Abstract
In the present work, we explored the nonlinear optical properties of imidazole-2-carboxaldehyde, which is an aromatic derivative of imidazole. Optimization has been performed for imidazole-2-carboxaldehyde using density functional theory with a B3LYP/6-311G basis set. To check the possible charge transfer, Mulliken charge analysis and molecular electrostatic potential analysis was performed. The chemical reactivity of the probe molecule was investigated by calculating different frontier molecular orbital parameters such that energy gap, ionization potential, electron affinity, chemical potential, electronegativity, softness, and hardness. Raman, Fourier transform infrared, and nuclear magnetic resonance analysis was also performed to study vibrational properties and UV–vis was performed to study the electronic properties of the compound. A high value of dipole moment (μ total), polarizability (α), first-order hyperpolarizability (β), and Raman activity validates the NLO behavior of the compound. Thus, the performed computational study validates a strong candidature of imidazole-2-carboxaldehyde to be used as a non-linear optically active material in the future.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Rana, M., Chowdhury, P. Mater. Today 2020, 28, 241. https://doi.org/10.1016/j.matpr.2020.01.598.Search in Google Scholar
2. Polat, T., Yurdakul, A. J. Mol. Struct. 2013, 1053, 27. https://doi.org/10.1016/j.molstruc.2013.09.003.Search in Google Scholar
3. Shrivastava, S. K. Status of laser technology in India. Int. J. Innovation 2016, 3, 181–185.Search in Google Scholar
4. Lee, J., Nookala, N., Diaz, J. S. G., Tymchenko, M., Demmerle, F., Boehm, G., Amann, M. C., Alù, A., Belkin, M. A. Biomed. Eng. Online 2016, 4, 664. https://doi.org/10.1002/adom.201500723.Search in Google Scholar
5. Suresh, S., Arivuoli, D. Nanomaterials for nonlinear optical (NLO) applications: a review. Rev. Adv. Mater. Sci. 2012, 30, 243.Search in Google Scholar
6. Muhammad, S., Xu, H. L., Zhong, R. L., Su, Z. M., Sehemi, A. G. A., Irfan, A. J. Mater. Chem. C 2013, 1, 5439. https://doi.org/10.1039/C3TC31183J.Search in Google Scholar
7. Trujillo, A., Fuentealba, M., Carrillo, D., Manzur, C., Rak, I. L., Hamon, J. R., Saillard, J. Y. Inorg. Chem. 2010, 49, 2750. https://doi.org/10.1021/ic902126a.Search in Google Scholar PubMed
8. Diaspro, A., Bianchini, P., Vicidomini, G., Faretta, M., Ramoino, P., Usai, C. Biomed. Eng. Online 2006, 5, 36. https://doi.org/10.1186/1475-925X-5-36.Search in Google Scholar PubMed PubMed Central
9. Hecht, J. OPN 2010, 21, 34. https://doi.org/10.1364/OPN.21.11.000034.Search in Google Scholar
10. Muhammad, S., Xu, H., Su, Z., Fukuda, K., Kishi, R., Shigeta, Y., Nakano, M. Dalton Trans. 2013, 42, 15053. https://doi.org/10.1039/C3DT51331A.Search in Google Scholar PubMed
11. Cheng, Z., Liu, L., Li, X., Proksch, P., Yin, S., Lin, W. J. Nat. Prod. 2016, 79, 2941. https://doi.org/10.1021/acs.jnatprod.6b00801.Search in Google Scholar PubMed
12. Roth, M., Tseitlin, M., Angert, N. Glass Phys. Chem. 2005, 31, 86. https://doi.org/10.1007/s10720-005-0028-6.Search in Google Scholar
13. Undavalli, G., Joseph, M., Arjun, K. K., Philip, R., Anand, B., Rao, G. N. Opt. Mater. 2021, 115, 111024. https://doi.org/10.1016/j.optmat.2021.111024.Search in Google Scholar
14. Dini, D., Calvete, M. J. F., Hanack, M. Chem. Rev. 2016, 116, 13043. https://doi.org/10.1021/acs.chemrev.Search in Google Scholar
15. Prasad, P. N., Williams, D. J. Introduction to nonlinear optical effects. In Molecules and Polymers; Wiley: New York, 1991.Search in Google Scholar
16. Shanmugam, G., Brahadeeswaran, S. Spectrochim. Acta, Part A 2012, 95, 177. https://doi.org/10.1016/j.saa.2012.04.100.Search in Google Scholar PubMed
17. Kuhn, H. J., Robillard, J. Nonlinear Optical Materials; CRC Press: USA, 1991.Search in Google Scholar
18. Ashwell, G. J., Hargreaves, R. C., Baldwin, C. E., Bahra, G. S., Brown, C. R. Improved second-harmonic generation from langmuireblodgett films of hemicyanine dyes. Nature 1992, 357, 393. https://doi.org/10.1038/357393a0.Search in Google Scholar
19. Gounden, D., Nombona, N., Zyl, W. E. Coord. Chem. Rev. 2020, 420, 213359–213390. https://doi.org/10.1016/j.ccr.2020.213359.Search in Google Scholar
20. Tamer, O., Avc, D., Atalay, Y. J. Mol. Struct. 2015, 1098, 12. https://doi.org/10.1016/j.molstruc.2015.05.035.Search in Google Scholar
21. Vivek, P., Murugakoothan, P. Opt. Laser Technol. 2013, 49, 288. https://doi.org/10.1016/j.optlastec.2013.01.015.Search in Google Scholar
22. Gebre, S. H. Synth. Commun. 2021, 51, 1669. https://doi.org/10.1080/00397911.2021.1900257.Search in Google Scholar
23. Verma, A., Joshi, S., Singh, D. J. Chem. 2013, 2013. https://doi.org/10.1155/2013/329412.Search in Google Scholar
24. Jiang, C., Chen, W., ZhengLu, W. H. H. Org. Biomol. Chem. 2019, 38, 38–55. https://doi.org/10.1039/C9OB01609K.Search in Google Scholar
25. Boyle, O., Banck, N. M., James, M., Morley, C., Vandermeersch, T., Hutchison, G. R. J. Cheminf. 2011, 3, 33. https://doi.org/10.1186/1758-2946-3-33.Search in Google Scholar PubMed PubMed Central
26. Frisch, M. J. Gaussian 09, Revision B.01; Gaussian Inc.: Wallingford CT, 2010.Search in Google Scholar
27. Rana, M., Singla, N., Chatterjee, A., Shukla, A., Chowdhury, P. Opt. Mater. 2016, 62, 80. https://doi.org/10.1016/j.optmat.2016.09.043.Search in Google Scholar
28. Joseyphus, R. S., Shiju, C., Joseph, J., Dhanaraj, C. J., Arish, D. Russ. J. Gen. Chem. 2014, 133, 149. https://doi.org/10.1016/j.saa.2014.05.050.Search in Google Scholar PubMed
29. Sebastianelli, P., Pereyra, R. G. Int. J. Quantum Chem. 2020, 120, 1–16. https://doi.org/10.1002/qua.26060.Search in Google Scholar
30. Lakhera, S., Devlal, K., Ghosh, A., Rana, M. Results Chem. 2021, 3, 100199. https://doi.org/10.1016/j.rechem.2021.100199.Search in Google Scholar PubMed PubMed Central
31. Costa, R. A., Pitt, P. O., Pinheiro, M. L. B., Oliveira, K. M. T., Saloma, K. S., Barison, A., Costa, E. V. Spectrochim. Acta, Part A 2017, 174, 94. https://doi.org/10.1016/j.saa.2016.11.018.Search in Google Scholar PubMed
32. Deák, P., Lorke, M., Aradi, B., Frauenheim, T. J. Appl. Phys. 2019, 126, 130901. https://doi.org/10.1063/1.5110643.Search in Google Scholar
33. Lakhera, S., Rana, M., Devlal, K., Celik, I., Yadav, R. Struct. Chem. 2022, 33. https://doi.org/10.1007/s11224-022-01882-7.Search in Google Scholar PubMed PubMed Central
34. Mermer, A., Bayrak, H., Alyar, S., Alagumuthu, M. J. Mol. Struct. 2020, 1208, 127891. https://doi.org/10.1016/j.molstruc.2020.127891.Search in Google Scholar
35. Lakhera, S., Devlal, K., Rana, M., Celik, I. Struct. Chem. 2022, 35. https://doi.org/10.1007/s11224-022-01981-5.Search in Google Scholar PubMed PubMed Central
36. Rana, M., Chatterjee, A., Chowdhury, P. AIP Conf. Proc. 2018, 020055, 1–4. https://doi.org/10.1063/1.5052124.Search in Google Scholar
37. Lakhera, S., Devlal, K., Ghosh, A., Rana, M. Chem. Pap. 2022, 76, 2759–2776. https://doi.org/10.1007/s11696-022-02067-6.Search in Google Scholar PubMed PubMed Central
38. Nataraj, A., Balachandran, V., Karthick, T. J. Mol. Struct. 2012, 1022, 94. https://doi.org/10.1016/j.molstruc.2012.04.056.Search in Google Scholar
39. Cyvin, S. J., Rauch, J. E., Decius, J. C. J. Chem. Phys. 1965, 43, 4083. https://doi.org/10.1063/1.1696646.Search in Google Scholar
40. Catalán, J., Pérez, P., Valle, J. C., de Paz, J. L. G., Kasha, M. PNAS 2002, 99, 5799. https://doi.org/10.1073/pnas.052703999.Search in Google Scholar PubMed PubMed Central
41. FT-IR Raman of 2-Imidazolecarboxaldehyde: Sigma Aldrich. https://www.sigmaaldrich.com/IN/en/product/aldrich/272000.Search in Google Scholar
42. Lakhera, S., Rana, M., Devlal, K. Opt. Quantum Electron. 2022, 54, 714. https://doi.org/10.1007/s11082-022-04118-4.Search in Google Scholar
43. UV-Vis Spectra of Imidazole-2-Carboxaldehyde: Wiley Science Solutions. https://spectrabase.com/spectrum/6Doe4Gz6Mfe.Search in Google Scholar
44. Vennila, P., Govindaraju, M., Venkatesh, G., Kamal, C. J. Mol. Struct. 2016, 1111, 151e156. https://doi.org/10.1016/j.molstruc.2016.01.068.Search in Google Scholar
45. Pullman, A., Pullman, B., Varadwaj, P. Molecules 2019, 24, 379. https://doi.org/10.3390/molecules24030379.Search in Google Scholar PubMed PubMed Central
46. Rana, M., Pooja, Chowdhury, P. AIP Conf. Proc. 2019, 2136, 040005. https://doi.org/10.1063/1.5120919.Search in Google Scholar
47. Wolinski, K., Hinton, J. F., Pulay, P. J. Am. Chem. Soc. 1990, 112, 8251. https://doi.org/10.1021/ja00179a005.Search in Google Scholar
48. Bauer, C., Freeman, R., Frenkiel*, T., Keeler, J., Shaka, A. J. J. Magn. Reson. 1984, 58, 442. https://doi.org/10.1016/0022-2364(84)90148-3.Search in Google Scholar
49. Günther, H. Nmr spectroscopy: basic principles, concepts and applications. In Chemistry; John Wiley & Sons: USA, 2013.Search in Google Scholar
50. 1H NMR and 13C NMR of 2-imidazolecarboxaldehyde; Wiley Science Solutions. https://spectrabase.com/spectrum/9QzbU8ZR5ii.Search in Google Scholar
51. Bredas, J. L., Adant, C., Tackx, P., Persoons, A., Pierce, B. M. Chem. Rev. 1994, 94, 243. https://doi.org/10.1021/cr00025a008.Search in Google Scholar
52. Liu, Y. Y., Wang, Z. H., Yang, J., Liu, B., Liu, Y. Y., Ma, J. F. CrystEngComm 2011, 13, 3811. https://doi.org/10.1039/C1CE05019B.Search in Google Scholar
53. Lin, Z., Wang, Z., Chen, C., Lee, M. H. J. Chem. Phys. 2003, 118, 2349. https://doi.org/10.1063/1.1533734.Search in Google Scholar
54. Anis, M., Muley, G. G., Hakeem, A., Shirsat, M. D., Hussaini, S. S. Opt. Mater. 2015, 46, 517. https://doi.org/10.1016/j.optmat.2015.04.064.Search in Google Scholar
55. Sun, Y., Chen, X., Sun, L., Guo, X., Lu, W. Chem. Phys. Lett. 2003, 381, 397. https://doi.org/10.1016/j.cplett.2003.09.115.Search in Google Scholar
56. Lakhera, S., Devlal, K., Rana, M., Dhuliya, V. Opt. Mater. 2022, 129, 112476. https://doi.org/10.1016/j.optmat.2022.112476.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- International conference on energy and advanced materials
- Review
- Analysis of different printing technologies for metallization of crystalline silicon solar cells
- Original Papers
- DFT investigation of nonlinear optical response of organic compound: acetylsalicylic acid
- Experimental (FT‐Raman, FT‐IR and NMR) and theoretical (DFT) calculations, thermodynamic parameters, molecular docking and NLO (non-linear optical) properties of N‐(2,6‐dimethylphenyl)‐1‐piperazineacetamide
- Investigation of nonlinear optical responses of organic derivative of imidazole: imidazole-2-carboxaldehyde
- Mach–Zehnder interferometric analysis of planar polymer waveguide having an adlayer of WS2 for biosensing applications
- Linear mode conversion of terahertz radiation into terahertz surface plasmon wave over a graphene-free space interface
- Generation of second harmonic terahertz surface plasmon wave over a rippled graphene surface
- Investigation on structural, magnetic and optical properties of Sm–Co Co-substituted BiFeO3 samples
- Synthesis and optical characterization of Sr and Ti doped BiFeO3 multiferroics
- A comparative study on structural, magnetic and optical properties of rare earth ions substituted Bi1−xR x FeO3 (R: Ce3+, Sm3+ and Dy3+) nanoparticles
- Thermal, structural and optical properties of Pb1−xLa x TiO3 prepared using modified sol–gel route
- Biophotonic sensor design for the detection of reproductive hormones in females by using a 1D defective annular photonic crystal
- Spin density wave and antiferromagnetic transition in EuFe2As2: a high field transport and heat capacity study
- Impact of top metal electrodes on current conduction in WO3 thin films
- Atomistic simulation of Stoner–Wohlfarth (SW) particle
- Optimization of Coulomb glass system using quenching and annealing at small disorders
- Analytical modeling of adsorption isotherms for pristine and functionalized carbon nanotubes as gas sensors
- Effect of polymer blending on the electrochemical properties of porous PVDF/PMMA membrane immobilized with organic solvent based liquid electrolyte
- Structural, electronic, and thermal studies of Poly(ethylene oxide) based solid-state polymer electrolyte
- Milling route for the synthesis of nano-aluminium hydroxide for the development of low-density polymer composites
- Thermal properties of AlN (nano) filled LDPE composites
- Thermophysical characterization of mustard husk (MSH) and MSH char synthesized by the microwave pyrolysis of MSH
- Nano structured silver particles as green catalyst for remediation of methylene blue dye from water
- AlGaN/GaN heterostructures for high power and high-speed applications
- Role of interfacial electric field on thermal conductivity of In x Al1−xN/GaN superlattice (x = 0.17)
- Sensitivity assessment of dielectric modulated GaN material based SOI-FinFET for label-free biosensing applications
- Temperature-dependent analysis of heterojunction-free GaN FinFET through optimization of controlling gate parameters and dielectric materials
- Modelling of the exploding wire technique, a novel approach utilized for the synthesis of nanomaterials
- Rotating magnetic field configuration for controlled particle flux in material processing applications
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Editorial
- International conference on energy and advanced materials
- Review
- Analysis of different printing technologies for metallization of crystalline silicon solar cells
- Original Papers
- DFT investigation of nonlinear optical response of organic compound: acetylsalicylic acid
- Experimental (FT‐Raman, FT‐IR and NMR) and theoretical (DFT) calculations, thermodynamic parameters, molecular docking and NLO (non-linear optical) properties of N‐(2,6‐dimethylphenyl)‐1‐piperazineacetamide
- Investigation of nonlinear optical responses of organic derivative of imidazole: imidazole-2-carboxaldehyde
- Mach–Zehnder interferometric analysis of planar polymer waveguide having an adlayer of WS2 for biosensing applications
- Linear mode conversion of terahertz radiation into terahertz surface plasmon wave over a graphene-free space interface
- Generation of second harmonic terahertz surface plasmon wave over a rippled graphene surface
- Investigation on structural, magnetic and optical properties of Sm–Co Co-substituted BiFeO3 samples
- Synthesis and optical characterization of Sr and Ti doped BiFeO3 multiferroics
- A comparative study on structural, magnetic and optical properties of rare earth ions substituted Bi1−xR x FeO3 (R: Ce3+, Sm3+ and Dy3+) nanoparticles
- Thermal, structural and optical properties of Pb1−xLa x TiO3 prepared using modified sol–gel route
- Biophotonic sensor design for the detection of reproductive hormones in females by using a 1D defective annular photonic crystal
- Spin density wave and antiferromagnetic transition in EuFe2As2: a high field transport and heat capacity study
- Impact of top metal electrodes on current conduction in WO3 thin films
- Atomistic simulation of Stoner–Wohlfarth (SW) particle
- Optimization of Coulomb glass system using quenching and annealing at small disorders
- Analytical modeling of adsorption isotherms for pristine and functionalized carbon nanotubes as gas sensors
- Effect of polymer blending on the electrochemical properties of porous PVDF/PMMA membrane immobilized with organic solvent based liquid electrolyte
- Structural, electronic, and thermal studies of Poly(ethylene oxide) based solid-state polymer electrolyte
- Milling route for the synthesis of nano-aluminium hydroxide for the development of low-density polymer composites
- Thermal properties of AlN (nano) filled LDPE composites
- Thermophysical characterization of mustard husk (MSH) and MSH char synthesized by the microwave pyrolysis of MSH
- Nano structured silver particles as green catalyst for remediation of methylene blue dye from water
- AlGaN/GaN heterostructures for high power and high-speed applications
- Role of interfacial electric field on thermal conductivity of In x Al1−xN/GaN superlattice (x = 0.17)
- Sensitivity assessment of dielectric modulated GaN material based SOI-FinFET for label-free biosensing applications
- Temperature-dependent analysis of heterojunction-free GaN FinFET through optimization of controlling gate parameters and dielectric materials
- Modelling of the exploding wire technique, a novel approach utilized for the synthesis of nanomaterials
- Rotating magnetic field configuration for controlled particle flux in material processing applications
- News
- DGM – Deutsche Gesellschaft für Materialkunde