Home Experimental (FT‐Raman, FT‐IR and NMR) and theoretical (DFT) calculations, thermodynamic parameters, molecular docking and NLO (non-linear optical) properties of N‐(2,6‐dimethylphenyl)‐1‐piperazineacetamide
Article
Licensed
Unlicensed Requires Authentication

Experimental (FT‐Raman, FT‐IR and NMR) and theoretical (DFT) calculations, thermodynamic parameters, molecular docking and NLO (non-linear optical) properties of N‐(2,6‐dimethylphenyl)‐1‐piperazineacetamide

  • Jayant Teotia ORCID logo EMAIL logo , Vikas Kumar ORCID logo , Annu , Shaleen Bhardwaj and Isha Rathi
Published/Copyright: May 23, 2023
Become an author with De Gruyter Brill

Abstract

Theoretical and experimental studies are performed on the new organic–inorganic hybrid molecule N‐(2,6‐dimethylphenyl)‐1‐piperazineacetamide. The vibrational spectra of the molecule are characterized using FT‐IR and FT‐Raman in the range 4000–600 cm−1 and 4000–100 cm−1, respectively. Density functional theory with B3LYP/3‐21G and B3LYP/cc‐pVDZ basis sets is used to calculate energy, geometrical structure, and vibrational modes of stretching, bending, and torsion. The VEDA software Autodock Vina revealed a good binding is employed to calculate the detailed vibrational assignments. The theoretical and experimental vibrational data are compared to support the present study. Density functional theory is used to calculate thermodynamic parameters (heat capacity, entropy, and enthalpy) and nonlinear optical properties. The software Gaussian09W and Gaussview 6.0 are used for theoretical calculations. Molecular docking studies are carried out to investigate the effect of the titled molecule against various proteins such as SARS‐CoV‐2 that affect the immune system in humans. Chemical shifts are identified using carbon and proton NMR. Non‐covalent interactions are studied using a reduced density gradient. The chemical reactivity and selectivity for a local reactivity site are analyzed with the help of Fukui functions.


Corresponding author: Jayant Teotia, Molecular Spectroscopy and Biophysics Laboratory, Department of Physics, Deva Nagri College, C.C.S. University, Meerut, U.P., India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors express their gratitude to the Council of Scientific and Industrial Research for a Senior Research Fellowship (SRF) to one of the authors.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Filimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskii, D. S., Pogodin, P. V., Poroikov, V. V. Chem. Heterocycl. Compd. 2014, 50, 444–457. https://doi.org/10.1007/s10593-014-1496-1.Search in Google Scholar

2. Daina, A., Michielin, O., Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. https://doi.org/10.1038/srep42717.Search in Google Scholar PubMed PubMed Central

3. George, J., Prasana, J. C., Muthu, S., Kuruvilla, T. K., Sevanthi, S., Saji, R. S. J. Mol. Struct. 2018, 1171, 268–278. https://doi.org/10.1016/j.molstruc.2018.05.106.Search in Google Scholar

4. Szczepańska, K., Kincses, A., Vincze, K., Szymańska, E., Latacz, G., Kudera, K. J., Stark, H., Spengler, G., Handzlika, J., Kononowicz, K. K. Bioorg. Med. Chem. Lett. 2020, 22, 127522. https://doi.org/10.1016/j.bmcl.2020.127522.Search in Google Scholar PubMed

5. Devine, R., Kelada, M., Leonard, S., Martin, D. S. D., Walsh, J. M. D., Breen, C. J., Driver, R. B., Kinsella, G. K., Findlay, J. B. C., Stephens, J. C. Eur. J. Med. Chem. 2020, 202, 112416. https://doi.org/10.1016/j.ejmech.2020.112416.Search in Google Scholar PubMed

6. Koparde, S., Hosamani, K. M., Kulkarni, V., Joshi, S. D. Chem. Data Collect. 2018, 15–16, 197–206. https://doi.org/10.1016/j.cdc.2018.06.001.Search in Google Scholar

7. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. J. Cheeseman GAUSSIAN 09, Revision D.01; Gaussian Inc: Wallingford CT, 2009.Search in Google Scholar

8. Lee, C., Yang, W., Parr, R. G. Phys. Rev. 1988, 37, 785–789. https://doi.org/10.1103/PhysRevB.37.785.Search in Google Scholar

9. GaussView, Version 6, Dennington, R., Keith, T., Millam, J.; Semichem Inc.: Shawnee Mission, KS, 2016.Search in Google Scholar

10. Jamroz, M. H. Spectrochim. Acta, Part A 2013, 114, 220–230. https://doi.org/10.1016/j.saa.2013.05.096.Search in Google Scholar PubMed

11. Willcott, M. R. J. Am. Chem. Soc. 2009, 131, 13180. https://doi.org/10.1021/ja906709t.Search in Google Scholar

12. Lu, T., Chen, F. J. Comput. Chem. 2012, 33, 580–592. https://doi.org/10.1002/jcc.22885.Search in Google Scholar PubMed

13. Humphrey, W., Dalke, A., Schulten, K. J. Mol. Graphics 1996, 1400, 33–38. https://doi.org/10.1016/0263–7855(96)00018–5.10.1016/0263-7855(96)00018-5Search in Google Scholar PubMed

14. Trott, O., Olson, A. J. J. Comput. Chem. 2010, 31, 455–461. https://doi.org/10.1002/jcc.21334.Search in Google Scholar PubMed PubMed Central

15. Colthup, N. B., Daly, L. H., Wiberley, S. E. Introduction to Infrared and Raman Spectroscopy, 2nd ed.; Academic Press, New York, 1975.Search in Google Scholar

16. Raajaraman, B. R., Sheela, N. R., Muthu, S. Polycyclic Aromat. Compd. 2022, 42, 2672–2692. https://doi.org/10.1080/10406638.2020.1852273.Search in Google Scholar

17. Prabavathi, N., Nilufer, A., Krishnakumar, V. Spectrochim. Acta, Part A 2014, 121, 483–493. https://doi.org/10.1016/j.saa.2013.10.102.Search in Google Scholar PubMed

18. Muthu, S., Porchelvi, E. Spectrochim. Acta, Part A 2013, 115, 275–286. https://doi.org/10.1016/j.saa.2013.06.011.Search in Google Scholar PubMed

19. Rablen, P. R., Pearlman, S. A., Finkbiner, J. J. Phys. Chem. A 1999, 103, 7357–7363. https://doi.org/10.1021/jp9916889.Search in Google Scholar

20. Jain, R., Bally, T., Rablen, P. R. J. Org. Chem. 2009, 74, 4017–4023. https://doi.org/10.1021/jo900482q.Search in Google Scholar PubMed

21. Bally, T., Rablen, P. R. J. Org. Chem. 2011, 76, 4818–4830. https://doi.org/10.1021/jo200513q.Search in Google Scholar PubMed

22. Lodewyk, M. W., Siebert, M. R., Tantillo, D. J. Chem. Rev. 2012, 112, 1839–1862. https://doi.org/10.1021/cr200106v.Search in Google Scholar PubMed

23. Gumuş, H., Avcı, D., Tamer, O. Mater. Sci. 2015, 33, 369–380. https://doi.org/10.1515/msp–2015–0039.10.1515/msp-2015-0039Search in Google Scholar

24. Arjunan, V., Thirunarayanan, S., Mohan, S. J. Mol. Struct. 2018, 1157, 132–148. https://doi.org/10.1016/j.molstruc.2017.12.032.Search in Google Scholar

25. Arshad, M. N., Bibi, A., Mahmood, T., Asiri, A. M., Ayub, K. Molecules 2015, 20, 5851–5874. https://doi.org/10.3390/molecules20045851.Search in Google Scholar PubMed PubMed Central

26. Li, Y., Evans, J. N. S. J. Am. Chem. Soc. 1995, 117, 7756–7759. https://doi.org/10.1021/ja00134a021.Search in Google Scholar

27. Uzun, S., Esen, Z., Koç, E., Usta, N. C., Ceylan, M. J. Mol. Struct. 2019, 1178, 450–457. https://doi.org/10.1016/j.molstruc.2018.10.001.Search in Google Scholar

28. Johnson, E. R., Keinan, S., Mori–Sanchez, P., Contreras–Garcia, J., Cohen, A. J., Yang, W. J. Am. Chem. Soc. 2010, 132, 6498–6506. https://doi.org/10.1021/ja100936w.Search in Google Scholar PubMed PubMed Central

29. Vanasundari, K., Balachandran, V., Kavimani, M., Narayana, B. J. Mol. Struct. 2017, 1155, 21–38. https://doi.org/10.1016/j.molstruc.2017.11.002.Search in Google Scholar

30. Kourat, O., Djafri, A., Benhalima, N., Megrouss, Y., Belkafouf, N. E. H., Rahmani, R., Daran, J. C., Djafri, A., Chouaih, A. J. Mol. Struct. 2020, 1222, 128952. https://doi.org/10.1016/j.molstruc.2020.128952.Search in Google Scholar

31. Khan, G., Sreenivasa, S., Govindaiah, S., Chandramohan, V. Orient. J. Chem. 2019, 35, 157–166. https://doi.org/10.13005/ojc/350117.Search in Google Scholar

32. Omar, A. Z., Mosa, T. M., El–sadany, S. K., Hamed, E. A., El-atawy, M. Mohamed El–atawy. J. Mol. Struct. 2021, 1245, 131020. https://doi.org/10.1016/j.molstruc.2021.131020.Search in Google Scholar PubMed PubMed Central

33. Lagunin, A., Stepanchikova, A., Filimonov, D., Poroikov, V. PASS: prediction of activity spectra for biologically active substances. Bioinformatics 2000, 16, 747–748. https://doi.org/10.1093/bioinformatics/16.8.747.Search in Google Scholar PubMed

34. Yadav, P., Rana, M., Chowdhury, P. J. Mol. Struct. 2021, 1246, 131253. https://doi.org/10.1016/j.molstruc.2021.131253.Search in Google Scholar PubMed PubMed Central

35. Venkatesh, G., Kamal, C., Vennila, P., Govindaraju, M., Sheena Mary, Y., Armakovic, S., Armakovic, S. J., Kaya, S., Yohannan Panicker, C. J. Mol. Struct. 2018, 1171, 253–267. https://doi.org/10.1016/j.molstruc.2018.06.001.Search in Google Scholar

36. De Silva, I. C., De Silva, R. M., N De Silva, K. M. J. Mol. Struct.: THEOCHEM 2005, 728, 141–145. https://doi.org/10.1016/j.theochem.2005.02.092.Search in Google Scholar

37. Teotia, J., Kumar, S., Surbhi, Kumar, R., Yadav, M. K. Asian J. Chem. 2016, 28, 2204–2210. https://doi.org/10.14233/ajchem.2016.19928.Search in Google Scholar

38. Govindasamy, P., Gunasekaran, S. J. Mol. Struct. 2015, 1081, 96–109. https://doi.org/10.1016/j.molstruc.2014.10.011.Search in Google Scholar

Received: 2021-12-23
Accepted: 2022-07-27
Published Online: 2023-05-23
Published in Print: 2023-07-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. International conference on energy and advanced materials
  4. Review
  5. Analysis of different printing technologies for metallization of crystalline silicon solar cells
  6. Original Papers
  7. DFT investigation of nonlinear optical response of organic compound: acetylsalicylic acid
  8. Experimental (FT‐Raman, FT‐IR and NMR) and theoretical (DFT) calculations, thermodynamic parameters, molecular docking and NLO (non-linear optical) properties of N‐(2,6‐dimethylphenyl)‐1‐piperazineacetamide
  9. Investigation of nonlinear optical responses of organic derivative of imidazole: imidazole-2-carboxaldehyde
  10. Mach–Zehnder interferometric analysis of planar polymer waveguide having an adlayer of WS2 for biosensing applications
  11. Linear mode conversion of terahertz radiation into terahertz surface plasmon wave over a graphene-free space interface
  12. Generation of second harmonic terahertz surface plasmon wave over a rippled graphene surface
  13. Investigation on structural, magnetic and optical properties of Sm–Co Co-substituted BiFeO3 samples
  14. Synthesis and optical characterization of Sr and Ti doped BiFeO3 multiferroics
  15. A comparative study on structural, magnetic and optical properties of rare earth ions substituted Bi1−xR x FeO3 (R: Ce3+, Sm3+ and Dy3+) nanoparticles
  16. Thermal, structural and optical properties of Pb1−xLa x TiO3 prepared using modified sol–gel route
  17. Biophotonic sensor design for the detection of reproductive hormones in females by using a 1D defective annular photonic crystal
  18. Spin density wave and antiferromagnetic transition in EuFe2As2: a high field transport and heat capacity study
  19. Impact of top metal electrodes on current conduction in WO3 thin films
  20. Atomistic simulation of Stoner–Wohlfarth (SW) particle
  21. Optimization of Coulomb glass system using quenching and annealing at small disorders
  22. Analytical modeling of adsorption isotherms for pristine and functionalized carbon nanotubes as gas sensors
  23. Effect of polymer blending on the electrochemical properties of porous PVDF/PMMA membrane immobilized with organic solvent based liquid electrolyte
  24. Structural, electronic, and thermal studies of Poly(ethylene oxide) based solid-state polymer electrolyte
  25. Milling route for the synthesis of nano-aluminium hydroxide for the development of low-density polymer composites
  26. Thermal properties of AlN (nano) filled LDPE composites
  27. Thermophysical characterization of mustard husk (MSH) and MSH char synthesized by the microwave pyrolysis of MSH
  28. Nano structured silver particles as green catalyst for remediation of methylene blue dye from water
  29. AlGaN/GaN heterostructures for high power and high-speed applications
  30. Role of interfacial electric field on thermal conductivity of In x Al1−xN/GaN superlattice (x = 0.17)
  31. Sensitivity assessment of dielectric modulated GaN material based SOI-FinFET for label-free biosensing applications
  32. Temperature-dependent analysis of heterojunction-free GaN FinFET through optimization of controlling gate parameters and dielectric materials
  33. Modelling of the exploding wire technique, a novel approach utilized for the synthesis of nanomaterials
  34. Rotating magnetic field configuration for controlled particle flux in material processing applications
  35. News
  36. DGM – Deutsche Gesellschaft für Materialkunde
Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8747/html
Scroll to top button