Home Spin density wave and antiferromagnetic transition in EuFe2As2: a high field transport and heat capacity study
Article
Licensed
Unlicensed Requires Authentication

Spin density wave and antiferromagnetic transition in EuFe2As2: a high field transport and heat capacity study

  • Anurag Yadav and Anuj Kumar ORCID logo EMAIL logo
Published/Copyright: May 23, 2023
Become an author with De Gruyter Brill

Abstract

Here we reported structural, electrical, magnetic, and thermal transport properties of ternary pnictide bulk iron based compound EuFe2As2 (Eu-122). This compound (Eu-122) crystallized in ThCr2Si2-type tetragonal phase structure with space group I4/mmm at ambient temperature. A promising divalent state (Eu2+) of Eu-ions was observed in the studied EuFe2As2. Magnetic ordering of Eu2+ ions takes place at very low temperature at around TN = 20 K in EuFe2As2. The ferromagnetic interactions between Fe–Fe ions were established at higher temperature which was revealed from magnetic susceptibility measurements with negative value of the paramagnetic Curie temperature. Both magnetic phase transitions (20 K and 190 K) were clearly established the intrinsic magnetic nature revealed by both electrical transport and specific heat measurement. However the phase transition at low temperature corresponds to the magnetic ordering of Eu2+ ions while the high transition temperature is due to the itinerant moment of Fe. EuFe2As2 is the only compound among various parent compounds of iron pnictide superconductor’s family, in which both spin density wave (SDW) of Fe and A-type antiferromagnetic (AFM) ordering of the localized Eu2+ magnetic moments take place simultaneously. We observed here that the localized character of Eu anti-ferromagnetism dominated via RKKY interactions, despite the largely itinerant nature of Fe magnetic interactions. The resistivity with applied magnetic field revealed that the AFM ordering temperature of Eu2+ ions suppress with applied magnetic field. Also resistivity under hydrostatic pressure measurements shows the TSDW (Fe) transition of the Fe moments shifts towards the lower temperatures while AFM ordering of Eu2+ decreases with pressure and the same is completely disappears at 2 GPa.


Corresponding author: Anuj Kumar, Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Gautam Buddh Nagar, Noida 201304, Uttar Pradesh, India, E-mail:

Funding source: Jaypee Institute of Information Technology

Award Identifier / Grant number: Unassigned

Funding source: National Physical Laboratory

Award Identifier / Grant number: Unassigned

Acknowledgements

One of us, Anurag Yadav is thankful to Jaypee Institute of Information Technology, Noida for providing financial assistance as Ph.D. fellowship. Authors also would like to thanks Dr. V.P.S. Awana, Senior Principal Scientist at CSIR-National Physical Laboratory for providing measurement facility (Physical Property Measurement System-14 T).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H. J. Am. Chem. Soc. 2008, 130, 3296. https://doi.org/10.1021/ja800073m.Search in Google Scholar PubMed

2. Johnston, D. C. Adv. Phys. 2010, 59, 803. https://doi.org/10.1080/00018732.2010.513480.Search in Google Scholar

3. Johnson, V., Jeitschko, W. J. Solid State Chem. 1974, 11, 161. https://doi.org/10.1016/0022-4596(74)90111-X.Search in Google Scholar

4. Quebe, P., Terbuchte, L. J., Jeitschko, W. J. Alloys Compd. 2000, 302, 70. https://doi.org/10.1016/S0925-8388(99)00802-6.Search in Google Scholar

5. de la Cruz, C., Huang, Q., Lynn, J. W., Li, J., Ratcliff, W.II, Mook, H. A., Chen, G. F., Luo, J. L., Wang, N. L., Dai, P., Dai, P. Nature 2008, 453, 899. https://doi.org/10.1103/PhysRevLett.101.167203.Search in Google Scholar PubMed

6. Nomura, T., Kim, S. W., Kamihara, Y., Hirano, M., Sushko, P. V., Kato, K., Takata, M., Shluger, A. L., Hosono, H. Supercond. Sci. Technol. 2008, 21, 125028. https://doi.org/10.1088/0953-2048/21/12/125028.Search in Google Scholar

7. Haule, K., Shim, J. H., Kotliar, G. Phys. Rev. Lett. 2008, 100, 226402. https://doi.org/10.1103/PhysRevLett.100.226402.Search in Google Scholar PubMed

8. Cao, C., Hirschfeld, P. J., Cheng, H. P. Phys. Rev. B 2008, 77, 220506. https://doi.org/10.1103/PhysRevB.77.220506.Search in Google Scholar

9. Singh, D. J., Du, M. H. Phys. Rev. Lett. 2008, 100, 237003. https://doi.org/10.1103/PhysRevLett.100.237003.Search in Google Scholar PubMed

10. Rotter, M., Tegel, M., Schellenberg, I., Hermes, W., Pottgen, R., Johrendt, D. Phys. Rev. B 2008, 78, (R), 020503. https://doi.org/10.1103/PhysRevB.78.020503.Search in Google Scholar

11. Rotter, M., Tegel, M., Johrendt, D. Phys. Rev.Lett. 2008, 101, 107006. https://doi.org/10.1103/PhysRevLett.101.107006.Search in Google Scholar PubMed

12. Sefat, A. S., Sales, B. C., Singh, D. J., Mandrus, D. Phys. Rev. Lett. 2008, 101, 117004. https://doi.org/10.1103/PhysRevLett.101.117004.Search in Google Scholar PubMed

13. Miclea, A. F., Kasinathan, D., Hossain, Z., Steglich, F., Rosner, H., Gegenwart, P., Geibel, C. Phys. Rev. B 2009, 79, 212509. https://doi.org/10.1103/PhysRevB.79.212509.Search in Google Scholar

14. Nagarajan, R., Shenoy, G. K., Gupta, L. C., Sampathkumaran, E. V. Phys. Rev. B 1985, 32, 2846. https://doi.org/10.1103/PhysRevB.32.2846.Search in Google Scholar PubMed

15. Sales, B. C., Viswanathan, R. J. Low Temp. Phys. 1976, 23, 449. https://doi.org/10.1007/BF00116933.Search in Google Scholar

16. Jeevan, H. S., Hossain, Z., Rosner, H., Gegenwart, P., Geibel, C. Phys. Rev. B 2008, 78, 052502. https://doi.org/10.1103/PhysRevB.78.092406.Search in Google Scholar

17. Tagel, M., Rotter, M., Pottgen, R., Johrendt, D. J. Phys. Cond. Matt. 2008, 20, 452201. https://doi.org/10.1088/0953-8984/20/45/452201.Search in Google Scholar

18. Johnson, V., Jeitschko, W. J. Solid State Chem. 1978, 19, 189. https://doi.org/10.1021/ja00235a021.Search in Google Scholar

19. Feng, C., Ren, Z., Xu, S., Jiang, S., Xu, Z., Nowik, I., Felner, I., Cao, G., Matsubayashi, K., Uwatoko, Y. Phys. Rev. B 2010, 82, 094426. https://doi.org/10.1103/PhysRevB.82.094426.Search in Google Scholar

20. Ryan, D. H., Cadogan, J. M., Xu, S., Xu, Z, Cao, G. Phys. Rev. B 2011, 83, 132403. https://doi.org/10.1103/PhysRevB.83.132403.Search in Google Scholar

21. Singh, Y., Lee, Y., Harmon, B. N., Johnston, D. C. Phys. Rev. B 2009, 79, 220401. https://doi.org/10.1103/PhysRevB.79.220401.Search in Google Scholar

22. Sengupta, K., Paulose, P. L., Sampathkumaran, E. V., Doert, Th., Jemetio, J. P. F. Phys. Rev. B 2005, 72, 184424. https://doi.org/10.1103/PhysRevB.72.184424.Search in Google Scholar

23. Bauer, E. D., Ronning, F., Scott, B. L., Thompson, J. D. Phys. Rev. B 2008, 78, 172504. https://doi.org/10.1103/PhysRevB.78.172504.Search in Google Scholar

24. Ballinger, J., Wenger, L. E., Vohra, Y. K., Sefat, A. S. J. App. Phys. 2012, 111, 07E106. https://doi.org/10.1063/1.3671410.Search in Google Scholar

25. Ren, Z., Zhu, Z., Jiang, S., Xu, X., Qian, T., Wang, C., Feng, C., Cao, G., Xu, Z. Phys. Rev. B 2008, 78, 052501. https://doi.org/10.1103/PhysRevB.78.052501.Search in Google Scholar

26. Marchand, R., Jeitschko, W. J. Solid State Chem. 1978, 24, 351. https://doi.org/10.1016/0022-4596(78)90026-9.Search in Google Scholar

27. Raffius, H., Mörsen, E., Mosel, B. D., Müller-Warmuth, W., Jeitschko, W., Terbüchte, L., Vomhof, T. J. Phys. Chem. Solids 1993, 54, 135. https://doi.org/10.1016/0022-3697(93)90301-7.Search in Google Scholar

28. Selte, K., Kjekshus, A., Andresen, A., Tricker, M. J., Svensson, S. Acta Chem. Scand. 1972, 26, 3101. https://doi.org/10.3891/acta.chem.scand.26-3101.Search in Google Scholar

29. Dong, J., Zhang, H. J., Xu, G., Li, Z., Li, G., Hu, W. Z., Wu, D., Chen, G. F., Dai, X., Luo, J. L., Fang, Z., Wang, N. L. Europhys. Lett. 2008, 83, 27006. https://doi.org/10.1209/0295-5075/83/27006.Search in Google Scholar

30. Baibich, M. N., Brotp, J. M., Fert, A., Nguyen, V. D. F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J. Phys. Rev. Lett. 1988, 61, 2472. https://doi.org/10.1103/PhysRevLett.61.2472.Search in Google Scholar PubMed

31. Xiao, Y., Su, Y., Meven, M., Mittal, R., Kumar, C. M. N., Chatterji, T., Price, S., Persson, J., Kumar, N., Dhar, S. K., Thamizhavel, A., Brueckel, T. Phys. Rev. B 2009, 80, 174424. https://doi.org/10.1103/PhysRevB.80.174424.Search in Google Scholar

32. Kurita, N., Kimata, M., Kodama, K., Harada, A., Tomita, M., Suzuki, H. S., Matsumoto, T., Murata, K., Uji, S., Terashima, T. Phys. Rev. B 2011, 83, 100501. https://doi.org/10.1103/PhysRevB.83.100501.Search in Google Scholar

33. Terashima, T., Kimata, M., Satsukawa, H., Harada, A., Hazama, K., Uji, S., Suzuki, H. S., Matsumoto, T., Murata, K. J. Phys. Soc. Jpn. 2009, 78, 083701. https://doi.org/10.1143/JPSJ.78.083701.Search in Google Scholar

34. Kurita, N., Kimata, M., Kodama, K., Harada, A., Tomita, M., Suzuki, H. S., Matsumoto, T., Murata, K., Uji, S., Terashima, T. Phys. Rev. B 2011, 83, 214513. https://doi.org/10.1103/PhysRevB.83.214513.Search in Google Scholar

35. Otsuka, T., Cui, H., Fujiwara, H., Kobayashi, H., Fujiwarab, E., Kobayashi, A. J. Mater. Chem. 2004, 14, 1682. https://doi.org/10.1039/B404004J.Search in Google Scholar

36. Krellner, C., Caroca-Canales, N., Jesche, A., Rosner, H., Ormeci, A., Geibel, C. Phys. Rev. B 2008, 78, 100504. https://doi.org/10.1103/PhysRevB.78.100504.Search in Google Scholar

37. Jeevan, H. S., Hossain, Z., Kasinathan, D., Rosner, H., Geibel, C., Gegenwart, P. Phys. Rev. B 2008, 78, 052502. https://doi.org/10.1103/PhysRevB.78.092406.Search in Google Scholar

Received: 2021-12-22
Accepted: 2023-02-01
Published Online: 2023-05-23
Published in Print: 2023-07-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. International conference on energy and advanced materials
  4. Review
  5. Analysis of different printing technologies for metallization of crystalline silicon solar cells
  6. Original Papers
  7. DFT investigation of nonlinear optical response of organic compound: acetylsalicylic acid
  8. Experimental (FT‐Raman, FT‐IR and NMR) and theoretical (DFT) calculations, thermodynamic parameters, molecular docking and NLO (non-linear optical) properties of N‐(2,6‐dimethylphenyl)‐1‐piperazineacetamide
  9. Investigation of nonlinear optical responses of organic derivative of imidazole: imidazole-2-carboxaldehyde
  10. Mach–Zehnder interferometric analysis of planar polymer waveguide having an adlayer of WS2 for biosensing applications
  11. Linear mode conversion of terahertz radiation into terahertz surface plasmon wave over a graphene-free space interface
  12. Generation of second harmonic terahertz surface plasmon wave over a rippled graphene surface
  13. Investigation on structural, magnetic and optical properties of Sm–Co Co-substituted BiFeO3 samples
  14. Synthesis and optical characterization of Sr and Ti doped BiFeO3 multiferroics
  15. A comparative study on structural, magnetic and optical properties of rare earth ions substituted Bi1−xR x FeO3 (R: Ce3+, Sm3+ and Dy3+) nanoparticles
  16. Thermal, structural and optical properties of Pb1−xLa x TiO3 prepared using modified sol–gel route
  17. Biophotonic sensor design for the detection of reproductive hormones in females by using a 1D defective annular photonic crystal
  18. Spin density wave and antiferromagnetic transition in EuFe2As2: a high field transport and heat capacity study
  19. Impact of top metal electrodes on current conduction in WO3 thin films
  20. Atomistic simulation of Stoner–Wohlfarth (SW) particle
  21. Optimization of Coulomb glass system using quenching and annealing at small disorders
  22. Analytical modeling of adsorption isotherms for pristine and functionalized carbon nanotubes as gas sensors
  23. Effect of polymer blending on the electrochemical properties of porous PVDF/PMMA membrane immobilized with organic solvent based liquid electrolyte
  24. Structural, electronic, and thermal studies of Poly(ethylene oxide) based solid-state polymer electrolyte
  25. Milling route for the synthesis of nano-aluminium hydroxide for the development of low-density polymer composites
  26. Thermal properties of AlN (nano) filled LDPE composites
  27. Thermophysical characterization of mustard husk (MSH) and MSH char synthesized by the microwave pyrolysis of MSH
  28. Nano structured silver particles as green catalyst for remediation of methylene blue dye from water
  29. AlGaN/GaN heterostructures for high power and high-speed applications
  30. Role of interfacial electric field on thermal conductivity of In x Al1−xN/GaN superlattice (x = 0.17)
  31. Sensitivity assessment of dielectric modulated GaN material based SOI-FinFET for label-free biosensing applications
  32. Temperature-dependent analysis of heterojunction-free GaN FinFET through optimization of controlling gate parameters and dielectric materials
  33. Modelling of the exploding wire technique, a novel approach utilized for the synthesis of nanomaterials
  34. Rotating magnetic field configuration for controlled particle flux in material processing applications
  35. News
  36. DGM – Deutsche Gesellschaft für Materialkunde
Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8720/html
Scroll to top button