Home Technology Investigation of nonlinear optical responses of organic derivative of imidazole: imidazole-2-carboxaldehyde
Article
Licensed
Unlicensed Requires Authentication

Investigation of nonlinear optical responses of organic derivative of imidazole: imidazole-2-carboxaldehyde

  • Shradha Lakhera , Meenakshi Rana and Kamal Devlal EMAIL logo
Published/Copyright: May 23, 2023
Become an author with De Gruyter Brill

Abstract

In the present work, we explored the nonlinear optical properties of imidazole-2-carboxaldehyde, which is an aromatic derivative of imidazole. Optimization has been performed for imidazole-2-carboxaldehyde using density functional theory with a B3LYP/6-311G basis set. To check the possible charge transfer, Mulliken charge analysis and molecular electrostatic potential analysis was performed. The chemical reactivity of the probe molecule was investigated by calculating different frontier molecular orbital parameters such that energy gap, ionization potential, electron affinity, chemical potential, electronegativity, softness, and hardness. Raman, Fourier transform infrared, and nuclear magnetic resonance analysis was also performed to study vibrational properties and UV–vis was performed to study the electronic properties of the compound. A high value of dipole moment (μ total), polarizability (α), first-order hyperpolarizability ), and Raman activity validates the NLO behavior of the compound. Thus, the performed computational study validates a strong candidature of imidazole-2-carboxaldehyde to be used as a non-linear optically active material in the future.


Corresponding author: Kamal Devlal, Department of Physics, School of Sciences, Uttarakhand Open University, Haldwani, 263139, Uttarakhand, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rana, M., Chowdhury, P. Mater. Today 2020, 28, 241. https://doi.org/10.1016/j.matpr.2020.01.598.Search in Google Scholar

2. Polat, T., Yurdakul, A. J. Mol. Struct. 2013, 1053, 27. https://doi.org/10.1016/j.molstruc.2013.09.003.Search in Google Scholar

3. Shrivastava, S. K. Status of laser technology in India. Int. J. Innovation 2016, 3, 181–185.Search in Google Scholar

4. Lee, J., Nookala, N., Diaz, J. S. G., Tymchenko, M., Demmerle, F., Boehm, G., Amann, M. C., Alù, A., Belkin, M. A. Biomed. Eng. Online 2016, 4, 664. https://doi.org/10.1002/adom.201500723.Search in Google Scholar

5. Suresh, S., Arivuoli, D. Nanomaterials for nonlinear optical (NLO) applications: a review. Rev. Adv. Mater. Sci. 2012, 30, 243.Search in Google Scholar

6. Muhammad, S., Xu, H. L., Zhong, R. L., Su, Z. M., Sehemi, A. G. A., Irfan, A. J. Mater. Chem. C 2013, 1, 5439. https://doi.org/10.1039/C3TC31183J.Search in Google Scholar

7. Trujillo, A., Fuentealba, M., Carrillo, D., Manzur, C., Rak, I. L., Hamon, J. R., Saillard, J. Y. Inorg. Chem. 2010, 49, 2750. https://doi.org/10.1021/ic902126a.Search in Google Scholar PubMed

8. Diaspro, A., Bianchini, P., Vicidomini, G., Faretta, M., Ramoino, P., Usai, C. Biomed. Eng. Online 2006, 5, 36. https://doi.org/10.1186/1475-925X-5-36.Search in Google Scholar PubMed PubMed Central

9. Hecht, J. OPN 2010, 21, 34. https://doi.org/10.1364/OPN.21.11.000034.Search in Google Scholar

10. Muhammad, S., Xu, H., Su, Z., Fukuda, K., Kishi, R., Shigeta, Y., Nakano, M. Dalton Trans. 2013, 42, 15053. https://doi.org/10.1039/C3DT51331A.Search in Google Scholar PubMed

11. Cheng, Z., Liu, L., Li, X., Proksch, P., Yin, S., Lin, W. J. Nat. Prod. 2016, 79, 2941. https://doi.org/10.1021/acs.jnatprod.6b00801.Search in Google Scholar PubMed

12. Roth, M., Tseitlin, M., Angert, N. Glass Phys. Chem. 2005, 31, 86. https://doi.org/10.1007/s10720-005-0028-6.Search in Google Scholar

13. Undavalli, G., Joseph, M., Arjun, K. K., Philip, R., Anand, B., Rao, G. N. Opt. Mater. 2021, 115, 111024. https://doi.org/10.1016/j.optmat.2021.111024.Search in Google Scholar

14. Dini, D., Calvete, M. J. F., Hanack, M. Chem. Rev. 2016, 116, 13043. https://doi.org/10.1021/acs.chemrev.Search in Google Scholar

15. Prasad, P. N., Williams, D. J. Introduction to nonlinear optical effects. In Molecules and Polymers; Wiley: New York, 1991.Search in Google Scholar

16. Shanmugam, G., Brahadeeswaran, S. Spectrochim. Acta, Part A 2012, 95, 177. https://doi.org/10.1016/j.saa.2012.04.100.Search in Google Scholar PubMed

17. Kuhn, H. J., Robillard, J. Nonlinear Optical Materials; CRC Press: USA, 1991.Search in Google Scholar

18. Ashwell, G. J., Hargreaves, R. C., Baldwin, C. E., Bahra, G. S., Brown, C. R. Improved second-harmonic generation from langmuireblodgett films of hemicyanine dyes. Nature 1992, 357, 393. https://doi.org/10.1038/357393a0.Search in Google Scholar

19. Gounden, D., Nombona, N., Zyl, W. E. Coord. Chem. Rev. 2020, 420, 213359–213390. https://doi.org/10.1016/j.ccr.2020.213359.Search in Google Scholar

20. Tamer, O., Avc, D., Atalay, Y. J. Mol. Struct. 2015, 1098, 12. https://doi.org/10.1016/j.molstruc.2015.05.035.Search in Google Scholar

21. Vivek, P., Murugakoothan, P. Opt. Laser Technol. 2013, 49, 288. https://doi.org/10.1016/j.optlastec.2013.01.015.Search in Google Scholar

22. Gebre, S. H. Synth. Commun. 2021, 51, 1669. https://doi.org/10.1080/00397911.2021.1900257.Search in Google Scholar

23. Verma, A., Joshi, S., Singh, D. J. Chem. 2013, 2013. https://doi.org/10.1155/2013/329412.Search in Google Scholar

24. Jiang, C., Chen, W., ZhengLu, W. H. H. Org. Biomol. Chem. 2019, 38, 38–55. https://doi.org/10.1039/C9OB01609K.Search in Google Scholar

25. Boyle, O., Banck, N. M., James, M., Morley, C., Vandermeersch, T., Hutchison, G. R. J. Cheminf. 2011, 3, 33. https://doi.org/10.1186/1758-2946-3-33.Search in Google Scholar PubMed PubMed Central

26. Frisch, M. J. Gaussian 09, Revision B.01; Gaussian Inc.: Wallingford CT, 2010.Search in Google Scholar

27. Rana, M., Singla, N., Chatterjee, A., Shukla, A., Chowdhury, P. Opt. Mater. 2016, 62, 80. https://doi.org/10.1016/j.optmat.2016.09.043.Search in Google Scholar

28. Joseyphus, R. S., Shiju, C., Joseph, J., Dhanaraj, C. J., Arish, D. Russ. J. Gen. Chem. 2014, 133, 149. https://doi.org/10.1016/j.saa.2014.05.050.Search in Google Scholar PubMed

29. Sebastianelli, P., Pereyra, R. G. Int. J. Quantum Chem. 2020, 120, 1–16. https://doi.org/10.1002/qua.26060.Search in Google Scholar

30. Lakhera, S., Devlal, K., Ghosh, A., Rana, M. Results Chem. 2021, 3, 100199. https://doi.org/10.1016/j.rechem.2021.100199.Search in Google Scholar PubMed PubMed Central

31. Costa, R. A., Pitt, P. O., Pinheiro, M. L. B., Oliveira, K. M. T., Saloma, K. S., Barison, A., Costa, E. V. Spectrochim. Acta, Part A 2017, 174, 94. https://doi.org/10.1016/j.saa.2016.11.018.Search in Google Scholar PubMed

32. Deák, P., Lorke, M., Aradi, B., Frauenheim, T. J. Appl. Phys. 2019, 126, 130901. https://doi.org/10.1063/1.5110643.Search in Google Scholar

33. Lakhera, S., Rana, M., Devlal, K., Celik, I., Yadav, R. Struct. Chem. 2022, 33. https://doi.org/10.1007/s11224-022-01882-7.Search in Google Scholar PubMed PubMed Central

34. Mermer, A., Bayrak, H., Alyar, S., Alagumuthu, M. J. Mol. Struct. 2020, 1208, 127891. https://doi.org/10.1016/j.molstruc.2020.127891.Search in Google Scholar

35. Lakhera, S., Devlal, K., Rana, M., Celik, I. Struct. Chem. 2022, 35. https://doi.org/10.1007/s11224-022-01981-5.Search in Google Scholar PubMed PubMed Central

36. Rana, M., Chatterjee, A., Chowdhury, P. AIP Conf. Proc. 2018, 020055, 1–4. https://doi.org/10.1063/1.5052124.Search in Google Scholar

37. Lakhera, S., Devlal, K., Ghosh, A., Rana, M. Chem. Pap. 2022, 76, 2759–2776. https://doi.org/10.1007/s11696-022-02067-6.Search in Google Scholar PubMed PubMed Central

38. Nataraj, A., Balachandran, V., Karthick, T. J. Mol. Struct. 2012, 1022, 94. https://doi.org/10.1016/j.molstruc.2012.04.056.Search in Google Scholar

39. Cyvin, S. J., Rauch, J. E., Decius, J. C. J. Chem. Phys. 1965, 43, 4083. https://doi.org/10.1063/1.1696646.Search in Google Scholar

40. Catalán, J., Pérez, P., Valle, J. C., de Paz, J. L. G., Kasha, M. PNAS 2002, 99, 5799. https://doi.org/10.1073/pnas.052703999.Search in Google Scholar PubMed PubMed Central

41. FT-IR Raman of 2-Imidazolecarboxaldehyde: Sigma Aldrich. https://www.sigmaaldrich.com/IN/en/product/aldrich/272000.Search in Google Scholar

42. Lakhera, S., Rana, M., Devlal, K. Opt. Quantum Electron. 2022, 54, 714. https://doi.org/10.1007/s11082-022-04118-4.Search in Google Scholar

43. UV-Vis Spectra of Imidazole-2-Carboxaldehyde: Wiley Science Solutions. https://spectrabase.com/spectrum/6Doe4Gz6Mfe.Search in Google Scholar

44. Vennila, P., Govindaraju, M., Venkatesh, G., Kamal, C. J. Mol. Struct. 2016, 1111, 151e156. https://doi.org/10.1016/j.molstruc.2016.01.068.Search in Google Scholar

45. Pullman, A., Pullman, B., Varadwaj, P. Molecules 2019, 24, 379. https://doi.org/10.3390/molecules24030379.Search in Google Scholar PubMed PubMed Central

46. Rana, M., Pooja, Chowdhury, P. AIP Conf. Proc. 2019, 2136, 040005. https://doi.org/10.1063/1.5120919.Search in Google Scholar

47. Wolinski, K., Hinton, J. F., Pulay, P. J. Am. Chem. Soc. 1990, 112, 8251. https://doi.org/10.1021/ja00179a005.Search in Google Scholar

48. Bauer, C., Freeman, R., Frenkiel*, T., Keeler, J., Shaka, A. J. J. Magn. Reson. 1984, 58, 442. https://doi.org/10.1016/0022-2364(84)90148-3.Search in Google Scholar

49. Günther, H. Nmr spectroscopy: basic principles, concepts and applications. In Chemistry; John Wiley & Sons: USA, 2013.Search in Google Scholar

50. 1H NMR and 13C NMR of 2-imidazolecarboxaldehyde; Wiley Science Solutions. https://spectrabase.com/spectrum/9QzbU8ZR5ii.Search in Google Scholar

51. Bredas, J. L., Adant, C., Tackx, P., Persoons, A., Pierce, B. M. Chem. Rev. 1994, 94, 243. https://doi.org/10.1021/cr00025a008.Search in Google Scholar

52. Liu, Y. Y., Wang, Z. H., Yang, J., Liu, B., Liu, Y. Y., Ma, J. F. CrystEngComm 2011, 13, 3811. https://doi.org/10.1039/C1CE05019B.Search in Google Scholar

53. Lin, Z., Wang, Z., Chen, C., Lee, M. H. J. Chem. Phys. 2003, 118, 2349. https://doi.org/10.1063/1.1533734.Search in Google Scholar

54. Anis, M., Muley, G. G., Hakeem, A., Shirsat, M. D., Hussaini, S. S. Opt. Mater. 2015, 46, 517. https://doi.org/10.1016/j.optmat.2015.04.064.Search in Google Scholar

55. Sun, Y., Chen, X., Sun, L., Guo, X., Lu, W. Chem. Phys. Lett. 2003, 381, 397. https://doi.org/10.1016/j.cplett.2003.09.115.Search in Google Scholar

56. Lakhera, S., Devlal, K., Rana, M., Dhuliya, V. Opt. Mater. 2022, 129, 112476. https://doi.org/10.1016/j.optmat.2022.112476.Search in Google Scholar

Received: 2021-11-16
Accepted: 2022-11-16
Published Online: 2023-05-23
Published in Print: 2023-07-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. International conference on energy and advanced materials
  4. Review
  5. Analysis of different printing technologies for metallization of crystalline silicon solar cells
  6. Original Papers
  7. DFT investigation of nonlinear optical response of organic compound: acetylsalicylic acid
  8. Experimental (FT‐Raman, FT‐IR and NMR) and theoretical (DFT) calculations, thermodynamic parameters, molecular docking and NLO (non-linear optical) properties of N‐(2,6‐dimethylphenyl)‐1‐piperazineacetamide
  9. Investigation of nonlinear optical responses of organic derivative of imidazole: imidazole-2-carboxaldehyde
  10. Mach–Zehnder interferometric analysis of planar polymer waveguide having an adlayer of WS2 for biosensing applications
  11. Linear mode conversion of terahertz radiation into terahertz surface plasmon wave over a graphene-free space interface
  12. Generation of second harmonic terahertz surface plasmon wave over a rippled graphene surface
  13. Investigation on structural, magnetic and optical properties of Sm–Co Co-substituted BiFeO3 samples
  14. Synthesis and optical characterization of Sr and Ti doped BiFeO3 multiferroics
  15. A comparative study on structural, magnetic and optical properties of rare earth ions substituted Bi1−xR x FeO3 (R: Ce3+, Sm3+ and Dy3+) nanoparticles
  16. Thermal, structural and optical properties of Pb1−xLa x TiO3 prepared using modified sol–gel route
  17. Biophotonic sensor design for the detection of reproductive hormones in females by using a 1D defective annular photonic crystal
  18. Spin density wave and antiferromagnetic transition in EuFe2As2: a high field transport and heat capacity study
  19. Impact of top metal electrodes on current conduction in WO3 thin films
  20. Atomistic simulation of Stoner–Wohlfarth (SW) particle
  21. Optimization of Coulomb glass system using quenching and annealing at small disorders
  22. Analytical modeling of adsorption isotherms for pristine and functionalized carbon nanotubes as gas sensors
  23. Effect of polymer blending on the electrochemical properties of porous PVDF/PMMA membrane immobilized with organic solvent based liquid electrolyte
  24. Structural, electronic, and thermal studies of Poly(ethylene oxide) based solid-state polymer electrolyte
  25. Milling route for the synthesis of nano-aluminium hydroxide for the development of low-density polymer composites
  26. Thermal properties of AlN (nano) filled LDPE composites
  27. Thermophysical characterization of mustard husk (MSH) and MSH char synthesized by the microwave pyrolysis of MSH
  28. Nano structured silver particles as green catalyst for remediation of methylene blue dye from water
  29. AlGaN/GaN heterostructures for high power and high-speed applications
  30. Role of interfacial electric field on thermal conductivity of In x Al1−xN/GaN superlattice (x = 0.17)
  31. Sensitivity assessment of dielectric modulated GaN material based SOI-FinFET for label-free biosensing applications
  32. Temperature-dependent analysis of heterojunction-free GaN FinFET through optimization of controlling gate parameters and dielectric materials
  33. Modelling of the exploding wire technique, a novel approach utilized for the synthesis of nanomaterials
  34. Rotating magnetic field configuration for controlled particle flux in material processing applications
  35. News
  36. DGM – Deutsche Gesellschaft für Materialkunde
Downloaded on 6.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8649/pdf
Scroll to top button