Abstract
We propose a mechanism for the generation of second harmonic terahertz surface plasmon waves by incident terahertz electromagnetic radiation (ω, k0) over a graphene surface deposited on the rippled dielectric substrate (SiO2). A p-polarized THz radiation incident obliquely on the graphene surface exerts a nonlinear ponderomotive force on free electrons in the rippled regime. This nonlinear ponderomotive force imparts oscillatory velocity to the electrons at frequency 2ω. Second harmonic oscillatory velocity couples with the modulated electron density and generates a nonlinear current density that drives second harmonic terahertz surface plasmon waves. Rippled surface provides an extra wave number for the phase matching condition to produce resonantly second harmonic at frequency 2ω and wavenumber (2k0z + q). We examine the tunable response of second harmonic terahertz surface plasmon waves with respect to change in Fermi energy of graphene and laser incident angle. Second harmonic amplitude gets higher values by lowering the Fermi energy (EF) and increasing incident angle.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Maier, S. A. Plasmonics: Fundamentals and Applications; SpringerScience and Business Media: New York, 2007, https://doi.org/10.1007/0-387-37825-1.Suche in Google Scholar
2. Ding, Y., Wei, C., Su, H., Sun, S., Tang, Z., Wang, Z., Li, G., Liu, D., Gwo, S., Dai, J., Shi, J. Second harmonic generation covering the entire visible range from a 2d material–plasmon hybrid metasurface. Adv. Opt. Mater. 2021, 9, 2100625. https://doi.org/10.1002/adom.202100625.Suche in Google Scholar
3. Sadaghiani, V. K., Tavakoli, M. B., Horri, A. Second harmonic generation in a graphene-based plasmonic waveguide. Photonic Netw. Commun. 2021, 42, 117–122. https://doi.org/10.1007/s11107-021-00930-2.Suche in Google Scholar
4. Jin, B., Guo, T., Argyropoulos, C. Enhanced third harmonic generation with graphene metasurfaces. J. Opt. 2017, 19, 094005. https://doi.org/10.1088/2040-8986/aa8280.Suche in Google Scholar
5. Ghazialsharif, M., Fakhar, B. H., Abrishamian, M. S. Low power third harmonic generation and all-optical switching by graphene surface plasmons. J. Opt. 2019, 21, 105503. https://doi.org/10.1088/2040-8986/ab410d.Suche in Google Scholar
6. Sharif, M. A. Spatio-temporal modulation instability of surface plasmon polaritons in graphene-dielectric heterostructure. Phys. E Low-dimens. Syst. Nanostruct. 2019, 105, 174–181. https://doi.org/10.1016/j.physe.2018.09.011.Suche in Google Scholar
7. Moiseev, S. G., Korobko, D. A., Zolotovskii, I. O., Fotiadi, A. A. Evolution of surface plasmon–polariton wave in a thin metal film: the modulation-instability effect. Ann. Phys. 2017, 529, 1600167. https://doi.org/10.1002/andp.201600167.Suche in Google Scholar
8. Kumar, M., Porsezian, K., Tchofo-Dinda, P., Grelu, P., Mithun, T., Uthayakumar, T. Spatial modulation instability of coupled surface plasmon polaritons in a dielectric–metal–dielectric structure. JOSA B 2017, 34, 198–206. https://doi.org/10.1364/josab.34.000198.Suche in Google Scholar
9. Ghamsari, B. G., Olivieri, A., Variola, F., Berini, P. Enhanced Raman scattering in graphene by plasmonic resonant Stokes emission. Nanophotonics 2014, 3, 363–371. https://doi.org/10.1515/nanoph-2014-0014.Suche in Google Scholar
10. Rao, S. J. M., Sarkar, R., Kumar, G., Chowdhury, D. R. Gradual cross polarization conversion of transmitted waves in near field coupled planar terahertz metamaterials. OSA Continuum 2019, 2, 603–614. https://doi.org/10.1364/osac.2.000603.Suche in Google Scholar
11. Rao, S. J. M., Srivastava, Y. K., Kumar, G., Chowdhury, D. R. Modulating fundamental resonance in capacitive coupled asymmetric terahertz metamaterials. Sci. Rep. 2018, 8, 1–8. https://doi.org/10.1038/s41598-018-34942-2.Suche in Google Scholar PubMed PubMed Central
12. Sarkar, R., Ghindani, D., Devi, K. M., Prabhu, S., Ahmad, A., Kumar, G. Independently tunable electromagnetically induced transparency effect and dispersion in a multi-band terahertz metamaterial. Sci. Rep. 2019, 9, 1–10. https://doi.org/10.1038/s41598-019-54414-5.Suche in Google Scholar PubMed PubMed Central
13. Devi, K. M., Chowdhury, D. R., Kumar, G., Sarma, A. K. Dual-band electromagnetically induced transparency effect in a concentrically coupled asymmetric terahertz metamaterial. J. Appl. Phys. 2018, 124, 063106. https://doi.org/10.1063/1.5040734.Suche in Google Scholar
14. Mathanker, S. K., Weckler, P. R., Wang, N. Terahertz (thz) applications in food and agriculture: a review. Trans. ASABE 2013, 56, 1213–1226.10.13031/trans.56.9390Suche in Google Scholar
15. Federici, J. F., Schulkin, B., Huang, F., Gary, D., Barat, R., Oliveira, F., Zimdars, D. Thz imaging and sensing for security applications—explosives, weapons and drugs. Semicond. Sci. Technol. 2005, 20, S266. https://doi.org/10.1088/0268-1242/20/7/018.Suche in Google Scholar
16. Sen, S., Abdullah-Al-Shafi, M., Sikder, A. S., Hossain, M. S., Azad, M. M. Zeonex based decagonal photonic crystal fiber (d-pcf) in the terahertz (thz) band for chemical sensing applications. Sens. Bio-Sens. Res. 2021, 31, 100393. https://doi.org/10.1016/j.sbsr.2020.100393.Suche in Google Scholar
17. Siegel, P. H. Terahertz technology in biology and medicine. IEEE Trans. Microw. Theor. Tech. 2004, 52, 2438–2447. https://doi.org/10.1109/tmtt.2004.835916.Suche in Google Scholar
18. Nguyen Pham, H. H., Hisatake, S., Minin, O. V., Nagatsuma, T., Minin, I. V. Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube. APL Photonics 2017, 2, 056106. https://doi.org/10.1063/1.4983114.Suche in Google Scholar
19. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D. E., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. https://doi.org/10.1126/science.1102896.Suche in Google Scholar PubMed
20. Horng, J., Chen, C. F., Geng, B., Girit, C., Zhang, Y., Hao, Z., Bechtel, H. A., Martin, M., Zettl, A., Crommie, M. F., Shen, Y. R., Wang, F. Drude conductivity of Dirac fermions in graphene. Phys. Rev. B 2011, 83, 165113. https://doi.org/10.1103/physrevb.83.165113.Suche in Google Scholar
21. Neto, A. C., Guinea, F., Peres, N. M., Novoselov, K. S., Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109. https://doi.org/10.1103/revmodphys.81.109.Suche in Google Scholar
22. Scarfe, S., Cui, W., Luican-Mayer, A., Ménard, J.-M. Systematic thz study of the substrate effect in limiting the mobility of graphene. Sci. Rep. 2021, 11, 1–9. https://doi.org/10.1038/s41598-021-87894-5.Suche in Google Scholar PubMed PubMed Central
23. Wang, J., Zhao, R., Yang, M., Liu, Z., Liu, Z. Inverse relationship between carrier mobility and bandgap in graphene. J. Chem. Phys. 2013, 138, 084701. https://doi.org/10.1063/1.4792142.Suche in Google Scholar PubMed
24. Farmani, A., Mir, A. Graphene sensor based on surface plasmon resonance for optical scanning. IEEE Photon. Technol. Lett. 2019, 31, 643–646. https://doi.org/10.1109/lpt.2019.2904618.Suche in Google Scholar
25. El-Khozondar, H. J., El-Khozondar, R. J., Shabat, M. M. Dispersion characteristics and sensitivity properties of graphene surface plasmon sensor. Sens. Lett. 2017, 15, 249–252. https://doi.org/10.1166/sl.2017.3802.Suche in Google Scholar
26. Omar, N. A. S., Fen, Y. W., Saleviter, S., Daniyal, W. M. E. M. M., Anas, N. A. A., Ramdzan, N. S. M., Roshidi, M. D. A. Development of a graphene-based surface plasmon resonance optical sensor chip for potential biomedical application. Materials 2019, 12, 1928. https://doi.org/10.3390/ma12121928.Suche in Google Scholar PubMed PubMed Central
27. Cui, L., Wang, J., Sun, M. Graphene plasmon for optoelectronics. Rev. Phys. 2021, 6, 100054. https://doi.org/10.1016/j.revip.2021.100054.Suche in Google Scholar
28. He, Z., Li, L., Ma, H., Pu, L., Xu, H., Yi, Z., Cao, X., Cui, W. Graphenebased metasurface sensing applications in terahertz band. Results Phys. 2021, 21, 103795. https://doi.org/10.1016/j.rinp.2020.103795.Suche in Google Scholar
29. Teng, D., Wang, K. Theoretical analysis of terahertz dielectric–loaded graphene waveguide. Nanomaterials 2021, 11, 210. https://doi.org/10.3390/nano11010210.Suche in Google Scholar PubMed PubMed Central
30. Wang, Y., Liu, H., Wang, S., Cai, M., Zhang, H., Qiao, Y. Electrical phase control based on graphene surface plasmon polaritons in mid-infrared. Nanomaterials 2020, 10, 576. https://doi.org/10.3390/nano10030576.Suche in Google Scholar PubMed PubMed Central
31. Li, Z., Huang, J., Zhao, Z., Wang, Y., Huang, C., Zhang, Y. Single-layer graphene optical modulator based on arrayed hybrid plasmonic nanowires. Opt Express 2021, 29, 30104–30113. https://doi.org/10.1364/oe.434916.Suche in Google Scholar
32. Lu, H., Gan, X., Mao, D., Zhao, J. Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides. Photon. Res. 2017, 5, 162–167. https://doi.org/10.1364/prj.5.000162.Suche in Google Scholar
33. Singh, P. K., Aizin, G., Thawdar, N., Medley, M., Jornet, J. M. Graphenebased plasmonic phase modulator for terahertz-band communication. In 2016 10th European Conference on Antennas and Propagation (EuCAP); IEEE, 2016; pp. 1–5.10.1109/EuCAP.2016.7481218Suche in Google Scholar
34. Khattak, M. I., Anab, M., Muqarrab, N. A duo of graphene-copper based wideband planar plasmonic antenna analysis for lower region of terahertz (thz) communications. Prog. Electromagn. Res. C 2021, 111, 83–96. https://doi.org/10.2528/pierc21010603.Suche in Google Scholar
35. Elayan, H., Shubair, R. M., Kiourti, A. On graphene-based thz plasmonic nano-antennas. In 2016 16th Mediterranean Microwave Symposium (MMS); IEEE, 2016; pp. 1–3.10.1109/MMS.2016.7803807Suche in Google Scholar
36. Wei, W., Chen, N., Nong, J., Lan, G., Wang, W., Yi, J., Tang, L. Grapheneassisted multilayer structure employing hybrid surface plasmon and magnetic plasmon for surface-enhanced vibrational spectroscopy. Opt Express 2018, 26, 16903–16916. https://doi.org/10.1364/oe.26.016903.Suche in Google Scholar
37. Heydari, M. B., Samiei, M. H. V. Analytical study of tm-polarized surface plasmon polaritons in nonlinear multi-layer graphene-based waveguides. Plasmonics 2021, 16, 841–848. https://doi.org/10.1007/s11468-020-01336-y.Suche in Google Scholar
38. Heydari, M. B., Vadjed Samiei, M. H. An analytical study of magnetoplasmons in anisotropic multi-layer structures containing magnetically biased graphene sheets. Plasmonics 2020, 15, 1183–1198. https://doi.org/10.1007/s11468-020-01136-4.Suche in Google Scholar
39. Heydari, M. B., Samiei, M. H. V. New analytical investigation of anisotropic graphene nano-waveguides with bi-gyrotropic cover and substrate backed by a pemc layer. Opt. Quant. Electron. 2020, 52, 1–16. https://doi.org/10.1007/s11082-020-2222-0.Suche in Google Scholar
40. Wu, J., Guo, S., Li, Z., Li, X., Xue, H., Wang, Z. Graphene hybrid surface plasmon waveguide with low loss transmission. Plasmonics 2020, 15, 1621–1627. https://doi.org/10.1007/s11468-020-01181-z.Suche in Google Scholar
41. Kaveh, H., Karimi, A. Second harmonic generation using imi grating structure. Optik 2019, 183, 247–252. https://doi.org/10.1016/j.ijleo.2019.02.138.Suche in Google Scholar
42. Mousavi, S. H. S., Lemasters, R., Wang, F., Dorche, A. E., Taheri, H., Eftekhar, A. A., Harutyunyan, H., Adibi, A. Phase-matched nonlinear second-harmonic generation in plasmonic metasurfaces. Nanophotonics 2019, 8, 607–612. https://doi.org/10.1515/nanoph-2018-0181.Suche in Google Scholar
43. Majérus, B., Butet, J., Bernasconi, G. D., Valapu, R. T., Lobet, M., Henrard, L., Martin, O. J. Optical second harmonic generation from nanostructured graphene: a full wave approach. Opt Express 2017, 25, 27015–27027. https://doi.org/10.1364/oe.25.027015.Suche in Google Scholar PubMed
44. Zhao, Y., Huo, Y., Man, B., Ning, T. Grating-assisted surface plasmon resonance for enhancement of optical harmonic generation in graphene. Plasmonics 2019, 14, 1911–1918. https://doi.org/10.1007/s11468-019-00986-x.Suche in Google Scholar
45. Ochiai, T. Enhanced second-harmonic generation and photon drag effect in a doped graphene placed on a two-dimensional diffraction grating. JOSA B 2017, 34, 740–749. https://doi.org/10.1364/josab.34.000740.Suche in Google Scholar
46. Nasari, H., Abrishamian, M. S. Numerical study of plasmonic resonance enhanced, terahertz second harmonic generation from graphene in the otto configuration. IEEE J. Quant. Electron. 2017, 53, 1–7. https://doi.org/10.1109/jqe.2017.2708525.Suche in Google Scholar
47. Daneshfar, N., Noormohamadi, Z. Optical surface second harmonic generation from plasmonic graphene-coated nanoshells: influence of shape, size, dielectric core and embedding medium. Appl. Phys. A 2020, 126, 1–7. https://doi.org/10.1007/s00339-019-3228-y.Suche in Google Scholar
48. Bhattacharya, A., Devi, K. M., Nguyen, T., Kumar, G. Actively tunable toroidal excitations in graphene based terahertz metamaterials. Opt Commun. 2020, 459, 124919. https://doi.org/10.1016/j.optcom.2019.124919.Suche in Google Scholar
49. Devi, K. M., Islam, M., Chowdhury, D. R., Sarma, A. K., Kumar, G. Plasmon-induced transparency in graphene-based terahertz metamaterials. EPL (Europhys. Lett.) 2018, 120, 27005. https://doi.org/10.1209/0295-5075/120/27005.Suche in Google Scholar
50. Borca, B., Barja, S., Garnica, M., Minniti, M., Politano, A., RodriguezGarcía, J. M., Hinarejos, J. J., Farías, D., de Parga, A. L. V., Miranda, R. Electronic and geometric corrugation of periodically rippled, selfnanostructured graphene epitaxially grown on ru (0001). New J. Phys. 2010, 12, 093018. https://doi.org/10.1088/1367-2630/12/9/093018.Suche in Google Scholar
51. Feng, W., Lei, S., Li, Q., Zhao, A. Periodically modulated electronic properties of the epitaxial monolayer graphene on ru (0001). J. Phys. Chem. C 2011, 115, 24858–24864. https://doi.org/10.1021/jp2082962.Suche in Google Scholar
52. Singh, D., Tripathi, V. Surface plasmon excitation at second harmonic over a rippled surface. J. Appl. Phys. 2007, 102, 083301. https://doi.org/10.1063/1.2795575.Suche in Google Scholar
53. Parashar, J., Sharma, A. Second-harmonic generation by an obliquely incident laser on a vacuum-plasma interface. EPL (Europhys. Lett.) 1998, 41, 389. https://doi.org/10.1209/epl/i1998-00162-1.Suche in Google Scholar
54. Tewari, D., Tripathi, V. Second-harmonic generation of upper-hybrid radiation in a plasma. Phys. Rev. A 1980, 21, 1698. https://doi.org/10.1103/physreva.21.1698.Suche in Google Scholar
55. Ryzhii, V., Otsuji, T., Shur, M. Graphene based plasma-wave devices for terahertz applications. Appl. Phys. Lett. 2020, 116, 140501. https://doi.org/10.1063/1.5140712.Suche in Google Scholar
56. Maradudin, A. A., Sambles, J. R., Barnes, W. L., Modern Plasmonics; Elsevier Science: Burlington, 2014.Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Editorial
- International conference on energy and advanced materials
- Review
- Analysis of different printing technologies for metallization of crystalline silicon solar cells
- Original Papers
- DFT investigation of nonlinear optical response of organic compound: acetylsalicylic acid
- Experimental (FT‐Raman, FT‐IR and NMR) and theoretical (DFT) calculations, thermodynamic parameters, molecular docking and NLO (non-linear optical) properties of N‐(2,6‐dimethylphenyl)‐1‐piperazineacetamide
- Investigation of nonlinear optical responses of organic derivative of imidazole: imidazole-2-carboxaldehyde
- Mach–Zehnder interferometric analysis of planar polymer waveguide having an adlayer of WS2 for biosensing applications
- Linear mode conversion of terahertz radiation into terahertz surface plasmon wave over a graphene-free space interface
- Generation of second harmonic terahertz surface plasmon wave over a rippled graphene surface
- Investigation on structural, magnetic and optical properties of Sm–Co Co-substituted BiFeO3 samples
- Synthesis and optical characterization of Sr and Ti doped BiFeO3 multiferroics
- A comparative study on structural, magnetic and optical properties of rare earth ions substituted Bi1−xR x FeO3 (R: Ce3+, Sm3+ and Dy3+) nanoparticles
- Thermal, structural and optical properties of Pb1−xLa x TiO3 prepared using modified sol–gel route
- Biophotonic sensor design for the detection of reproductive hormones in females by using a 1D defective annular photonic crystal
- Spin density wave and antiferromagnetic transition in EuFe2As2: a high field transport and heat capacity study
- Impact of top metal electrodes on current conduction in WO3 thin films
- Atomistic simulation of Stoner–Wohlfarth (SW) particle
- Optimization of Coulomb glass system using quenching and annealing at small disorders
- Analytical modeling of adsorption isotherms for pristine and functionalized carbon nanotubes as gas sensors
- Effect of polymer blending on the electrochemical properties of porous PVDF/PMMA membrane immobilized with organic solvent based liquid electrolyte
- Structural, electronic, and thermal studies of Poly(ethylene oxide) based solid-state polymer electrolyte
- Milling route for the synthesis of nano-aluminium hydroxide for the development of low-density polymer composites
- Thermal properties of AlN (nano) filled LDPE composites
- Thermophysical characterization of mustard husk (MSH) and MSH char synthesized by the microwave pyrolysis of MSH
- Nano structured silver particles as green catalyst for remediation of methylene blue dye from water
- AlGaN/GaN heterostructures for high power and high-speed applications
- Role of interfacial electric field on thermal conductivity of In x Al1−xN/GaN superlattice (x = 0.17)
- Sensitivity assessment of dielectric modulated GaN material based SOI-FinFET for label-free biosensing applications
- Temperature-dependent analysis of heterojunction-free GaN FinFET through optimization of controlling gate parameters and dielectric materials
- Modelling of the exploding wire technique, a novel approach utilized for the synthesis of nanomaterials
- Rotating magnetic field configuration for controlled particle flux in material processing applications
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Artikel in diesem Heft
- Frontmatter
- Editorial
- International conference on energy and advanced materials
- Review
- Analysis of different printing technologies for metallization of crystalline silicon solar cells
- Original Papers
- DFT investigation of nonlinear optical response of organic compound: acetylsalicylic acid
- Experimental (FT‐Raman, FT‐IR and NMR) and theoretical (DFT) calculations, thermodynamic parameters, molecular docking and NLO (non-linear optical) properties of N‐(2,6‐dimethylphenyl)‐1‐piperazineacetamide
- Investigation of nonlinear optical responses of organic derivative of imidazole: imidazole-2-carboxaldehyde
- Mach–Zehnder interferometric analysis of planar polymer waveguide having an adlayer of WS2 for biosensing applications
- Linear mode conversion of terahertz radiation into terahertz surface plasmon wave over a graphene-free space interface
- Generation of second harmonic terahertz surface plasmon wave over a rippled graphene surface
- Investigation on structural, magnetic and optical properties of Sm–Co Co-substituted BiFeO3 samples
- Synthesis and optical characterization of Sr and Ti doped BiFeO3 multiferroics
- A comparative study on structural, magnetic and optical properties of rare earth ions substituted Bi1−xR x FeO3 (R: Ce3+, Sm3+ and Dy3+) nanoparticles
- Thermal, structural and optical properties of Pb1−xLa x TiO3 prepared using modified sol–gel route
- Biophotonic sensor design for the detection of reproductive hormones in females by using a 1D defective annular photonic crystal
- Spin density wave and antiferromagnetic transition in EuFe2As2: a high field transport and heat capacity study
- Impact of top metal electrodes on current conduction in WO3 thin films
- Atomistic simulation of Stoner–Wohlfarth (SW) particle
- Optimization of Coulomb glass system using quenching and annealing at small disorders
- Analytical modeling of adsorption isotherms for pristine and functionalized carbon nanotubes as gas sensors
- Effect of polymer blending on the electrochemical properties of porous PVDF/PMMA membrane immobilized with organic solvent based liquid electrolyte
- Structural, electronic, and thermal studies of Poly(ethylene oxide) based solid-state polymer electrolyte
- Milling route for the synthesis of nano-aluminium hydroxide for the development of low-density polymer composites
- Thermal properties of AlN (nano) filled LDPE composites
- Thermophysical characterization of mustard husk (MSH) and MSH char synthesized by the microwave pyrolysis of MSH
- Nano structured silver particles as green catalyst for remediation of methylene blue dye from water
- AlGaN/GaN heterostructures for high power and high-speed applications
- Role of interfacial electric field on thermal conductivity of In x Al1−xN/GaN superlattice (x = 0.17)
- Sensitivity assessment of dielectric modulated GaN material based SOI-FinFET for label-free biosensing applications
- Temperature-dependent analysis of heterojunction-free GaN FinFET through optimization of controlling gate parameters and dielectric materials
- Modelling of the exploding wire technique, a novel approach utilized for the synthesis of nanomaterials
- Rotating magnetic field configuration for controlled particle flux in material processing applications
- News
- DGM – Deutsche Gesellschaft für Materialkunde