Home Role of interfacial electric field on thermal conductivity of In x Al1−xN/GaN superlattice (x = 0.17)
Article
Licensed
Unlicensed Requires Authentication

Role of interfacial electric field on thermal conductivity of In x Al1−xN/GaN superlattice (x = 0.17)

  • Jay Kumar Mehra ORCID logo EMAIL logo and Bijay Kumar Sahoo
Published/Copyright: June 2, 2023
Become an author with De Gruyter Brill

Abstract

In this paper, we report the role of the interfacial polarization electrical field in thermal conductivity of In x Al1−xN/GaN superlattice. Thermal conductivity reduction is one recent effort to improve thermoelectric device efficiency because a small reduction in thermal conductivity can enhance the figure of merit significantly. Quantum size effect and thermal boundary resistance are responsible for this reduction. The theoretical results demonstrate that the interfacial polarization electric field modifies acoustic phonon properties through elastic moduli and phonon group velocity as a result of the inverse piezoelectric effect. This enhances phonon scattering and thermal boundary resistance. Consequently, the thermal conductivity of the superlattice is reduced. Room temperature thermal conductivity is found to be 2.94 (3.35) W m−1 K−1 for In x Al1−xN/GaN superlattice (x = 0.17) in the presence (absence) of an electric field.


Corresponding author: Jay Kumar Mehra, Department of Physics, National Institute of Technology, Raipur 492010, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: One of the author (JM) acknowledges with thank to National Institute of Technology Raipur, Govt. of India for award of fellowship.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Sawada, R., Tanaka, H., Sugiyama, N., Kannari, F. Appl. Opt. 2017, 56, 1654. https://doi.org/10.1364/AO.56.001654.Search in Google Scholar PubMed

2. Morkoc, H. Handbook of Nitride Semiconductor and Devices; Springer Science & Business Media: New York, 2013.Search in Google Scholar

3. Hirayama, H., Maeda, M., Fujikawa, S., Toyoda, S., Kamata, N. Jpn. J Appl. Phys. 2014, 53, 100209. https://doi.org/10.7567/JJAP.53.100209.Search in Google Scholar

4. Sztein, A., Haberstroh, J., Bowers, J. E., DenBaars, S. P., Nakamura, S. J. Appl. Phys. 2013, 113, 183707. https://doi.org/10.1063/1.4804174.Search in Google Scholar

5. Goldsmid, H. J. Application of Thermoelectric Refrigeration; Springer: New York, 1964.10.1007/978-1-4899-5723-8Search in Google Scholar

6. Sztein, A., Bowers, J. E., DenBaars, S. P., Nakamura, S. J. Appl. Phys. 2012, 112, 083716. https://doi.org/10.1063/1.4759287.Search in Google Scholar

7. Touzelbaev, M. N., Zhou, P., Venkatasubramanian, R., Goodson, K. E. J. Appl. Phys. 2001, 90, 763. https://doi.org/10.1063/1.1374458.Search in Google Scholar

8. Yamasaki, R., Yamanaka, M., Mikami, H., Sonobe, S., Mori, Y., Sasaki, T. Proc.17th Int. Thermoelectric Conf. 1998, 210–213. https://doi.org/10.1109/ICT.1998.740354.Search in Google Scholar

9. Borca-Tasciuc, T., Liu, W. L., Zeng, T., Song, D. W., Moore, C. D., Chen, G., L Wang, K., Goorsky, M. S., Radetic, T., Gronsky, R., Koga, T., Dresselhaus, M. S. SL Microstruct. 2000, 28, 199. https://doi.org/10.1006/spmi.2000.0900.Search in Google Scholar

10. Venkatasubramanium, R., Siivola, E., Colpits, T. 17th Int. Thermoelectric Conf. 1998. 191–196.Search in Google Scholar

11. Filatova-Zalewska, A., Litwicki, Z., Moszak, K., Oiszewski, W., Opdczynska, K., Pucicki, D., Serafinczuk, J., Hommei, D., Jezowski, A. Nanotechnology 2021, 32, 075707. https://doi.org/10.1088/1361-6528/abc5f2.Search in Google Scholar PubMed

12. Venkatasubramanium, R. Semiconduct. Semimet. 2001, 71, 175. https://doi.org/10.1016/S0080-8784(01)80129-0.Search in Google Scholar

13. Chen, G., Saby, S., Djafer, M., Mo, H. K. Semiconduct. Semimet. 2001, 71, 203–259. https://doi.org/10.1016/S0080-8784(01)80130-7.Search in Google Scholar

14. Zhang, J., Tong, H., Liu, G., Herbsommer, J. A., Huang, G. S., Tansu, N. J. Appl. Phys. Lett. 2011, 109, 053706. https://doi.org/10.1063/1.3553880.Search in Google Scholar

15. Tong, H., Zhang, J., Liu, G., Herbsommer, J. A., Huang, G. S., Tansu, N. Appl. Phys. 2010, 97, 112105. https://doi.org/10.1063/1.3489086.Search in Google Scholar

16. Chen, G., Shakouri, A. J. Heat Transfer 2002, 124, 242–252. https://doi.org/10.1115/1.1448331.Search in Google Scholar

17. Ambacher, O., Foutz, B., Smart, J., Shealy, J. R., Weimann, N. G., Chu, K., Murphy, M., Sierakowski, A. J., Schaff, W. J., Eastman, L. F., Dimitrov, R., Mitchell, A., Stutzmann, M. J. Appl. Phys. 2000, 87, 334–344. https://doi.org/10.1063/1.371866.Search in Google Scholar

18. Ambacher, O., Majewski, J., Miskys, C., Link, A., K., Hermann, M., Eickhoff, M., Stutzmann, M., Bernardint, F., Fiorentint, V., Tilak, V., Schaff, B., Eastman, L. F. J. Phys Condens. Matter 2002, 14, 3399. https://doi.org/10.1088/0953-8984/14/13/302.Search in Google Scholar

19. Leroux, M., Grandjean, N., Massies, J., Gil, B., Lefebvre, P., Bigenwald, P. Appl. Phys Lett. B 1999, 60, 1496. https://doi.org/10.1103/PhysRevB.60.1496.Search in Google Scholar

20. Sahoo, S. K., Sahoo, B. K., Sahoo, S. J. Appl. Phys. 2013, 114, 163501. https://doi.org/10.1063/1.4826615.Search in Google Scholar

21. Zou, J., Kotchetkov, D., Balandin, A., Florescu, D. I., Pollak, F. H. J. Appl. Phys. 2002, 92, 2534. https://doi.org/10.1063/1.1497704.Search in Google Scholar

22. Callaway, J. Phys. Rev. 1959, 113, 1046. https://doi.org/10.1103/PhysRev.113.1046.Search in Google Scholar

23. Mei, S., Knezevic, l. J. Appl. Phys. 2015, 118, 175101. https://doi.org/10.1063/1.4935142.Search in Google Scholar

24. Khalitnikov, M. Zh. Eksp. Teor. Fiz. 1952, 22, 687. https://doi.org/10.1063/1.593772.Search in Google Scholar

25. Alverez, F. X., Alvarez-Quintana, J., Jou, D., Rodriguez Viejo, J. J. Appl. Phys. 2010, 107, 084303. https://doi.org/10.1063/1.3386464.Search in Google Scholar

26. Gladysiewicz, M., Janicki, L., Siekacz, M., Cywinski, G., Skierbiszewski, C., Kudrawiec, R. Appl. Phys. 2011, 98, 231902. https://doi.org/10.1063/1.4939146.Search in Google Scholar

27. Gladysiewicz, M., Janicki, L., Siekacz, M., Cywinski, G., Skierbiszewski, C., Kudrawiec, R. Appl. Phys. Lett. 2015, 107, 262107. https://doi.org/10.1063/1.4939146.Search in Google Scholar

28. Hansdah, G., Sahoo, B. K. Int. J. Thermophys. 2019, 40, 21. https://doi.org/10.1007/s10765-019-2481-9.10.1007/s10765-019-2481-9Search in Google Scholar

29. Vurgaftman, I., Meyer, J. R. J. Appl. Phys. 2003, 94, 3675. https://doi.org/10.1063/1.1600519.Search in Google Scholar

30. Sahu, S. S., Sahoo, B. K. Mater. Sc. Eng. B 2021, 273, 115394. https://doi.org/10.1016/j.spmi.2021.107035.Search in Google Scholar

Received: 2021-10-28
Accepted: 2023-01-27
Published Online: 2023-06-02
Published in Print: 2023-07-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. International conference on energy and advanced materials
  4. Review
  5. Analysis of different printing technologies for metallization of crystalline silicon solar cells
  6. Original Papers
  7. DFT investigation of nonlinear optical response of organic compound: acetylsalicylic acid
  8. Experimental (FT‐Raman, FT‐IR and NMR) and theoretical (DFT) calculations, thermodynamic parameters, molecular docking and NLO (non-linear optical) properties of N‐(2,6‐dimethylphenyl)‐1‐piperazineacetamide
  9. Investigation of nonlinear optical responses of organic derivative of imidazole: imidazole-2-carboxaldehyde
  10. Mach–Zehnder interferometric analysis of planar polymer waveguide having an adlayer of WS2 for biosensing applications
  11. Linear mode conversion of terahertz radiation into terahertz surface plasmon wave over a graphene-free space interface
  12. Generation of second harmonic terahertz surface plasmon wave over a rippled graphene surface
  13. Investigation on structural, magnetic and optical properties of Sm–Co Co-substituted BiFeO3 samples
  14. Synthesis and optical characterization of Sr and Ti doped BiFeO3 multiferroics
  15. A comparative study on structural, magnetic and optical properties of rare earth ions substituted Bi1−xR x FeO3 (R: Ce3+, Sm3+ and Dy3+) nanoparticles
  16. Thermal, structural and optical properties of Pb1−xLa x TiO3 prepared using modified sol–gel route
  17. Biophotonic sensor design for the detection of reproductive hormones in females by using a 1D defective annular photonic crystal
  18. Spin density wave and antiferromagnetic transition in EuFe2As2: a high field transport and heat capacity study
  19. Impact of top metal electrodes on current conduction in WO3 thin films
  20. Atomistic simulation of Stoner–Wohlfarth (SW) particle
  21. Optimization of Coulomb glass system using quenching and annealing at small disorders
  22. Analytical modeling of adsorption isotherms for pristine and functionalized carbon nanotubes as gas sensors
  23. Effect of polymer blending on the electrochemical properties of porous PVDF/PMMA membrane immobilized with organic solvent based liquid electrolyte
  24. Structural, electronic, and thermal studies of Poly(ethylene oxide) based solid-state polymer electrolyte
  25. Milling route for the synthesis of nano-aluminium hydroxide for the development of low-density polymer composites
  26. Thermal properties of AlN (nano) filled LDPE composites
  27. Thermophysical characterization of mustard husk (MSH) and MSH char synthesized by the microwave pyrolysis of MSH
  28. Nano structured silver particles as green catalyst for remediation of methylene blue dye from water
  29. AlGaN/GaN heterostructures for high power and high-speed applications
  30. Role of interfacial electric field on thermal conductivity of In x Al1−xN/GaN superlattice (x = 0.17)
  31. Sensitivity assessment of dielectric modulated GaN material based SOI-FinFET for label-free biosensing applications
  32. Temperature-dependent analysis of heterojunction-free GaN FinFET through optimization of controlling gate parameters and dielectric materials
  33. Modelling of the exploding wire technique, a novel approach utilized for the synthesis of nanomaterials
  34. Rotating magnetic field configuration for controlled particle flux in material processing applications
  35. News
  36. DGM – Deutsche Gesellschaft für Materialkunde
Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8664/html
Scroll to top button