Home Hybrid optimization strategy for water cooling system: enhancement of photovoltaic panels performance
Article Open Access

Hybrid optimization strategy for water cooling system: enhancement of photovoltaic panels performance

  • Vijay Pal Singh EMAIL logo , Sandeep Kumar Arya and Ajay Shankar
Published/Copyright: January 15, 2024
Become an author with De Gruyter Brill

Abstract

Solar energy is the most effective substitute for fossil fuels when it comes to Produce electricity among the numerous renewable energy sources. The efficiency may drop as a result of overheating, and the PV cell may also be harmed. Therefore, increasing the output of a solar PV system at a lower cost is essential to improving its efficiency. Additionally, by using cooling methods, the PV cells’ lifetime is extended. By lowering the working temperature of a PV panel’s surface, you may increase efficiency and slow the thermal deterioration rate. This may be done by module cooling and lowering the heat that the PV cells generate while operating. Hence, an active cooling technology known as optimization-aided water spraying technique is employed to increase efficiency. This method enables the PV panels to provide their maximum output power while taking less time to drop down to a lower surface temperature. Beluga Whale assisted Jellyfish Optimization (BWJO) model is suggested as a means of achieving these goals. Finally, Simulink/MATLAB is used to implement the suggested method and optimize the PV system cooling. The performances of the two components were compared using a variety of metrics.

Nomenclature

PV/T

photovoltaic-thermal

NOCT

normal operating cell temperature

WCP

water-cooled plate

TEG

thermoelectric generator

PV

photovoltaic

PCM

phase change materials

CFD

Computational fluid dynamic

PEG-600

Polyethylene glycol 600

BWO

Beluga Whale Optimization

JFO

Jellyfish Optimization

BES

Bald Eagle Search

HBO

Honey Badger Optimization

WE-HHO

Weighted Exploration based Harris Hawks Optimization

MAT

Maximum Allowable Temperature

1 Introduction

Overconsumption of conventional fossil fuels at an alarming rate caused a shortage of energy and corresponding environmental issues of climate change (Chanphavong et al. 2022; Hadipour et al. 2021), emissions of greenhouse gases, and ozone depletion, which endanger human security and the world’s future. Therefore, there is a larger need for renewable and clean energy solutions to lessen our reliance on fossil fuels and the negative environmental effects that follow. Solar energy (Jonas Piotrowski, Godoy Simões, and Farret 2020; Sudhakar et al. 2021) is the most widely used and widely recognized renewable energy source because of its purity, sustainability, ease of accessibility, and limitless potential. Being able to heat and illuminate homes and other buildings (Fakouriyan, Saboohi, and Fathi 2018), the sun is considered the most potent renewable energy source. In addition, several industrial operations like the production of electricity and the heating of water employ solar energy.

Solar energy harvesting techniques (Murtadha and Hussein 2022; Murtadha et al. 2022), such as terrace water heating tubes, solar cells, and mirrors, are always changing and becoming more effective as technology advances. Solar radiation and additional energy sources, such as wave, wind, hydropower, as well as biomass, are credited with producing the majority of the renewable energy used on Earth. It is important to remember that just a small portion of the solar energy (Nabil and Mansour 2022) that enters the planet is used for energy production. Only humans can regulate the usage of solar energy once it has been transformed into electrical energy. The main applications of solar energy (Jafari 2021; Juřcevi et al. 2021) are cooling as well as heating systems in an architectural layout that is based on solar energy exploitation, potable water via disinfection and distillation operation, daylight exploitation, heating of water, solar cooking, as well as the maximum temperature for the industry.

Tiny rooftop or building-based PV systems (Mahmood and Aljubury 2022) can have the capability of a few to multiple tens of kilowatts, while huge utility-scale power plants can have capacities of numerous megawatts. The majority of PV systems currently are connected to the grid, whereas standalone systems only make up a minor percentage of the market. Diverse parameters, including incident solar insolation and running temperature, are needed to increase a PV panel’s efficiency (Yesildal et al. 2022). Due to this, when the PV panel is operating, a serious issue known as overheating arises (Madan and Kumar 2020). Therefore, various cooling techniques such as forced air, PCMs, water, thermoelectric cooling, transparent coating, and evaporative cooling are employed to combat the issue of overheating while increasing output power. By using a water tube that is mounted to the back of the PV panel, the MPP minimizes the temperature in a variety of circumstances to its usual operating point. As a result, it becomes highly challenging to regulate the PV surface temperature, necessitating the use of a passive or active cooling approach that eliminates heat transfer and reduces temperature by enhancing the PV cell’s effectiveness and performance. Therefore, via spraying water on the surface to decrease overheating, the water spraying cooling technology may offer improved output and efficiency. This paper proposes a novel model water cooling system with the following contributions:

  1. Developed the optimization-aided water spraying technique, an active coolant approach that reduces the operating temperature of a PV panel’s surface to maximize output power and shorten the cooling time.

  2. The novel BWJO-based model is compared with the conventional methods with a better convergence rate.

Organization of this proposed technique: Section 1 entails the part of the introduction. Section 2 entails the part of the overview. Section 3 entails the part of the proposed BWJO-aided water spraying technique. Section 4 entails the part of the result and discussion. Section 5 entails the part of the conclusion.

2 Literature review

Yildirim et al. (2022) suggested a thermal collector for the use of PV/T systems. The thermal as well as conversion to electricity efficiencies of the water-assisted PV/T system was achieved by coupling the thermal activity of the solar module with the specified cooling box flow. Under NOCT settings, a range of temperatures and inflow mass flow rates were simulated. The layers of solar modules were examined for the distribution of temperature and average temperature.

Fathi, Mahfoud Abderrezek, and Farid (2019) examined the effectiveness of front-side water cooling and the heating activity of solar panels. A freestanding cooling system was created as a prototype, and the energy calculation of this system aided in the creation of a large-scale implementation methodology. The first situation involved a uniform temperature distribution, whereas the second scenario involved a non-uniform temperature distribution under partial shadowing that produced a hot spot effect.

Liu et al. (2020) constructed a polycrystalline PV cell that was widely accessible and developed a hybrid Bi–Te/TEG system. A multi-layer composite infrastructure was created by incorporating the WCP into the PV/TEG system as a dependable cooling mechanism. As a consequence, power density as well as the efficiency of the composite systems was continuously observed by varying the light intensity and the TEG’s use area. It was discovered that the usage rate of residual heat may be raised if the distribution, as well as coverage of thermoelectric devices, were further adjusted.

Sultan et al. (2019) suggested a strategy based on a newly discovered metric known as the temperature-based PV efficiency difference factor that was determined and calculated, for evaluating the PV cooling methods. This element highlighted the pertinent variables that have an impact on efficiency and that result in an evaluation of the total PV cooling method. This metric may have an opportunity to be used as a way for producers and developers of such goods to assess the efficacy of PV coolers. It could show that the cooling method was contributing to a gain, loss, or neutral change in PV efficiency.

Khalili et al. (2023) merged the TEG layer with traditional PVT module layers to better utilise waste heat and boost efficiency. A cooling duct was present in the PVT-TEG unit’s base to lower the cell temperature. The system’s performance might fluctuate depending on the kind of fluid in the duct and its construction. To create three different cross-section designs, a hybrid nanofluid was used in place of pure water.

Firoozzadeh et al. (2020) centred on the investigation of PV/PCM systems’ highest operating temperatures with and without fans. Various melting values of PEG-600 and paraffin have been investigated experimentally as PCM under indoor conditions. Additionally, the impact of employing fns was researched. Since paraffin’s melting point was closer to the module temperature at this crucial temperature, the results suggested that employing it would be a superior method for regulating the PV cells temperature.

Wu et al. (2020) conducted a computational model based on CFD to study the impact of solar irradiation, ambient temperature, as well as wind speed on the efficiency as well as mono-crystalline cell temperature. The results of the simulation showed that using the applied cooling strategy for PV cells is more beneficial in maximum solar irradiation as well as hot ambient temperature. Additionally, it is found that using water to cool the cell beneath the investigated circumstances enables the cell’s temperature to be maintained within a range that precludes the decrease of its efficiency under high solar irradiation and ambient temperatures.

Belyamin et al. (2021) in order to anticipate distributions of temperature and different PV panel powers, second-degree polynomial algorithms were developed, whilst the linear algorithms were utilized to analyse the relationship between solar power input and different PV panel powers. The findings indicated that the highest electrical, thermal, and power loss values were attained at temperatures near midday. A PV panel research using two distinct cooling water flow rates confirmed the identical PV panel power value measured at two various temperatures.

2.1 Review

One of the primary drawbacks of active air cooling is that it cannot work well at high temperatures since there might not be enough temperature differential between the ambient air as well as panel temperature to provide enough cooling. Some of the problems that researchers had with the available techniques included in the review Table 1 were: Lack of efficient electrical and thermal conversion processes while using a 2-D thermal model (Yildirim et al. 2022). The water flow rate optimization (Fathi, Mahfoud Abderrezek, and Farid 2019) proved difficult. It was difficult to calculate the link between the coverage area of TEG (Liu et al. 2020) and total effectiveness and cost. Increasing the temperature of the solar cell (Sultan, Tso, and Efzan 2019) proved difficult. Influence of inlet velocity on the ideal duct geometry (Khalili, Sheikholeslami, and Momayez 2023). Entropy generation was difficult while using the PV/PCM model (Firoozzadeh, Shiravi, and Shafee 2020). Consumption of fossil fuels in the CFD model (Wu et al. 2020) is on the rise. The second-degree polynomial technique (Belyamin et al. 2021) has an overfitting issue.

Table 1:

State-of-the-art methods used by researchers with their features and challenges.

Author [citation] Methods Features Challenges
Yildirim et al. (2022) 2-D thermal model Huge potential to spread awareness of solar energy and also capture electrical as well as thermal energy Lack of efficient electrical and thermal conversion processes
Fathi, Mahfoud Abderrezek, and Farid (2019) PV panel and front side heating behaviour analysis model Advantageous when employing a PV panels string with at least three panels. The water flow rate optimization proved difficult.
Liu et al. (2020) PV-TEG model The rate of use of leftover heat could be boosted. It was difficult to calculate the link between coverage area of TEG and total effectiveness and cost.
Sultan et al. (2019) Temperature assisted PV efficiency difference factor model Identified the important variables that have an impact on efficiency Increasing the temperature of the solar cell proved difficult.
Khalili et al. (2023) PVT-TEG model Improved electrical efficiency Influence of inlet velocity on the ideal duct geometry
Firoozzadeh et al. (2020) PV/PCM model Improved energy efficiency Entropy generation was difficult
Wu et al. (2020) CFD model Effective in improving cell efficiency Consumption of fossil fuels was on the rise.
Belyamin et al. (2021) Second-degree polynomial technique Gives a new viewpoint on how to handle solar energy for both household and business uses. Overfitting issue

3 Active coolant approach: system model

3.1 PV cell temperature effects

The PV cell’s equivalent circuit including the current input in parallel having shunt resistance as well as a single diode and also series resistance is shown in Figure 1. In Eq. (1), the single diode PV cell I–V features are determined, in which G s states solar radiance, I 0 states of diode saturation current, I PV states photovoltaic current, q states electron variation, K states Boltzman’s constant, a states the diode ideal factor, T states cell temperature, R s states series resistance (Taqwa et al. 2020) as well as R sh states shunt resistance.

(1) I = I P V I 0 [ exp ( q ( V + I R s ) a K T ) 1 ] ( V + I R s R s h )

Figure 1: 
Single diode PV cell: equivalent circuit.
Figure 1:

Single diode PV cell: equivalent circuit.

KC200GT, a maximum-efficiency Kyocera PV module, is utilized in the suggested system. Physical as well as electrical features of the PV module are represented in Table 2.

Table 2:

PV module (Mohamed et al. 2021): physical as well as electrical features.

Electrical features
Model KC 200GT
Maximum power current (I mp) 7.61 A
Series resistance (R s ) 0.221
Open circuit voltage (V oc) 32.9 V
Shunt resistance (R sh ) 415.405
Maximum power voltage (V mp) 26.3 V
Nominal operating cell temperature 47 °C
Maximum system voltage (V max) 600 V
Short circuit current (I sc) 8.21 A
Power rating (P max) 200 W

Temperature coefficients

Temperature coefficient: I sc 3.18 × 10−3 A/°C
Temperature coefficient: V oc −1.23 × 10−1 V/°C

Physical features

PANEL dimension (mm × mm × mm) 1425 × 990 × 36
Cells count per module 54
Weight of panel 18.5 Kg
Type of cell Multi crystal

3.2 Overheating on PV efficiency: effects

The main problem that must be addressed during the operation of the PV panel is overheating or scalding produced by the excess solar insolation as well as maximized ambient temperature, which in turn affects the efficiency of the panel to a maximum extent (Elnozahy et al. 2015; Moharram et al. 2013). As a PV cell’s temperature rises, its highest output power gradually decreases (Tabaei and Ameri 2015). Thus, it is evident that the excessive heat also has an impact on the panel’s output.

3.3 Water cooling system

The solar cells on PV panels are cooled using a water-cooling system; as a result, the warm air or water that exits the panels can be used for household services, such as home heating (Makki, Omer, and Sabir 2015; Moharram et al. 2013). Yet, under cooling the temperature of the surface of solar PV panel having water maximize the solar cells output power via 50 percent and it does not allow the rise of floor temperature of sun cells. The solar panel is used with water as a cooling medium to boost efficiency. One of the solar panels is left uncooled during the experiment, while the other is cooled using a pump-powered water spraying approach. Delivering a significant volume of water to the device is the water pump’s key function. Additionally, this might be done by pulling water out of the tank and supplying it to the sprinkler (Mohamed et al. 2021; Odeh and Behnia 2009). Additionally, it may provide water by raising the cost of fluid flow from lowest to highest strain heads. As a result, a water distribution in a symmetrical way at the bottom of solar panels is required to properly carry out the cleaning procedure and remove any type of dirt and other deposits (El-Shobokshy and Hussein 1993). It was found that cooled solar panels produce more energy than uncooled solar panels. Thus, by boosting the PV module power, the suggested water-cooling technology may also decrease overheating over the surface of the PV panel. Eq. (2) provides the amount of electricity needed by the pump to cool the panel, in which Q states the rate of water flow as well as P states water pressure.

(2) Pumping Power = Q × P

3.4 Optimization-assisted PV panel cooling by BWJO model

3.4.1 Solution encoding and objective function

In order to achieve a precise cooling effect the proposed work seeks to reduce the time required to cool down the PV panel surface by 2 °C (Moharram et al. 2013).

The main objectives of this study are as follows:

  1. The first and foremost goal of this work is to raise the current offered by the PV panel,

  2. The second goal aims to increase the PV panel’s output power. The PV panel’s output power is increased after cooling, which lowers the cost and lowers the power required by the water spraying mechanism.

3.4.2 The proposed BWJO model

This section provides an overview of BWJO, which draws its inspiration from the beluga whales’ swimming, hunting, and whale-falling behaviours. Because of the population-assisted BWJO model, considering beluga whale is the search agent while the candidate solution is considered as the beluga whale which gets updated in the optimization process. The proposed optimization-aided water spraying technique is an active coolant approach that decreases the operating temperature of a PV panel’s surface to increase the output power and minimize the cooling time. Besides decreasing the working temperature of the PV panel’s surface, the efficiency of the proposed method is increased and the thermal deterioration rate can be lowered. Instead of using the random population in Eq. (3), the proposed logic is used for JFO initialization in the BWO model, in which η ∈ 4.0, i = 1, 2, … , pop.

(3) X i = L b + X i Logistic × ( u b l b ) ; X i + 1 Logistic = η X i ( 1 X i ) ; X i Logistic = rand ( 0,1 )

The balancing factor B fac , defined using Eq. (4), determines whether the BWO algorithm switches from exploration to exploitation, in which T, T max states current and maximum iteration. Beluga whale swim activity is taken into consideration when establishing the BWO exploring phase. The social-sexual behaviours of beluga whales in caring for people have been observed, and these behaviours can be displayed in a variety of postures, including the pair swim in which two beluga whales move very closely together in a coordinated or mirror image. As a result, the locations of search agents are established by the beluga whale couple swim, and the locations of beluga whales are modified in accordance with Eq. (5).

(4) B f a c = B 0 ( 1 T / T max ( ) )

(5) { X i , j T + 1 = X i , p j T + ( X r , p 1 T X i , p 1 T ) ( 1 + r 1 ) sin ( 2 π r 2 ) ; j = e v e n X i , j T + 1 = X i , p j T + ( X r , p 1 T X i , p 1 T ) ( 1 + r 1 ) cos ( 2 π r 2 ) ; j = o d d

The modified position reveals the beluga whales’ synchronized or mirror movements while swimming or diving, depending on the dimension determined by odd as well as even numbers. The exploration phase uses two different random numbers, r 1, r 2, to improve the randomized operators. The predatory behaviour of beluga whales serves as inspiration for the BWJO exploitation phase. Depending on the closeness of other beluga whales, beluga whales may move as well as forage together. As a result, beluga whales engage in hunting by discussing job postings with one another and choosing the best candidate. The Levy flying approach is applied to aid convergence during the opportunistic phase of the BWJO. We assumed that they could use the Levy flying method L F = 0.05 × u × σ | v | 1 / β to capture their prey, and the numerical representation is represented as in Eq. (6), in which u, v states normally distributed random value, C 1 = 2 r 4 ( 1 T T max ( ) ) states randomized jump strength, and β ∈ 1.5 states default constant. According to our proposed model, by hybridizing the JFO (Chou and Truong 2020) and BWO (Zhong and Meng 2022) update equation, we obtain the new exploitation phase position update equation of BWJO expressed as in Eqs. (8)(12).

(6) X i T + 1 = r 3 X best T r 4 X i T + C 1 × L F × ( X r T X i T )

(7) X i ( t + 1 ) = X i ( t ) + Ste p

(8) X i ( t + 1 ) = r 3 X best T r 4 [ X i ( t + 1 ) Ste p ] + C 1 × L F × ( X r T [ X i ( t + 1 ) X i T S t e p ] )

(9) X i ( t + 1 ) = r 3 X best T r 4 X i ( t + 1 ) + r 4 S t e p + C 1 × L F × X r T C 1 × L F × X i ( t + 1 ) + C 1 × L F × Ste p

(10) X i ( t + 1 ) + r 4 X i ( t + 1 ) + C 1 × L F × X i ( t + 1 ) = r 3 X best T + r 4 S t e p + C 1 × L F × X r T + C 1 × L F × Ste p

(11) X i ( t + 1 ) [ 1 + r 4 + C 1 × L F ] = r 3 X best T + r 4 S t e p + C 1 × L F × [ X r T + Ste p ]

(12) X i ( t + 1 ) = r 3 X best T + r 4 S t e p + C 1 × L F × [ X r T + Ste p ] [ 1 + r 4 + C 1 × L F ]

The vast majority of beluga whales are clever, and they can communicate with one another in order to provide information that can assist them escape threats. But some of the beluga whales have perished and are buried beneath the surface of the ocean. The phenomenon referred to as “whale fall” provides food for a wide variety of animals. We presume that those beluga whales are either gone or have been shot at, plunging into the depths of the ocean. To keep the population number consistent, beluga whale locations along with a whale’s fall distance are utilized to establish the current position. The mathematical formulation is given in Eq. (13), in which C 2 = 2W f  × n, W f = 0.1 0.05 T / T max states whale fall probability. As per our proposed model, X Step is calculated as time-varying scalar factor (Sharma et al. 2019) in Eq. (14).

(13) X i T + 1 = r 5 X i T r 6 X r T + r 7 X Step ; X Step = ( u b l b ) exp ( C 2 T / T max ( ) )

(14) X Step = ( u b l b ) × ( T max ( ) ) T

Algorithm 1:

Pseudocode of proposed BWJO model.

Initialize the population of BWJO using Eq. (3) as per the proposed model
While T ≤ T max do
Achieve W f and achieve B fac using Eq. (4)
for X i (each beluga whale) do
if B fac (i) > 0.5
Create P j (j = 1, 2, … , d) randomly from the dimension
Select X r (beluga whale) in a random way
Updating of i th beluga whale novel location using Eq. (5)
else
if B fac (i) ≤ 0.5
Updating C 1 and computing of L F
Updating i th beluga whale novel location using Eq. (12) in accordance with the proposed model
else if
Identify novel position boundary and calculate fitness
end for
for each X i do
if B fac (i) ≤ W f
Updating of C 1 (step factor)
Calculation of X Step (step size) as per Eq. (14) in accordance with the proposed model
Updating of i th beluga whale novel location using Eq. (13)
Identify novel position boundary and calculate fitness
end if
end for
Identify P * (present best solution)
T = T + 1
end while

4 Results analysis on BWJO for water cooling system

4.1 Experimental setup

The BWJO-based water cooling system was implemented in MATLAB. Moreover, Table 3 shows the system configuration. To demonstrate the effective water-cooling performance of the BWJO, it is compared with the traditional strategies, including, BES, HBO, JS, BWO and WE-HHO (Singh 2022). In addition, the outcome of PV power is calculated for four distinctive scenarios with MAT of 40 °C, 45 °C, 50 °C, and 55 °C. In each scenario, the PV panel is permitted to reach the MAT in an overheated state before being allowed to cool down its surface at a rate of cooling of roughly 2 °C (Moharram et al. 2013). Additionally, it states that the greatest power rises with the water cooling model while the temperature lowers. Further, by employing water as a medium of cooling, the adverse effect of temperature at module output might be lessened. Table 4 shows the experimental parameters.

Table 3:

System configuration.

Device specification
Processor “11th Gen Intel (IR) core(TM) i5-1135G7 @ 2.40 GHz 2.42 GHz”
Installed RAM “16.0 GB (15.7 GB usable)”

Software specification

MATLAB version 2021b
Table 4:

Experimental parameters.

PV cell parameters
Ambient temperature 326.15
Nominal short circuit current 8.21
Nominal open-circuit voltage 32.9
Number of solar cells or panels 54
Boltzmann constant 1.38e−23
Elementary charge 1.6e−19
Number of diodes 2

Algorithm parameters

Honey Badger algorithm Beta β = 6
C = 2
FireFly α = 0.5
β min = 0.5
γ gamma = 1
Beluga whale optimization alpha = 3/2
KD = 0.05
Genetic algorithm Crossover rate = 0.6
Mutation sigma = 0.1
Elite = 2
Particle swarm optimization Acceleration constants c1 = 2; c2 = 2
Maximum weight = 0.9
Minimum weight = 0.1

4.2 Assessment of BWJO and conventional schemes: varying MAT

Scenario 1 is a representation of the PV model at 40 °C. The greatest power modification of the PV model before and after 40 °C cooling is illustrated in Table 5. In addition, when cooling a PV panel, the BWJO method offers an average difference of 10 W in comparison to BES, HBO, JS, BWO, and WE-HHO, and its highest possible PV power will be 260 W.

Table 5:

Scenario 1-PV model’s maximum power modification before and after cooling at 40 °C.

Methods Before cooling After cooling
BES 135.5100 123.1400
HBO 135.5100 125.7500
JS 135.5100 134.3800
BWO 135.5100 120.8600
WE-HHO 135.5100 144.4300
BWJO 135.5100 144.7800

Scenario 2 is a representation of the PV model at 45 °C. The PV module’s maximum power modifications before and after cooling at 45 °C are represented in Table 6. In comparison to BES, HBO, JS, BWO, and WE-HHO during PV panel cooling, the BWJO method offers an average difference of 40 W, and the highest PV power output will be 280 W.

Table 6:

Scenario 2-PV model’s maximum power modification before and after cooling to 45 °C.

Methods Before cooling After cooling
BES 142.3400 115.5200
HBO 142.3400 129.8600
JS 142.3400 114.5900
BWO 142.3400 110.3900
WE-HHO 142.3400 129.8600
BWJO 142.3400 130.2300

Scenario 3 is a representation of the PV model at 50 °C. The greatest power variation of the PV module before and after 50 °C cooling is illustrated in Table 7. In addition, when cooling a PV panel, the BWJO method offers an average difference of 20 W in comparison to BES, HBO, JS, BWO, and WE-HHO, and the highest possible PV power will be 280 W.

Table 7:

Scenario 3-PV model’s maximum power modification before and after cooling to 50 °C.

Methods Before cooling After cooling
BES 128.8400 115.6700
HBO 128.8400 99.7770
JS 128.8400 118.6500
BWO 128.8400 110.9100
WE-HHO 128.8400 118.6500
BWJO 128.8400 118.9900

Scenario 4 is a representation of the PV model at 55 °C. The PV module’s maximum power modifications before and after cooling at 55 °C are represented in Table 8. In addition, when compared to BES, HBO, JS, BWO, and WE-HHO during PV panel cooling, the BWJO method offers an average difference of 40 W, and the highest PV output power will be 300 W.

Table 8:

Scenario 4-PV model’s maximum power modification before and after cooling to 55 °C.

Methods Before cooling After cooling
BES 131.0600 107.5200
HBO 131.0600 84.2980
JS 131.0600 122.3900
BWO 131.0600 84.2980
WE-HHO 131.0600 122.3800
BWJO 131.0600 122.7400

4.3 Convergence evaluation on BWJO and conventional schemes for water cooling system

Figure 2 explains the convergence analysis on BWJO is contrasted with the BES, HBO, JS, BWO and WE-HHO for the water cooling system. Here, the analysis is carried out for four distinct temperatures, such as 40 °C, 45 °C, 50 °C, and 55 °C. For the efficacious water cooling system, the model should acquire a lower fitness value with quicker convergence. Similarly, at 40 °C, the BWJO converges faster than the BES, HBO, JS, BWO and WE-HHO as well and it obtained a minimal fitness value ranging from −6550 to −6000. In addition, the BWJO accomplished the lowest fitness rate of 0.4128 at 55 °C, though the BES, HBO, JS, BWO and WE-HHO obtained higher fitness values with slower convergence. Similarly, the superiority of the BWJO method is revealed in the respective graphs for the other scenarios too.

Figure 2: 
Convergence study on BWJO and conventional schemes for water cooling system at varied allowable temperatures. (a) 40 °C, (b) 45 °C, (c) 50 °C and (d) 55 °C.
Figure 2:

Convergence study on BWJO and conventional schemes for water cooling system at varied allowable temperatures. (a) 40 °C, (b) 45 °C, (c) 50 °C and (d) 55 °C.

4.4 Analysis of optimized results for BWJO and conventional schemes

The evaluation of BWJO strategy and conventional approaches (BES, HBO, JS, BWO and WE-HHO) about average power, best fitness, optimal solution and computational time for distinct scenarios at 40 °C, 45 °C, 50 °C and 55 °C as well as the outcomes are displayed from Tables 912. Regarding Table 8, the BWJO acquired the average power of 144.7800, meanwhile, the traditional schemes recorded the least average power rate, notably, BES = 123.1400, HBO = 125.7500, JS = 134.3800, BWO = 120.8600 and WE-HHO = 144.4300, respectively. In addition, for the 55 °C, the BWJO offered the best fitness of 0.4115, whereas the BES is 0.4140, HBO is 0.4134, JS is 0.4166 and WE-HHO is 0.4124, respectively. Moreover, the optimal solution and computation time attained using the BWJO scheme is 6.0477 and 467.1400 for the 45 °C.

Table 9:

Optimized results for BWJO and conventional schemes at 40 °C.

Methods Average power Best fitness Optimal solution Computational time
BES 123.1400 −6091.1000 9.2177 1062.6000
HBO 125.7500 −5966.8000 8.9477 907.3500
JS 134.3800 −6028.9000 8.0476 950.2400
BWO 120.8600 −5904.6000 9.0356 848.4000
WE-HHO 144.4300 −6215.4000 9.2812 706.9900
BWJO 144.7800 −6339.7000 9.2042 467.1400
Table 10:

Optimized results for BWJO and conventional schemes at 45 °C.

Methods Average power Best fitness Optimal solution Computational time
BES 115.5200 0.6245 6.0477 1062.6000
HBO 129.8600 0.6222 6.0477 963.4000
JS 114.5900 0.6277 6.0476 1008.9000
BWO 110.3900 0.6249 6.0356 900.8100
WE-HHO 129.8600 0.6207 6.0512 750.6600
BWJO 130.2300 0.6197 6.0477 467.1400
Table 11:

Optimized results for BWJO and conventional schemes at 50 °C.

Methods Average power Best fitness Optimal solution Computational time
BES 115.6700 0.6243 5.4386 1059.2000
HBO 99.7770 0.6222 5.4386 832.2700
JS 118.6500 0.6300 5.4387 871.6100
BWO 110.9100 0.6222 5.4391 778.2000
WE-HHO 118.6500 0.6206 5.4375 648.4900
BWJO 118.9900 0.6194 5.4386 474.9800
Table 12:

Optimized results for BWJO and conventional schemes at 55 °C.

Methods Average power Best fitness Optimal solution Computational time
BES 107.5200 0.4140 8.9022 2092.0000
HBO 84.2980 0.4134 8.9022 2190.9000
JS 122.3900 0.4166 8.9022 1956.1000
BWO 84.2980 0.4134 8.8895 2054.6000
WE-HHO 122.3800 0.4124 8.9010 1630.0000
BWJO 122.7400 0.4115 8.9021 493.1300

5 Conclusions

By using cooling techniques, the PV cell lifetime was extended, boosting the module’s output power. By lowering the working temperature of a PV panel’s surface, we might maximize efficiency and slow the thermal deterioration rate. This might be done by module cooling and lowering the heat that the PV cells generate while operating. Because of this, an active cooling technology known as an optimization-aided water spraying technique was used to increase efficiency. This technique enabled the PV panels to provide their maximum output power while taking less time to drop down to a lower surface temperature. BWJO was employed as a means of achieving these goals. Finally, Simulink/MATLAB was used to implement the proposed method and optimize the PV system cooling. The performances of the two components were compared using a variety of metrics, including convergence accuracy, solution quality and net power generated after cooling.


Corresponding author: Vijay Pal Singh, Department of Electronics and Communication Engineering, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India, E-mail:

Acknowledgements

I would like to express my very great appreciation to the co-authors of this manuscript for their valuable and constructive suggestions during the planning and development of this research work.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have made substantial contributions to conception and design, revising the manuscript, and the final approval of the version to be published. Also, all authors agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

  4. Competing interests: The authors declare no conflict of interest.

  5. Research funding: This research did not receive any specific funding.

  6. Data availability: Not applicable.

References

Belyamin, Belyamin, Mohamad Ali Fulazzaky, Martin Roestamy, and Rahmat Subarkah. 2021. “Influence of Cooling Water Flow Rate and Temperature on the Photovoltaic Panel Power.” Energy, Ecology and Environment 1–18, https://doi.org/10.1007/s40974-021-00223-4.Search in Google Scholar

Chanphavong, Lemthong, Vongsavanh Chanthaboune, Sounthisack Phommachanh, Xayalak Vilaida, and Phetsaphone Bounyanite. 2022. “Enhancement of Performance and Exergy Analysis of a Water-Cooling Solar Photovoltaic Panel.” Total Environment Research Themes 3–4. https://doi.org/10.1016/j.totert.2022.100018.Search in Google Scholar

Chou, Jui-Sheng, and Dinh-Nhat Truong. 2020. “A Novel Metaheuristic Optimizer Inspired by Behavior of Jellyfish in Ocean.” Applied Mathematics and Computation 389: 1–47, https://doi.org/10.1016/j.amc.2020.125535.Search in Google Scholar

Elnozahy, A., A. K. A. Rahman, A. H. H. Ali, M. Abdel-Salam, and S. Ookawara. 2015. “Performance of a PV Module Integrated With Standalone Building in Hot Arid Areas as Enhanced by Surface Cooling and Cleaning.” Energy and Buildings 88: 100–9. https://doi.org/10.1016/j.enbuild.2014.12.012.Search in Google Scholar

El-Shobokshy, Mohammad S., and Fahmy M. Hussein. 1993. “Effect of Dust With Different Physical Properties on the Performance of Photovoltaic Cells.” Solar Energy 51 (6): 505–11. https://doi.org/10.1016/0038-092X(93)90135-B.Search in Google Scholar

Fakouriyan, Samaneh, Yadollah Saboohi, and Amorhossein Fathi. 2018. “Experimental Analysis of a Cooling System Effect on Photovoltaic Panels’ Efficiency and its Preheating Water Production.” Renewable Energy 134: 1362–8, https://doi.org/10.1016/j.renene.2018.09.054.Search in Google Scholar

Fathi, Mohamed, Mahfoud Abderrezek, and Djahli Farid. 2019. “Heating behavior of photovoltaic panels and front side water cooling efficiency.” Applied Solar Energy 55: 327–39.10.3103/S0003701X19050050Search in Google Scholar

Firoozzadeh, Mohammad, Amir Hossein Shiravi, and Mojtaba Shafee. 2020. “Thermodynamics Assessment on Cooling Photovoltaic Modules by Phase Change Materials (PCMs) in Critical Operating Temperature.” Journal of Thermal Analysis and Calorimetry 144: 1239–51, https://doi.org/10.1007/s10973-020-09565-3.Search in Google Scholar

Hadipour, Amirhosein, Mehran Rajabi Zargarabadi, and Saman Rashidi. 2021. “An Efficient Pulsed-Spray Water Cooling System for Photovoltaic Panels: Experimental Study and Cost Analysis.” Renewable Energy 164: 867–75, https://doi.org/10.1016/j.renene.2020.09.021.Search in Google Scholar

Jafari, Rahim. 2021. “Optimization and Energy Analysis of a Novel Geothermal Heat Exchanger for Photovoltaic Panel Cooling.” Solar Energy 226: 122–33, https://doi.org/10.1016/j.solener.2021.08.046.Search in Google Scholar

Jonas Piotrowski, Leonardo, Marcelo Godoy Simões, and Felix Alberto Farret. 2020. “Feasibility of Water-Cooled Photovoltaic Panels Under the Efficiency and Durability Aspects.” Solar Energy 2017: 103–9.10.1016/j.solener.2020.06.087Search in Google Scholar

Juřcevi, Mǐso, Sandro Nǐzeti, Ivo Mariníc-Kragi, Duje Coko, Müslüm Arıcı, Effrosyni Giama, and Agis Papadopoulos. 2021. “Investigation of Heat Convection for Photovoltaic Panel Towards Efficient Design of Novel Hybrid Cooling Approach With Incorporated Organic Phase Change Material.” Sustainable Energy Technologies and Assessments 47: 1–12.10.1016/j.seta.2021.101497Search in Google Scholar

Khalili, Z., M. Sheikholeslami, and Ladan Momayez. 2023. “Hybrid Nanofuid Fow Within Cooling Tube of Photovoltaic-Thermoelectric Solar Unit.” Scientifc Reports 13: 1802–7, https://doi.org/10.1038/s41598-023-35428-6.Search in Google Scholar PubMed PubMed Central

Liu, Zekun, Shuang Yuan, Yi Yuan, Guojian Li, and Qiang Wang. 2020. “A Thermoelectric Generator and Water-Cooling Assisted High Conversion Efficiency Polycrystalline Silicon Photovoltaic System.” Frontiers in Energy 15: 358–66, https://doi.org/10.1007/s11708-020-0712-1.Search in Google Scholar

Madan, Charan Jeet, and Naresh Kumar. 2020. “Enhancement of Low Voltage Ride-Through Ability of the Photovoltaic Array Aided by the MPPT Algorithm Connected With Wind Turbine.” Data Technologies and Applications 54 (4): 327–38. https://doi.org/10.1108/dta-09-2019-0176.Search in Google Scholar

Mahmood, Deyaa M. N., and Issam M. Ali Aljubury. 2022. “Experimental Investigation of a Hybrid Photovoltaic Evaporative Cooling (PV/EC) System Performance Under Arid Conditions.” Results in Engineering 15. https://doi.org/10.1016/j.rineng.2022.100618.Search in Google Scholar

Makki, A., S. Omer, and H Sabir. 2015. “Advancements in Hybrid Photovoltaic Systems for Enhanced Solar Cells Performance.” Renewable and Sustainable Energy Reviews 41: 658–84. https://doi.org/10.1016/j.rser.2014.08.069.Search in Google Scholar

Mohamed, Ahmed T., Mahmoud F. Mahmoud, R. A. Swief, Lobna A. Said, and Ahmed G. Radwan. 2021. “Optimal Fractional-Order PI With DC-DC Converter and PV System.” Ain Shams Engineering Journal 12 (2): 1895–906. https://doi.org/10.1016/j.asej.2021.01.005.Search in Google Scholar

Murtadha, Talib K., and Ali Adil Hussein. 2022. “Optimization the Performance of Photovoltaic Panels Using Aluminum-Oxide Nanofluid as Cooling Fluid at Different Concentrations and One-Pass Flow System.” Results in Engineering 15. https://doi.org/10.1016/j.rineng.2022.100541.Search in Google Scholar

Moharram, K. A., A.-E.Mohamed, K.Hamdy, and El-S.Hisham. 2013. “Enhancing the Performance of Photovoltaic Panels by Water Cooling.” Ain Shams Engineering Journal 4: 869–77, https://doi.org/10.1016/j.asej.2013.03.005.Search in Google Scholar

Murtadha, Talib K., Ali A. dil Hussein, Ahmed A. H. Alalwany, Saad S. Alrwashdeh, and Ala’a M. Al-Falahat. 2022. “Improving the Cooling Performance of Photovoltaic Panels by Using Two Passes Circulation of Titanium Dioxide Nanofluid.” Case Studies in Thermal Engineering 36. https://doi.org/10.1016/j.csite.2022.102191.Search in Google Scholar

Nabil, Tamer, and Tamer M. Mansour. 2022. “Augmenting the Performance of Photovoltaic Panel by Decreasing its Temperature Using Various Cooling Techniques.” Results in Engineering 15. https://doi.org/10.1016/j.rineng.2022.100564.Search in Google Scholar

Odeh, Saad, and Masud Behnia. 2009. “Improving Photovoltaic Module Efficiency Using Water Cooling.” Heat Transfer Engineering 30 (6): 499–505. https://doi.org/10.1080/01457630802529214.Search in Google Scholar

Sharma, Prashant, Harish Sharma, Sandeep Kumar, and Jagdish Chand Bansal. 2019. “A Review on Scale Factor Strategies in Differential Evolution Algorithm.” In Advances in Intelligent Systems and Computing, 817. Egypt: © Springer Nature Singapore Pte Ltd.10.1007/978-981-13-1595-4_73Search in Google Scholar

Singh, Vijay Pal. 2022. “An Optimized Water Cooling System for Enhancing the Performance of Photovoltaic Panels.” Cybernetics and Systems.Search in Google Scholar

Sudhakar, P., R. Santosh, B. Asthalakshmi, G. Kumaresan, and R. Velraj. 2021. “Performance Augmentation of Solar Photovoltaic Panel through PCM Integrated Natural Water Circulation Cooling Technique.” Renewable Energy 172: 1433–48, https://doi.org/10.1016/j.renene.2020.11.138.Search in Google Scholar

Sultan, Sakhr M., C. P. Tso, and M. N. Ervina Efzan. 2019. “A Proposed Temperature-Dependent Photovoltaic Efficiency Difference Factor for Evaluating Photovoltaic Module Cooling Techniques in Natural or Forced Fluid Circulation Mode.” Arabian Journal for Science and Engineering 44: 8123–8, https://doi.org/10.1007/s13369-019-03932-5.Search in Google Scholar

Tabaei, H., and M. Ameri. 2015. “Improving the Effectiveness of a Photovoltaic Water Pumping System by Using Booster Reflector and Cooling Array Surface by a Film of Water.” Iranian Journal of Science and Technology Transactions of Mechanical Engineering 39: 51–60.Search in Google Scholar

Taqwa, Ahmad, Tresna Dewi, R. D. Kusumanto, and Carlos R. Sitompul. 2020. “Automatic Cooling of a PV System to Overcome Overheated PV Surface in Palembang.” In Journal of Physics: Conference Series, 1500. IOP Publishing.10.1088/1742-6596/1500/1/012013Search in Google Scholar

Wu, Guanghua, Qiang Liu, Jun Wang, and Bohua Sun. 2020. “Thermal Analysis of Water-Cooled Photovoltaic Cell by Applying Computational Fuid Dynamics.” Journal of Thermal Analysis and Calorimetry 144: 1741–7, https://doi.org/10.1007/s10973-020-10283-z.Search in Google Scholar

Yesildal, Faruk, Ahmet Numan Ozakin, and Kenan Yakut. 2022. “Optimization of Operational Parameters for a Photovoltaic Panel Cooled by Spray Cooling.” Engineering Science and Technology, an International Journal 25: 1–8, https://doi.org/10.1016/j.jestch.2021.04.002.Search in Google Scholar

Yildirim, Mehmet Ali, Artur Cebula, and Maciej Sułowicz. 2022. “A Cooling Design for Photovoltaic Panels E WATER-Based PV/T System.” Energy 256.10.1016/j.energy.2022.124654Search in Google Scholar

Zhong, Changting, and Z. Meng. 2022. “Beluga Whale Optimization: A Novel Nature-Inspired Metaheuristic Algorithm.” Knowledge-Based Systems 24: 13003–35, https://doi.org/10.1016/j.knosys.2022.109215.Search in Google Scholar

Received: 2023-07-24
Accepted: 2023-09-06
Published Online: 2024-01-15

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Solar photovoltaic-integrated energy storage system with a power electronic interface for operating a brushless DC drive-coupled agricultural load
  2. Analysis of 1-year energy data of a 5 kW and a 122 kW rooftop photovoltaic installation in Dhaka
  3. Reviews
  4. Real yields and PVSYST simulations: comparative analysis based on four photovoltaic installations at Ibn Tofail University
  5. A comprehensive approach of evolving electric vehicles (EVs) to attribute “green self-generation” – a review
  6. Exploring the piezoelectric porous polymers for energy harvesting: a review
  7. A strategic review: the role of commercially available tools for planning, modelling, optimization, and performance measurement of photovoltaic systems
  8. Comparative assessment of high gain boost converters for renewable energy sources and electrical vehicle applications
  9. A review of green hydrogen production based on solar energy; techniques and methods
  10. A review of green hydrogen production by renewable resources
  11. A review of hydrogen production from bio-energy, technologies and assessments
  12. A systematic review of recent developments in IoT-based demand side management for PV power generation
  13. Research Articles
  14. Hybrid optimization strategy for water cooling system: enhancement of photovoltaic panels performance
  15. Solar energy harvesting-based built-in backpack charger
  16. A power source for E-devices based on green energy
  17. Theoretical and experimental investigation of electricity generation through footstep tiles
  18. Experimental investigations on heat transfer enhancement in a double pipe heat exchanger using hybrid nanofluids
  19. Comparative energy and exergy analysis of a CPV/T system based on linear Fresnel reflectors
  20. Investigating the effect of green composite back sheet materials on solar panel output voltage harvesting for better sustainable energy performance
  21. Electrical and thermal modeling of battery cell grouping for analyzing battery pack efficiency and temperature
  22. Intelligent techno-economical optimization with demand side management in microgrid using improved sandpiper optimization algorithm
  23. Investigation of KAPTON–PDMS triboelectric nanogenerator considering the edge-effect capacitor
  24. Design of a novel hybrid soft computing model for passive components selection in multiple load Zeta converter topologies of solar PV energy system
  25. A novel mechatronic absorber of vibration energy in the chimney
  26. An IoT-based intelligent smart energy monitoring system for solar PV power generation
  27. Large-scale green hydrogen production using alkaline water electrolysis based on seasonal solar radiation
  28. Evaluation of performances in DI Diesel engine with different split injection timings
  29. Optimized power flow management based on Harris Hawks optimization for an islanded DC microgrid
  30. Experimental investigation of heat transfer characteristics for a shell and tube heat exchanger
  31. Fuzzy induced controller for optimal power quality improvement with PVA connected UPQC
  32. Impact of using a predictive neural network of multi-term zenith angle function on energy management of solar-harvesting sensor nodes
  33. An analytical study of wireless power transmission system with metamaterials
  34. Hydrogen energy horizon: balancing opportunities and challenges
  35. Development of renewable energy-based power system for the irrigation support: case studies
  36. Maximum power point tracking techniques using improved incremental conductance and particle swarm optimizer for solar power generation systems
  37. Experimental and numerical study on energy harvesting performance thermoelectric generator applied to a screw compressor
  38. Study on the effectiveness of a solar cell with a holographic concentrator
  39. Non-transient optimum design of nonlinear electromagnetic vibration-based energy harvester using homotopy perturbation method
  40. Industrial gas turbine performance prediction and improvement – a case study
  41. An electric-field high energy harvester from medium or high voltage power line with parallel line
  42. FPGA based telecommand system for balloon-borne scientific payloads
  43. Improved design of advanced controller for a step up converter used in photovoltaic system
  44. Techno-economic assessment of battery storage with photovoltaics for maximum self-consumption
  45. Analysis of 1-year energy data of a 5 kW and a 122 kW rooftop photovoltaic installation in Dhaka
  46. Shading impact on the electricity generated by a photovoltaic installation using “Solar Shadow-Mask”
  47. Investigations on the performance of bottle blade overshot water wheel in very low head resources for pico hydropower
  48. Solar photovoltaic-integrated energy storage system with a power electronic interface for operating a brushless DC drive-coupled agricultural load
  49. Numerical investigation of smart material-based structures for vibration energy-harvesting applications
  50. A system-level study of indoor light energy harvesting integrating commercially available power management circuitry
  51. Enhancing the wireless power transfer system performance and output voltage of electric scooters
  52. Harvesting energy from a soldier's gait using the piezoelectric effect
  53. Study of technical means for heat generation, its application, flow control, and conversion of other types of energy into thermal energy
  54. Theoretical analysis of piezoceramic ultrasonic energy harvester applicable in biomedical implanted devices
  55. Corrigendum
  56. Corrigendum to: A numerical investigation of optimum angles for solar energy receivers in the eastern part of Algeria
  57. Special Issue: Recent Trends in Renewable Energy Conversion and Storage Materials for Hybrid Transportation Systems
  58. Typical fault prediction method for wind turbines based on an improved stacked autoencoder network
  59. Power data integrity verification method based on chameleon authentication tree algorithm and missing tendency value
  60. Fault diagnosis of automobile drive based on a novel deep neural network
  61. Research on the development and intelligent application of power environmental protection platform based on big data
  62. Diffusion induced thermal effect and stress in layered Li(Ni0.6Mn0.2Co0.2)O2 cathode materials for button lithium-ion battery electrode plates
  63. Improving power plant technology to increase energy efficiency of autonomous consumers using geothermal sources
  64. Energy-saving analysis of desalination equipment based on a machine-learning sequence modeling
Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ehs-2023-0091/html
Scroll to top button