://doi.org/10.1021/acs.jpcc.9b07990.Search in Google Scholar

26. Wang, M., Chen, Y., Gao, B., Lei, H. Electrochromic properties of nanostructured WO3 thin films deposited by glancing-angle magnetron sputtering. Adv. Electron. Mater. 2019, 18, 00713. https://doi.org/10.1002/aelm.201800713.Search in Google Scholar

27. Buch, V. R., Chawla, A. K., Rawal, S. K. Review on electrochromic property for WO3 thin films using different deposition techniques. Mater. Today: Proc. 2016, 3, 1429–1437. https://doi.org/10.1016/j.matpr.2016.04.025.Search in Google Scholar

28. Mohammad, A., Gillet, M. Phase transformations in WO3 thin films during annealing. Thin Solid Films 2002, 408, 302–309. https://doi.org/10.1016/S0040-6090(02)00090-1.Search in Google Scholar

29. Yadav, H. K., Sreenivas, K., Gupta, V. Study of metal/ZnO based thin film ultraviolet photodetectors: the effect of induced charges on the dynamics of photoconductivity relaxation. J. Appl. Phys. 2010, 107, 044507–044509. https://doi.org/10.1063/1.3291133.Search in Google Scholar

30. Farid, S., DuttaHsu, M. B., Stan, L., Stroscio, M. Optimized oxygen deprived low temperature sputtered WO3 thin films for crystalline structures. Nanotechnology 2020, 9, 095706. https://doi.org/10.1088/1361-6528/ab560f.Search in Google Scholar PubMed

31. Borkar, H., Tomar, M., Gupta, V., Katiyar, R. S., Scott, J. F., Kumar, A. Optically controlled polarization in highly oriented ferroelectric thin films. Mater. Res. Express 2017, 4, 086402. https://doi.org/10.1088/2053-1591/aa7b3d.Search in Google Scholar

32. Thakre, A., Borkar, H., Singh, B. P., Kumar, A. Electroforming free high resistance resistive switching of graphene oxide modified polar-PVDF. RSC Adv. 2015, 5, 57406–57413. https://doi.org/10.1039/C5RA08663A.Search in Google Scholar

Received: 2021-12-22
Accepted: 2023-01-30
Published Online: 2023-05-15
Published in Print: 2023-07-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. International conference on energy and advanced materials
  4. Review
  5. Analysis of different printing technologies for metallization of crystalline silicon solar cells
  6. Original Papers
  7. DFT investigation of nonlinear optical response of organic compound: acetylsalicylic acid
  8. Experimental (FT‐Raman, FT‐IR and NMR) and theoretical (DFT) calculations, thermodynamic parameters, molecular docking and NLO (non-linear optical) properties of N‐(2,6‐dimethylphenyl)‐1‐piperazineacetamide
  9. Investigation of nonlinear optical responses of organic derivative of imidazole: imidazole-2-carboxaldehyde
  10. Mach–Zehnder interferometric analysis of planar polymer waveguide having an adlayer of WS2 for biosensing applications
  11. Linear mode conversion of terahertz radiation into terahertz surface plasmon wave over a graphene-free space interface
  12. Generation of second harmonic terahertz surface plasmon wave over a rippled graphene surface
  13. Investigation on structural, magnetic and optical properties of Sm–Co Co-substituted BiFeO3 samples
  14. Synthesis and optical characterization of Sr and Ti doped BiFeO3 multiferroics
  15. A comparative study on structural, magnetic and optical properties of rare earth ions substituted Bi1−xR x FeO3 (R: Ce3+, Sm3+ and Dy3+) nanoparticles
  16. Thermal, structural and optical properties of Pb1−xLa x TiO3 prepared using modified sol–gel route
  17. Biophotonic sensor design for the detection of reproductive hormones in females by using a 1D defective annular photonic crystal
  18. Spin density wave and antiferromagnetic transition in EuFe2As2: a high field transport and heat capacity study
  19. Impact of top metal electrodes on current conduction in WO3 thin films
  20. Atomistic simulation of Stoner–Wohlfarth (SW) particle
  21. Optimization of Coulomb glass system using quenching and annealing at small disorders
  22. Analytical modeling of adsorption isotherms for pristine and functionalized carbon nanotubes as gas sensors
  23. Effect of polymer blending on the electrochemical properties of porous PVDF/PMMA membrane immobilized with organic solvent based liquid electrolyte
  24. Structural, electronic, and thermal studies of Poly(ethylene oxide) based solid-state polymer electrolyte
  25. Milling route for the synthesis of nano-aluminium hydroxide for the development of low-density polymer composites
  26. Thermal properties of AlN (nano) filled LDPE composites
  27. Thermophysical characterization of mustard husk (MSH) and MSH char synthesized by the microwave pyrolysis of MSH
  28. Nano structured silver particles as green catalyst for remediation of methylene blue dye from water
  29. AlGaN/GaN heterostructures for high power and high-speed applications
  30. Role of interfacial electric field on thermal conductivity of In x Al1−xN/GaN superlattice (x = 0.17)
  31. Sensitivity assessment of dielectric modulated GaN material based SOI-FinFET for label-free biosensing applications
  32. Temperature-dependent analysis of heterojunction-free GaN FinFET through optimization of controlling gate parameters and dielectric materials
  33. Modelling of the exploding wire technique, a novel approach utilized for the synthesis of nanomaterials
  34. Rotating magnetic field configuration for controlled particle flux in material processing applications
  35. News
  36. DGM – Deutsche Gesellschaft für Materialkunde
Downloaded on 17.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8723/html
Scroll to top button