Abstract
In this paper, we report the role of the interfacial polarization electrical field in thermal conductivity of In x Al1−xN/GaN superlattice. Thermal conductivity reduction is one recent effort to improve thermoelectric device efficiency because a small reduction in thermal conductivity can enhance the figure of merit significantly. Quantum size effect and thermal boundary resistance are responsible for this reduction. The theoretical results demonstrate that the interfacial polarization electric field modifies acoustic phonon properties through elastic moduli and phonon group velocity as a result of the inverse piezoelectric effect. This enhances phonon scattering and thermal boundary resistance. Consequently, the thermal conductivity of the superlattice is reduced. Room temperature thermal conductivity is found to be 2.94 (3.35) W m−1 K−1 for In x Al1−xN/GaN superlattice (x = 0.17) in the presence (absence) of an electric field.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: One of the author (JM) acknowledges with thank to National Institute of Technology Raipur, Govt. of India for award of fellowship.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Sawada, R., Tanaka, H., Sugiyama, N., Kannari, F. Appl. Opt. 2017, 56, 1654. https://doi.org/10.1364/AO.56.001654.Search in Google Scholar PubMed
2. Morkoc, H. Handbook of Nitride Semiconductor and Devices; Springer Science & Business Media: New York, 2013.Search in Google Scholar
3. Hirayama, H., Maeda, M., Fujikawa, S., Toyoda, S., Kamata, N. Jpn. J Appl. Phys. 2014, 53, 100209. https://doi.org/10.7567/JJAP.53.100209.Search in Google Scholar
4. Sztein, A., Haberstroh, J., Bowers, J. E., DenBaars, S. P., Nakamura, S. J. Appl. Phys. 2013, 113, 183707. https://doi.org/10.1063/1.4804174.Search in Google Scholar
5. Goldsmid, H. J. Application of Thermoelectric Refrigeration; Springer: New York, 1964.10.1007/978-1-4899-5723-8Search in Google Scholar
6. Sztein, A., Bowers, J. E., DenBaars, S. P., Nakamura, S. J. Appl. Phys. 2012, 112, 083716. https://doi.org/10.1063/1.4759287.Search in Google Scholar
7. Touzelbaev, M. N., Zhou, P., Venkatasubramanian, R., Goodson, K. E. J. Appl. Phys. 2001, 90, 763. https://doi.org/10.1063/1.1374458.Search in Google Scholar
8. Yamasaki, R., Yamanaka, M., Mikami, H., Sonobe, S., Mori, Y., Sasaki, T. Proc.17th Int. Thermoelectric Conf. 1998, 210–213. https://doi.org/10.1109/ICT.1998.740354.Search in Google Scholar
9. Borca-Tasciuc, T., Liu, W. L., Zeng, T., Song, D. W., Moore, C. D., Chen, G., L Wang, K., Goorsky, M. S., Radetic, T., Gronsky, R., Koga, T., Dresselhaus, M. S. SL Microstruct. 2000, 28, 199. https://doi.org/10.1006/spmi.2000.0900.Search in Google Scholar
10. Venkatasubramanium, R., Siivola, E., Colpits, T. 17th Int. Thermoelectric Conf. 1998. 191–196.Search in Google Scholar
11. Filatova-Zalewska, A., Litwicki, Z., Moszak, K., Oiszewski, W., Opdczynska, K., Pucicki, D., Serafinczuk, J., Hommei, D., Jezowski, A. Nanotechnology 2021, 32, 075707. https://doi.org/10.1088/1361-6528/abc5f2.Search in Google Scholar PubMed
12. Venkatasubramanium, R. Semiconduct. Semimet. 2001, 71, 175. https://doi.org/10.1016/S0080-8784(01)80129-0.Search in Google Scholar
13. Chen, G., Saby, S., Djafer, M., Mo, H. K. Semiconduct. Semimet. 2001, 71, 203–259. https://doi.org/10.1016/S0080-8784(01)80130-7.Search in Google Scholar
14. Zhang, J., Tong, H., Liu, G., Herbsommer, J. A., Huang, G. S., Tansu, N. J. Appl. Phys. Lett. 2011, 109, 053706. https://doi.org/10.1063/1.3553880.Search in Google Scholar
15. Tong, H., Zhang, J., Liu, G., Herbsommer, J. A., Huang, G. S., Tansu, N. Appl. Phys. 2010, 97, 112105. https://doi.org/10.1063/1.3489086.Search in Google Scholar
16. Chen, G., Shakouri, A. J. Heat Transfer 2002, 124, 242–252. https://doi.org/10.1115/1.1448331.Search in Google Scholar
17. Ambacher, O., Foutz, B., Smart, J., Shealy, J. R., Weimann, N. G., Chu, K., Murphy, M., Sierakowski, A. J., Schaff, W. J., Eastman, L. F., Dimitrov, R., Mitchell, A., Stutzmann, M. J. Appl. Phys. 2000, 87, 334–344. https://doi.org/10.1063/1.371866.Search in Google Scholar
18. Ambacher, O., Majewski, J., Miskys, C., Link, A., K., Hermann, M., Eickhoff, M., Stutzmann, M., Bernardint, F., Fiorentint, V., Tilak, V., Schaff, B., Eastman, L. F. J. Phys Condens. Matter 2002, 14, 3399. https://doi.org/10.1088/0953-8984/14/13/302.Search in Google Scholar
19. Leroux, M., Grandjean, N., Massies, J., Gil, B., Lefebvre, P., Bigenwald, P. Appl. Phys Lett. B 1999, 60, 1496. https://doi.org/10.1103/PhysRevB.60.1496.Search in Google Scholar
20. Sahoo, S. K., Sahoo, B. K., Sahoo, S. J. Appl. Phys. 2013, 114, 163501. https://doi.org/10.1063/1.4826615.Search in Google Scholar
21. Zou, J., Kotchetkov, D., Balandin, A., Florescu, D. I., Pollak, F. H. J. Appl. Phys. 2002, 92, 2534. https://doi.org/10.1063/1.1497704.Search in Google Scholar
22. Callaway, J. Phys. Rev. 1959, 113, 1046. https://doi.org/10.1103/PhysRev.113.1046.Search in Google Scholar
23. Mei, S., Knezevic, l. J. Appl. Phys. 2015, 118, 175101. https://doi.org/10.1063/1.4935142.Search in Google Scholar
24. Khalitnikov, M. Zh. Eksp. Teor. Fiz. 1952, 22, 687. https://doi.org/10.1063/1.593772.Search in Google Scholar
25. Alverez, F. X., Alvarez-Quintana, J., Jou, D., Rodriguez Viejo, J. J. Appl. Phys. 2010, 107, 084303. https://doi.org/10.1063/1.3386464.Search in Google Scholar
26. Gladysiewicz, M., Janicki, L., Siekacz, M., Cywinski, G., Skierbiszewski, C., Kudrawiec, R. Appl. Phys. 2011, 98, 231902. https://doi.org/10.1063/1.4939146.Search in Google Scholar
27. Gladysiewicz, M., Janicki, L., Siekacz, M., Cywinski, G., Skierbiszewski, C., Kudrawiec, R. Appl. Phys. Lett. 2015, 107, 262107. https://doi.org/10.1063/1.4939146.Search in Google Scholar
28. Hansdah, G., Sahoo, B. K. Int. J. Thermophys. 2019, 40, 21. https://doi.org/10.1007/s10765-019-2481-9.10.1007/s10765-019-2481-9Search in Google Scholar
29. Vurgaftman, I., Meyer, J. R. J. Appl. Phys. 2003, 94, 3675. https://doi.org/10.1063/1.1600519.Search in Google Scholar
30. Sahu, S. S., Sahoo, B. K. Mater. Sc. Eng. B 2021, 273, 115394. https://doi.org/10.1016/j.spmi.2021.107035.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- International conference on energy and advanced materials
- Review
- Analysis of different printing technologies for metallization of crystalline silicon solar cells
- Original Papers
- DFT investigation of nonlinear optical response of organic compound: acetylsalicylic acid
- Experimental (FT‐Raman, FT‐IR and NMR) and theoretical (DFT) calculations, thermodynamic parameters, molecular docking and NLO (non-linear optical) properties of N‐(2,6‐dimethylphenyl)‐1‐piperazineacetamide
- Investigation of nonlinear optical responses of organic derivative of imidazole: imidazole-2-carboxaldehyde
- Mach–Zehnder interferometric analysis of planar polymer waveguide having an adlayer of WS2 for biosensing applications
- Linear mode conversion of terahertz radiation into terahertz surface plasmon wave over a graphene-free space interface
- Generation of second harmonic terahertz surface plasmon wave over a rippled graphene surface
- Investigation on structural, magnetic and optical properties of Sm–Co Co-substituted BiFeO3 samples
- Synthesis and optical characterization of Sr and Ti doped BiFeO3 multiferroics
- A comparative study on structural, magnetic and optical properties of rare earth ions substituted Bi1−xR x FeO3 (R: Ce3+, Sm3+ and Dy3+) nanoparticles
- Thermal, structural and optical properties of Pb1−xLa x TiO3 prepared using modified sol–gel route
- Biophotonic sensor design for the detection of reproductive hormones in females by using a 1D defective annular photonic crystal
- Spin density wave and antiferromagnetic transition in EuFe2As2: a high field transport and heat capacity study
- Impact of top metal electrodes on current conduction in WO3 thin films
- Atomistic simulation of Stoner–Wohlfarth (SW) particle
- Optimization of Coulomb glass system using quenching and annealing at small disorders
- Analytical modeling of adsorption isotherms for pristine and functionalized carbon nanotubes as gas sensors
- Effect of polymer blending on the electrochemical properties of porous PVDF/PMMA membrane immobilized with organic solvent based liquid electrolyte
- Structural, electronic, and thermal studies of Poly(ethylene oxide) based solid-state polymer electrolyte
- Milling route for the synthesis of nano-aluminium hydroxide for the development of low-density polymer composites
- Thermal properties of AlN (nano) filled LDPE composites
- Thermophysical characterization of mustard husk (MSH) and MSH char synthesized by the microwave pyrolysis of MSH
- Nano structured silver particles as green catalyst for remediation of methylene blue dye from water
- AlGaN/GaN heterostructures for high power and high-speed applications
- Role of interfacial electric field on thermal conductivity of In x Al1−xN/GaN superlattice (x = 0.17)
- Sensitivity assessment of dielectric modulated GaN material based SOI-FinFET for label-free biosensing applications
- Temperature-dependent analysis of heterojunction-free GaN FinFET through optimization of controlling gate parameters and dielectric materials
- Modelling of the exploding wire technique, a novel approach utilized for the synthesis of nanomaterials
- Rotating magnetic field configuration for controlled particle flux in material processing applications
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Editorial
- International conference on energy and advanced materials
- Review
- Analysis of different printing technologies for metallization of crystalline silicon solar cells
- Original Papers
- DFT investigation of nonlinear optical response of organic compound: acetylsalicylic acid
- Experimental (FT‐Raman, FT‐IR and NMR) and theoretical (DFT) calculations, thermodynamic parameters, molecular docking and NLO (non-linear optical) properties of N‐(2,6‐dimethylphenyl)‐1‐piperazineacetamide
- Investigation of nonlinear optical responses of organic derivative of imidazole: imidazole-2-carboxaldehyde
- Mach–Zehnder interferometric analysis of planar polymer waveguide having an adlayer of WS2 for biosensing applications
- Linear mode conversion of terahertz radiation into terahertz surface plasmon wave over a graphene-free space interface
- Generation of second harmonic terahertz surface plasmon wave over a rippled graphene surface
- Investigation on structural, magnetic and optical properties of Sm–Co Co-substituted BiFeO3 samples
- Synthesis and optical characterization of Sr and Ti doped BiFeO3 multiferroics
- A comparative study on structural, magnetic and optical properties of rare earth ions substituted Bi1−xR x FeO3 (R: Ce3+, Sm3+ and Dy3+) nanoparticles
- Thermal, structural and optical properties of Pb1−xLa x TiO3 prepared using modified sol–gel route
- Biophotonic sensor design for the detection of reproductive hormones in females by using a 1D defective annular photonic crystal
- Spin density wave and antiferromagnetic transition in EuFe2As2: a high field transport and heat capacity study
- Impact of top metal electrodes on current conduction in WO3 thin films
- Atomistic simulation of Stoner–Wohlfarth (SW) particle
- Optimization of Coulomb glass system using quenching and annealing at small disorders
- Analytical modeling of adsorption isotherms for pristine and functionalized carbon nanotubes as gas sensors
- Effect of polymer blending on the electrochemical properties of porous PVDF/PMMA membrane immobilized with organic solvent based liquid electrolyte
- Structural, electronic, and thermal studies of Poly(ethylene oxide) based solid-state polymer electrolyte
- Milling route for the synthesis of nano-aluminium hydroxide for the development of low-density polymer composites
- Thermal properties of AlN (nano) filled LDPE composites
- Thermophysical characterization of mustard husk (MSH) and MSH char synthesized by the microwave pyrolysis of MSH
- Nano structured silver particles as green catalyst for remediation of methylene blue dye from water
- AlGaN/GaN heterostructures for high power and high-speed applications
- Role of interfacial electric field on thermal conductivity of In x Al1−xN/GaN superlattice (x = 0.17)
- Sensitivity assessment of dielectric modulated GaN material based SOI-FinFET for label-free biosensing applications
- Temperature-dependent analysis of heterojunction-free GaN FinFET through optimization of controlling gate parameters and dielectric materials
- Modelling of the exploding wire technique, a novel approach utilized for the synthesis of nanomaterials
- Rotating magnetic field configuration for controlled particle flux in material processing applications
- News
- DGM – Deutsche Gesellschaft für Materialkunde