Abstract
Here we reported structural, electrical, magnetic, and thermal transport properties of ternary pnictide bulk iron based compound EuFe2As2 (Eu-122). This compound (Eu-122) crystallized in ThCr2Si2-type tetragonal phase structure with space group I4/mmm at ambient temperature. A promising divalent state (Eu2+) of Eu-ions was observed in the studied EuFe2As2. Magnetic ordering of Eu2+ ions takes place at very low temperature at around TN = 20 K in EuFe2As2. The ferromagnetic interactions between Fe–Fe ions were established at higher temperature which was revealed from magnetic susceptibility measurements with negative value of the paramagnetic Curie temperature. Both magnetic phase transitions (20 K and 190 K) were clearly established the intrinsic magnetic nature revealed by both electrical transport and specific heat measurement. However the phase transition at low temperature corresponds to the magnetic ordering of Eu2+ ions while the high transition temperature is due to the itinerant moment of Fe. EuFe2As2 is the only compound among various parent compounds of iron pnictide superconductor’s family, in which both spin density wave (SDW) of Fe and A-type antiferromagnetic (AFM) ordering of the localized Eu2+ magnetic moments take place simultaneously. We observed here that the localized character of Eu anti-ferromagnetism dominated via RKKY interactions, despite the largely itinerant nature of Fe magnetic interactions. The resistivity with applied magnetic field revealed that the AFM ordering temperature of Eu2+ ions suppress with applied magnetic field. Also resistivity under hydrostatic pressure measurements shows the TSDW (Fe) transition of the Fe moments shifts towards the lower temperatures while AFM ordering of Eu2+ decreases with pressure and the same is completely disappears at 2 GPa.
Funding source: Jaypee Institute of Information Technology
Award Identifier / Grant number: Unassigned
Funding source: National Physical Laboratory
Award Identifier / Grant number: Unassigned
Acknowledgements
One of us, Anurag Yadav is thankful to Jaypee Institute of Information Technology, Noida for providing financial assistance as Ph.D. fellowship. Authors also would like to thanks Dr. V.P.S. Awana, Senior Principal Scientist at CSIR-National Physical Laboratory for providing measurement facility (Physical Property Measurement System-14 T).
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H. J. Am. Chem. Soc. 2008, 130, 3296. https://doi.org/10.1021/ja800073m.Search in Google Scholar PubMed
2. Johnston, D. C. Adv. Phys. 2010, 59, 803. https://doi.org/10.1080/00018732.2010.513480.Search in Google Scholar
3. Johnson, V., Jeitschko, W. J. Solid State Chem. 1974, 11, 161. https://doi.org/10.1016/0022-4596(74)90111-X.Search in Google Scholar
4. Quebe, P., Terbuchte, L. J., Jeitschko, W. J. Alloys Compd. 2000, 302, 70. https://doi.org/10.1016/S0925-8388(99)00802-6.Search in Google Scholar
5. de la Cruz, C., Huang, Q., Lynn, J. W., Li, J., Ratcliff, W.II, Mook, H. A., Chen, G. F., Luo, J. L., Wang, N. L., Dai, P., Dai, P. Nature 2008, 453, 899. https://doi.org/10.1103/PhysRevLett.101.167203.Search in Google Scholar PubMed
6. Nomura, T., Kim, S. W., Kamihara, Y., Hirano, M., Sushko, P. V., Kato, K., Takata, M., Shluger, A. L., Hosono, H. Supercond. Sci. Technol. 2008, 21, 125028. https://doi.org/10.1088/0953-2048/21/12/125028.Search in Google Scholar
7. Haule, K., Shim, J. H., Kotliar, G. Phys. Rev. Lett. 2008, 100, 226402. https://doi.org/10.1103/PhysRevLett.100.226402.Search in Google Scholar PubMed
8. Cao, C., Hirschfeld, P. J., Cheng, H. P. Phys. Rev. B 2008, 77, 220506. https://doi.org/10.1103/PhysRevB.77.220506.Search in Google Scholar
9. Singh, D. J., Du, M. H. Phys. Rev. Lett. 2008, 100, 237003. https://doi.org/10.1103/PhysRevLett.100.237003.Search in Google Scholar PubMed
10. Rotter, M., Tegel, M., Schellenberg, I., Hermes, W., Pottgen, R., Johrendt, D. Phys. Rev. B 2008, 78, (R), 020503. https://doi.org/10.1103/PhysRevB.78.020503.Search in Google Scholar
11. Rotter, M., Tegel, M., Johrendt, D. Phys. Rev.Lett. 2008, 101, 107006. https://doi.org/10.1103/PhysRevLett.101.107006.Search in Google Scholar PubMed
12. Sefat, A. S., Sales, B. C., Singh, D. J., Mandrus, D. Phys. Rev. Lett. 2008, 101, 117004. https://doi.org/10.1103/PhysRevLett.101.117004.Search in Google Scholar PubMed
13. Miclea, A. F., Kasinathan, D., Hossain, Z., Steglich, F., Rosner, H., Gegenwart, P., Geibel, C. Phys. Rev. B 2009, 79, 212509. https://doi.org/10.1103/PhysRevB.79.212509.Search in Google Scholar
14. Nagarajan, R., Shenoy, G. K., Gupta, L. C., Sampathkumaran, E. V. Phys. Rev. B 1985, 32, 2846. https://doi.org/10.1103/PhysRevB.32.2846.Search in Google Scholar PubMed
15. Sales, B. C., Viswanathan, R. J. Low Temp. Phys. 1976, 23, 449. https://doi.org/10.1007/BF00116933.Search in Google Scholar
16. Jeevan, H. S., Hossain, Z., Rosner, H., Gegenwart, P., Geibel, C. Phys. Rev. B 2008, 78, 052502. https://doi.org/10.1103/PhysRevB.78.092406.Search in Google Scholar
17. Tagel, M., Rotter, M., Pottgen, R., Johrendt, D. J. Phys. Cond. Matt. 2008, 20, 452201. https://doi.org/10.1088/0953-8984/20/45/452201.Search in Google Scholar
18. Johnson, V., Jeitschko, W. J. Solid State Chem. 1978, 19, 189. https://doi.org/10.1021/ja00235a021.Search in Google Scholar
19. Feng, C., Ren, Z., Xu, S., Jiang, S., Xu, Z., Nowik, I., Felner, I., Cao, G., Matsubayashi, K., Uwatoko, Y. Phys. Rev. B 2010, 82, 094426. https://doi.org/10.1103/PhysRevB.82.094426.Search in Google Scholar
20. Ryan, D. H., Cadogan, J. M., Xu, S., Xu, Z, Cao, G. Phys. Rev. B 2011, 83, 132403. https://doi.org/10.1103/PhysRevB.83.132403.Search in Google Scholar
21. Singh, Y., Lee, Y., Harmon, B. N., Johnston, D. C. Phys. Rev. B 2009, 79, 220401. https://doi.org/10.1103/PhysRevB.79.220401.Search in Google Scholar
22. Sengupta, K., Paulose, P. L., Sampathkumaran, E. V., Doert, Th., Jemetio, J. P. F. Phys. Rev. B 2005, 72, 184424. https://doi.org/10.1103/PhysRevB.72.184424.Search in Google Scholar
23. Bauer, E. D., Ronning, F., Scott, B. L., Thompson, J. D. Phys. Rev. B 2008, 78, 172504. https://doi.org/10.1103/PhysRevB.78.172504.Search in Google Scholar
24. Ballinger, J., Wenger, L. E., Vohra, Y. K., Sefat, A. S. J. App. Phys. 2012, 111, 07E106. https://doi.org/10.1063/1.3671410.Search in Google Scholar
25. Ren, Z., Zhu, Z., Jiang, S., Xu, X., Qian, T., Wang, C., Feng, C., Cao, G., Xu, Z. Phys. Rev. B 2008, 78, 052501. https://doi.org/10.1103/PhysRevB.78.052501.Search in Google Scholar
26. Marchand, R., Jeitschko, W. J. Solid State Chem. 1978, 24, 351. https://doi.org/10.1016/0022-4596(78)90026-9.Search in Google Scholar
27. Raffius, H., Mörsen, E., Mosel, B. D., Müller-Warmuth, W., Jeitschko, W., Terbüchte, L., Vomhof, T. J. Phys. Chem. Solids 1993, 54, 135. https://doi.org/10.1016/0022-3697(93)90301-7.Search in Google Scholar
28. Selte, K., Kjekshus, A., Andresen, A., Tricker, M. J., Svensson, S. Acta Chem. Scand. 1972, 26, 3101. https://doi.org/10.3891/acta.chem.scand.26-3101.Search in Google Scholar
29. Dong, J., Zhang, H. J., Xu, G., Li, Z., Li, G., Hu, W. Z., Wu, D., Chen, G. F., Dai, X., Luo, J. L., Fang, Z., Wang, N. L. Europhys. Lett. 2008, 83, 27006. https://doi.org/10.1209/0295-5075/83/27006.Search in Google Scholar
30. Baibich, M. N., Brotp, J. M., Fert, A., Nguyen, V. D. F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J. Phys. Rev. Lett. 1988, 61, 2472. https://doi.org/10.1103/PhysRevLett.61.2472.Search in Google Scholar PubMed
31. Xiao, Y., Su, Y., Meven, M., Mittal, R., Kumar, C. M. N., Chatterji, T., Price, S., Persson, J., Kumar, N., Dhar, S. K., Thamizhavel, A., Brueckel, T. Phys. Rev. B 2009, 80, 174424. https://doi.org/10.1103/PhysRevB.80.174424.Search in Google Scholar
32. Kurita, N., Kimata, M., Kodama, K., Harada, A., Tomita, M., Suzuki, H. S., Matsumoto, T., Murata, K., Uji, S., Terashima, T. Phys. Rev. B 2011, 83, 100501. https://doi.org/10.1103/PhysRevB.83.100501.Search in Google Scholar
33. Terashima, T., Kimata, M., Satsukawa, H., Harada, A., Hazama, K., Uji, S., Suzuki, H. S., Matsumoto, T., Murata, K. J. Phys. Soc. Jpn. 2009, 78, 083701. https://doi.org/10.1143/JPSJ.78.083701.Search in Google Scholar
34. Kurita, N., Kimata, M., Kodama, K., Harada, A., Tomita, M., Suzuki, H. S., Matsumoto, T., Murata, K., Uji, S., Terashima, T. Phys. Rev. B 2011, 83, 214513. https://doi.org/10.1103/PhysRevB.83.214513.Search in Google Scholar
35. Otsuka, T., Cui, H., Fujiwara, H., Kobayashi, H., Fujiwarab, E., Kobayashi, A. J. Mater. Chem. 2004, 14, 1682. https://doi.org/10.1039/B404004J.Search in Google Scholar
36. Krellner, C., Caroca-Canales, N., Jesche, A., Rosner, H., Ormeci, A., Geibel, C. Phys. Rev. B 2008, 78, 100504. https://doi.org/10.1103/PhysRevB.78.100504.Search in Google Scholar
37. Jeevan, H. S., Hossain, Z., Kasinathan, D., Rosner, H., Geibel, C., Gegenwart, P. Phys. Rev. B 2008, 78, 052502. https://doi.org/10.1103/PhysRevB.78.092406.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- International conference on energy and advanced materials
- Review
- Analysis of different printing technologies for metallization of crystalline silicon solar cells
- Original Papers
- DFT investigation of nonlinear optical response of organic compound: acetylsalicylic acid
- Experimental (FT‐Raman, FT‐IR and NMR) and theoretical (DFT) calculations, thermodynamic parameters, molecular docking and NLO (non-linear optical) properties of N‐(2,6‐dimethylphenyl)‐1‐piperazineacetamide
- Investigation of nonlinear optical responses of organic derivative of imidazole: imidazole-2-carboxaldehyde
- Mach–Zehnder interferometric analysis of planar polymer waveguide having an adlayer of WS2 for biosensing applications
- Linear mode conversion of terahertz radiation into terahertz surface plasmon wave over a graphene-free space interface
- Generation of second harmonic terahertz surface plasmon wave over a rippled graphene surface
- Investigation on structural, magnetic and optical properties of Sm–Co Co-substituted BiFeO3 samples
- Synthesis and optical characterization of Sr and Ti doped BiFeO3 multiferroics
- A comparative study on structural, magnetic and optical properties of rare earth ions substituted Bi1−xR x FeO3 (R: Ce3+, Sm3+ and Dy3+) nanoparticles
- Thermal, structural and optical properties of Pb1−xLa x TiO3 prepared using modified sol–gel route
- Biophotonic sensor design for the detection of reproductive hormones in females by using a 1D defective annular photonic crystal
- Spin density wave and antiferromagnetic transition in EuFe2As2: a high field transport and heat capacity study
- Impact of top metal electrodes on current conduction in WO3 thin films
- Atomistic simulation of Stoner–Wohlfarth (SW) particle
- Optimization of Coulomb glass system using quenching and annealing at small disorders
- Analytical modeling of adsorption isotherms for pristine and functionalized carbon nanotubes as gas sensors
- Effect of polymer blending on the electrochemical properties of porous PVDF/PMMA membrane immobilized with organic solvent based liquid electrolyte
- Structural, electronic, and thermal studies of Poly(ethylene oxide) based solid-state polymer electrolyte
- Milling route for the synthesis of nano-aluminium hydroxide for the development of low-density polymer composites
- Thermal properties of AlN (nano) filled LDPE composites
- Thermophysical characterization of mustard husk (MSH) and MSH char synthesized by the microwave pyrolysis of MSH
- Nano structured silver particles as green catalyst for remediation of methylene blue dye from water
- AlGaN/GaN heterostructures for high power and high-speed applications
- Role of interfacial electric field on thermal conductivity of In x Al1−xN/GaN superlattice (x = 0.17)
- Sensitivity assessment of dielectric modulated GaN material based SOI-FinFET for label-free biosensing applications
- Temperature-dependent analysis of heterojunction-free GaN FinFET through optimization of controlling gate parameters and dielectric materials
- Modelling of the exploding wire technique, a novel approach utilized for the synthesis of nanomaterials
- Rotating magnetic field configuration for controlled particle flux in material processing applications
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Editorial
- International conference on energy and advanced materials
- Review
- Analysis of different printing technologies for metallization of crystalline silicon solar cells
- Original Papers
- DFT investigation of nonlinear optical response of organic compound: acetylsalicylic acid
- Experimental (FT‐Raman, FT‐IR and NMR) and theoretical (DFT) calculations, thermodynamic parameters, molecular docking and NLO (non-linear optical) properties of N‐(2,6‐dimethylphenyl)‐1‐piperazineacetamide
- Investigation of nonlinear optical responses of organic derivative of imidazole: imidazole-2-carboxaldehyde
- Mach–Zehnder interferometric analysis of planar polymer waveguide having an adlayer of WS2 for biosensing applications
- Linear mode conversion of terahertz radiation into terahertz surface plasmon wave over a graphene-free space interface
- Generation of second harmonic terahertz surface plasmon wave over a rippled graphene surface
- Investigation on structural, magnetic and optical properties of Sm–Co Co-substituted BiFeO3 samples
- Synthesis and optical characterization of Sr and Ti doped BiFeO3 multiferroics
- A comparative study on structural, magnetic and optical properties of rare earth ions substituted Bi1−xR x FeO3 (R: Ce3+, Sm3+ and Dy3+) nanoparticles
- Thermal, structural and optical properties of Pb1−xLa x TiO3 prepared using modified sol–gel route
- Biophotonic sensor design for the detection of reproductive hormones in females by using a 1D defective annular photonic crystal
- Spin density wave and antiferromagnetic transition in EuFe2As2: a high field transport and heat capacity study
- Impact of top metal electrodes on current conduction in WO3 thin films
- Atomistic simulation of Stoner–Wohlfarth (SW) particle
- Optimization of Coulomb glass system using quenching and annealing at small disorders
- Analytical modeling of adsorption isotherms for pristine and functionalized carbon nanotubes as gas sensors
- Effect of polymer blending on the electrochemical properties of porous PVDF/PMMA membrane immobilized with organic solvent based liquid electrolyte
- Structural, electronic, and thermal studies of Poly(ethylene oxide) based solid-state polymer electrolyte
- Milling route for the synthesis of nano-aluminium hydroxide for the development of low-density polymer composites
- Thermal properties of AlN (nano) filled LDPE composites
- Thermophysical characterization of mustard husk (MSH) and MSH char synthesized by the microwave pyrolysis of MSH
- Nano structured silver particles as green catalyst for remediation of methylene blue dye from water
- AlGaN/GaN heterostructures for high power and high-speed applications
- Role of interfacial electric field on thermal conductivity of In x Al1−xN/GaN superlattice (x = 0.17)
- Sensitivity assessment of dielectric modulated GaN material based SOI-FinFET for label-free biosensing applications
- Temperature-dependent analysis of heterojunction-free GaN FinFET through optimization of controlling gate parameters and dielectric materials
- Modelling of the exploding wire technique, a novel approach utilized for the synthesis of nanomaterials
- Rotating magnetic field configuration for controlled particle flux in material processing applications
- News
- DGM – Deutsche Gesellschaft für Materialkunde