

Research Article

Durdana Lateef*

Best proximity points in \mathcal{F} -metric spaces with applications

<https://doi.org/10.1515/dema-2022-0191>

received December 6, 2021; accepted November 30, 2022

Abstract: The aim of this article is to introduce α - ψ -proximal contraction in the setting of \mathcal{F} -metric space and prove the existence of best proximity points for these contractions. As applications of our main results, we obtain coupled best proximity points on \mathcal{F} -metric space equipped with an arbitrary binary relation.

Keywords: best proximity point, α - ψ -proximal contraction, non-self mappings, coupled best proximity point

MSC 2020: 46S40, 47H10, 54H25

1 Introduction

The Banach contraction principle [1] is the first result which was introduced by Stefan Banach in 1922 in which notions of fixed point and metric space play an important role. Let Θ, Φ be non-empty subsets of metric space (\mathcal{M}, σ) . A point $\omega \in \mathcal{M}$ is called a fixed point of $\mathcal{L} : \Theta \rightarrow \Phi$ if $\mathcal{L}\omega = \omega$. Because of significance and simplicity of the concept of the fixed point, this conception has been improved and lengthened in many distinct ways. In 2010, Basha [2] gave the conception of best proximity point and extended the famous Banach's contraction principle. For more particular on this perspective, we refer the readers to [3–15]. On the other hand, the well-known extensions of the notion of metric spaces have been done by Bakhtin [16] which was conventionally given by Czerwinski [17] in 1993 by generalizing the Banach contraction principle. Jleli and Samet [18] introduced a novel metric space known as \mathcal{F} -metric space to extend the classical metric space and b -metric space. Later on, Al-Mezel et al. [19] introduced the notion of generalized $(\alpha\beta\psi)$ -contractions in \mathcal{F} -metric spaces with the help of α -admissibility of the mapping and obtained fixed-point results in this generalized space.

In this article, we introduce α - ψ -proximal contraction in the background of \mathcal{F} -metric space and prove the existence of best proximity points for these contractions.

2 Preliminaries

We state this section with definition of b -metric space in this manner.

Definition 2.1. (See [17]). Let $\mathcal{M} \neq \emptyset$ and $s \geq 1$. A function $\sigma_b : \mathcal{M} \times \mathcal{M} \rightarrow [0, \infty)$ is called a b -metric if the following assertions hold:

(b1) $\sigma_b(\omega, \varpi) = 0$ if and only if $\omega = \varpi$;

* Corresponding author: Durdana Lateef, Department of Mathematics, College of Science, Taibah University, Al Madina Al Munawwara, Madina 41411, Saudi Arabia, e-mail: drdurdanamaths@gmail.com

- (b2) $\sigma_b(\omega, \varpi) = \sigma_b(\varpi, \omega)$,
- (b3) $\sigma_b(\omega, v) \leq s[\sigma_b(\omega, \varpi) + \sigma_b(\varpi, v)]$,
 $\forall \omega, \varpi, v \in \mathcal{M}$.

The pair (\mathcal{M}, σ_b) is called a b -metric space.

Jleli and Samet [18] established a fascinating extension of a metric space as follows.

Let \mathcal{F} be the set of functions $f : (0, +\infty) \rightarrow \mathbb{R}$ satisfying the following conditions:

- ($\mathcal{F}1$) $0 < s < 1 \Rightarrow f(s) \leq f(1)$,
- ($\mathcal{F}2$) for all $\{t_n\} \subseteq \mathbb{R}^+$, $\lim_{n \rightarrow \infty} t_n = 0 \Leftrightarrow \lim_{n \rightarrow \infty} f(t_n) = -\infty$.

Definition 2.2. [18] Let $\mathcal{M} \neq \emptyset$ and let $\sigma_{\mathcal{F}} : \mathcal{M} \times \mathcal{M} \rightarrow [0, +\infty)$. Assume that $\exists(f, \alpha) \in \mathcal{F} \times [0, +\infty)$ such that

- (D1) $(\omega, \varpi) \in \mathcal{M} \times \mathcal{M}$, $\sigma_{\mathcal{F}}(\omega, \varpi) = 0$ if and only if $\omega = \varpi$.
- (D2) $\sigma_{\mathcal{F}}(\omega, \varpi) = \sigma_{\mathcal{F}}(\varpi, \omega)$, $\forall (\omega, \varpi) \in \mathcal{M} \times \mathcal{M}$.
- (D3) For every $(\omega, \varpi) \in \mathcal{M} \times \mathcal{M}$, for every $N \in \mathbb{N}$, $N \geq 2$, and for every $(u_i)_{i=1}^N \subset \mathcal{M}$, with $(u_1, u_N) = (\omega, \varpi)$, we have

$$\sigma_{\mathcal{F}}(\omega, \varpi) > 0 \Rightarrow f(\sigma_{\mathcal{F}}(\omega, \varpi)) \leq f\left(\sum_{i=1}^{N-1} \sigma_{\mathcal{F}}(u_i, u_{i+1})\right) + \alpha.$$

Then $(\mathcal{M}, \sigma_{\mathcal{F}})$ is called an \mathcal{F} -metric space.

Example 2.1. (See [18]) The function $\sigma_{\mathcal{F}} : \mathbb{R} \times \mathbb{R} \rightarrow [0, +\infty)$

$$\sigma_{\mathcal{F}}(\omega, \varpi) = \begin{cases} (\omega - \varpi)^2 & \text{if } (\omega, \varpi) \in [0, 3] \times [0, 3] \\ |\omega - \varpi| & \text{if } (\omega, \varpi) \notin [0, 3] \times [0, 3], \end{cases}$$

with $f(t) = \ln(t)$ and $\alpha = \ln(3)$, is an \mathcal{F} -metric.

Remark 2.1. It is clear from the definition that any metric space is an \mathcal{F} -metric space, but the inverse is not true in general.

Definition 2.3. (See [18]) Let $(\mathcal{M}, \sigma_{\mathcal{F}})$ be an \mathcal{F} -metric space.

- (i) Let $\{k_n\} \subseteq \mathcal{M}$. The sequence $\{\omega_n\}$ is said to be \mathcal{F} -convergent to $\omega \in \mathcal{M}$ if $\{\omega_n\}$ is convergent to ω regarding \mathcal{F} -metric $\sigma_{\mathcal{F}}$.
- (ii) The sequence $\{\omega_n\}$ is called \mathcal{F} -Cauchy, iff

$$\lim_{n, m \rightarrow \infty} \sigma_{\mathcal{F}}(\omega_n, \omega_m) = 0.$$

- (iii) If every \mathcal{F} -Cauchy sequence in \mathcal{M} is \mathcal{F} -converges to a point in \mathcal{M} , then $(\mathcal{M}, \sigma_{\mathcal{F}})$ is \mathcal{F} -complete.

Theorem 2.1. [18] Let $(\mathcal{M}, d_{\mathcal{F}})$ be an \mathcal{F} -metric space and $\mathcal{L} : \mathcal{M} \rightarrow \mathcal{M}$ and assume that the conditions given below are satisfied:

- (i) $(\mathcal{M}, \sigma_{\mathcal{F}})$ is \mathcal{F} -complete,
- (ii) $\exists k \in (0, 1)$, such that

$$\sigma_{\mathcal{F}}(\mathcal{L}(\omega), \mathcal{L}(\varpi)) \leq k\sigma_{\mathcal{F}}(\omega, \varpi).$$

Then \mathcal{L} has a unique fixed point $\omega^* \in \mathcal{M}$. Moreover, for any $\omega_0 \in \mathcal{M}$, the sequence $\{\omega_n\} \subset \mathcal{M}$ defined by

$$\omega_{n+1} = \mathcal{L}(\omega_n), \quad n \in \mathbb{N},$$

is \mathcal{F} -convergent to ω^* .

For more characteristics in these ways, we mention the researchers to [18–32].

Motivated with Basha [2], we define the notion of best proximity point in the context of \mathcal{F} -metric space in this way.

Definition 2.4. Let $(\mathcal{M}, \sigma_{\mathcal{F}})$ is \mathcal{F} -metric space and $\Theta, \Phi \in N(\mathcal{M})$. An element $\omega^* \in \Theta$ is professed to be a best proximity point of $\mathcal{L} : \Theta \rightarrow \Phi$ if this assertion hold

$$\sigma_{\mathcal{F}}(\omega^*, \mathcal{L}\omega^*) \leq \sigma_{\mathcal{F}}(\Theta, \Phi).$$

Consistent with Eldred and Veeramani [3], we give the \mathcal{F} -distance between the pair (Θ, Φ) of two nonempty sets which satisfy the property P .

Definition 2.5. Let $(\mathcal{M}, \sigma_{\mathcal{F}})$ is \mathcal{F} -metric space and $\Theta, \Phi \in N(\mathcal{M})$, then $\sigma_{\mathcal{F}}(\Theta, \Phi)$ is \mathcal{F} -distance between two nonempty sets Θ and Φ . Now define Θ_0 and Φ_0 by

$$\begin{aligned}\Theta_0 &= \{\omega \in \Theta : \exists u \in \Phi \text{ such that } \sigma_{\mathcal{F}}(\omega, u) = \sigma_{\mathcal{F}}(\Theta, \Phi)\} \\ \Phi_0 &= \{u \in \Phi : \exists \omega \in \Theta \text{ such that } \sigma_{\mathcal{F}}(\omega, u) = \sigma_{\mathcal{F}}(\Theta, \Phi)\}.\end{aligned}$$

Then (Θ, Φ) is called to have the property P if $\Theta_0 \neq \emptyset$ and

$$\omega, \varpi \in \Theta_0, u, v \in \Phi_0, \quad \sigma_{\mathcal{F}}(\omega, u) = \sigma_{\mathcal{F}}(\varpi, v) = \sigma_{\mathcal{F}}(\Theta, \Phi) \Rightarrow \sigma_{\mathcal{F}}(\omega, \varpi) = \sigma_{\mathcal{F}}(u, v).$$

Definition 2.6. Let $(\mathcal{M}, \sigma_{\mathcal{F}})$ is \mathcal{F} -metric space and $\Theta, \Phi \in N(\mathcal{M})$. A mapping $\mathcal{L} : \Theta \rightarrow \Phi$ is called α -proximal admissible (α -prox admis) if \exists a function $\alpha : \Theta \times \Theta \rightarrow [0, \infty)$ such that

$$\left. \begin{aligned}\alpha(\omega, \varpi) &\geq 1 \\ \sigma_{\mathcal{F}}(u, \mathcal{L}\omega) &= \sigma_{\mathcal{F}}(\Theta, \Phi) \\ \sigma_{\mathcal{F}}(v, \mathcal{L}\varpi) &= \sigma_{\mathcal{F}}(\Theta, \Phi)\end{aligned}\right\} \Rightarrow \alpha(u, v) \geq 1,$$

where $\omega, \varpi, u, v \in \Theta$.

3 Best proximity point results in \mathcal{F} -metric spaces

We represent by Ψ the collection of non-decreasing functions $\psi : [0, \infty) \rightarrow [0, \infty)$ such that $\sum_{n=1}^{\infty} \psi^n(1) < \infty$ for each $1 > 0$. If $\psi \in \Psi$, then $\psi(1) < 1$ for all $1 > 0$. We also denote $N(\mathcal{M})$ and $Cl(\mathcal{M})$ as set of non-empty subsets of \mathcal{M} and closed subsets of \mathcal{M} , respectively.

Definition 3.1. Let $(\mathcal{M}, \sigma_{\mathcal{F}})$ is \mathcal{F} -metric space and $\Theta, \Phi \in N(\mathcal{M})$. A mapping $\mathcal{L} : \Theta \rightarrow \Phi$ is said to be an α - ψ -proximal contraction if there exists $\psi \in \Psi$ and $\alpha : \Theta \times \Theta \rightarrow [0, \infty)$ such that

$$\alpha(\omega, \varpi) \sigma_{\mathcal{F}}(\mathcal{L}\omega, \mathcal{L}\varpi) \leq \psi(\sigma_{\mathcal{F}}(\omega, \varpi)) \quad (1)$$

$\forall \omega, \varpi \in \Theta$.

Theorem 3.1. Let $(\mathcal{M}, \sigma_{\mathcal{F}})$ is complete \mathcal{F} -metric space and $\Theta, \Phi \in Cl(\mathcal{M})$ such that $\Theta_0 \neq \emptyset$. Let $\alpha : \Theta \times \Theta \rightarrow [0, \infty)$ and $\psi \in \Psi$. Assume that $\mathcal{L} : \Theta \rightarrow \Phi$ be an α - ψ -proximal contraction and α -prox admis satisfying these assertions:

- (i) $\mathcal{L}(\Theta_0) \subseteq \Phi_0$ and (Θ, Φ) fulfils the property P ;
- (ii) $\exists \omega_0, \omega_1 \in \Theta_0$ such that

$$\sigma_{\mathcal{F}}(\omega_1, \mathcal{L}\omega_0) = \sigma_{\mathcal{F}}(\Theta, \Phi), \quad \text{and} \quad \alpha(\omega_0, \omega_1) \geq 1.$$

(iii) \mathcal{L} is continuous.

Then $\exists \omega^* \in \Theta$ such that $\sigma_{\mathcal{F}}(\omega^*, \mathcal{L}\omega^*) \leq \sigma_{\mathcal{F}}(\Theta, \Phi)$.

Proof. By the hypothesis (ii), $\exists \omega_0, \omega_1 \in \Theta_0$ such that

$$\sigma_{\mathcal{F}}(\omega_1, \mathcal{L}\omega_0) = \sigma_{\mathcal{F}}(\Theta, \Phi), \quad \alpha(\omega_0, \omega_1) \geq 1. \quad (2)$$

Since $\mathcal{L}(\Theta_0) \subseteq \Phi_0$, $\exists \omega_2 \in \Theta_0$ such that

$$\sigma_{\mathcal{F}}(\omega_2, \mathcal{L}\omega_1) = \sigma_{\mathcal{F}}(\Theta, \Phi).$$

Now, we have $\alpha(\omega_0, \omega_1) \geq 1$, $\sigma_{\mathcal{F}}(\omega_1, \mathcal{L}\omega_0) = \sigma_{\mathcal{F}}(\Theta, \Phi)$, and $\sigma_{\mathcal{F}}(\omega_2, \mathcal{L}\omega_1) = \sigma_{\mathcal{F}}(\Theta, \Phi)$. As the mapping \mathcal{L} is α -prox admis, we obtain $\alpha(\omega_1, \omega_2) \geq 1$. Hence,

$$\sigma_{\mathcal{F}}(\omega_2, \mathcal{L}\omega_1) = \sigma_{\mathcal{F}}(\Theta, \Phi), \quad \alpha(\omega_1, \omega_2) \geq 1. \quad (3)$$

Again since $\mathcal{L}(\Theta_0) \subseteq \Phi_0$, $\exists \omega_3 \in \Theta_0$ such that

$$\sigma_{\mathcal{F}}(\omega_3, \mathcal{L}\omega_2) = \sigma_{\mathcal{F}}(\Theta, \Phi).$$

Now, we have $\alpha(\omega_1, \omega_2) \geq 1$, $\sigma_{\mathcal{F}}(\omega_2, \mathcal{L}\omega_1) = \sigma_{\mathcal{F}}(\Theta, \Phi)$ and $\sigma_{\mathcal{F}}(\omega_3, \mathcal{L}\omega_2) = \sigma_{\mathcal{F}}(\Theta, \Phi)$. As the mapping \mathcal{L} is α -prox admis, we obtain $\alpha(\omega_2, \omega_3) \geq 1$. Hence,

$$\sigma_{\mathcal{F}}(\omega_3, \mathcal{L}\omega_2) = \sigma_{\mathcal{F}}(\Theta, \Phi), \quad \alpha(\omega_2, \omega_3) \geq 1. \quad (4)$$

By pursuing in this way, by induction, we can generate $\{\omega_n\} \subset \Theta_0$ such that

$$\sigma_{\mathcal{F}}(\omega_{n+1}, \mathcal{L}\omega_n) = \sigma_{\mathcal{F}}(\Theta, \Phi), \quad \alpha(\omega_n, \omega_{n+1}) \geq 1, \quad (5)$$

$\forall n \in \mathbb{N} \cup \{0\}$. Assume that $\omega_k = \omega_{k+1}$ for some k . From (5), we have

$$\sigma_{\mathcal{F}}(\omega_k, \mathcal{L}\omega_k) = \sigma_{\mathcal{F}}(\omega_{k+1}, \mathcal{L}\omega_k) = \sigma_{\mathcal{F}}(\Theta, \Phi),$$

i.e., ω_k is a best proximity point of \mathcal{L} . Hence, we assume that $\sigma_{\mathcal{F}}(\omega_{n-1}, \omega_n) > 0$ for all $n \in \mathbb{N} \cup \{0\}$. As (Θ, Φ) satisfies the property P , we summarize from (5) that

$$\sigma_{\mathcal{F}}(\omega_n, \omega_{n+1}) = \sigma_{\mathcal{F}}(\mathcal{L}\omega_{n-1}, \mathcal{L}\omega_n),$$

$\forall n \in \mathbb{N} \cup \{0\}$. So by (1), we have

$$\sigma_{\mathcal{F}}(\omega_n, \omega_{n+1}) \leq \alpha(\omega_n, \omega_{n+1})\sigma_{\mathcal{F}}(\omega_n, \omega_{n+1}) = \alpha(\omega_n, \omega_{n+1})\sigma_{\mathcal{F}}(\mathcal{L}\omega_{n-1}, \mathcal{L}\omega_n) \leq \psi(\sigma_{\mathcal{F}}(\omega_{n-1}, \omega_n)) \quad (6)$$

$\forall n \geq 0$. By using the monotonicity of ψ and (6), we obtain

$$\sigma_{\mathcal{F}}(\omega_n, \omega_{n+1}) \leq \psi^n(\sigma_{\mathcal{F}}(\omega_0, \omega_1))$$

$\forall n \in \mathbb{N} \cup \{0\}$. Let $\varepsilon > 0$ be fixed and $(f, \alpha) \in \mathcal{F} \times [0, +\infty)$ be such that (D_3) is satisfied. By (\mathcal{F}_2) , $\exists \delta > 0$ such that

$$0 < 1 < \delta \Rightarrow f(1) < f(\varepsilon) - \alpha. \quad (7)$$

Let $n(\varepsilon) \in \mathbb{N}$ such that $\sum_{n \geq n(\delta)} \psi^n(\sigma_{\mathcal{F}}(\omega_0, \omega_1)) < \delta$. Hence, by (6), (7), and (\mathcal{F}_1) , we have

$$f\left(\sum_{i=n}^{m-1} \psi^i(\sigma_{\mathcal{F}}(\omega_0, \omega_1))\right) \leq f\left(\sum_{n \geq n(\delta)} \psi^n(\sigma_{\mathcal{F}}(\omega_0, \omega_1))\right) < f(\varepsilon) - \alpha \quad (8)$$

for $m > n > n(\varepsilon)$. By using (D_3) and (8), we obtain $\sigma_{\mathcal{F}}(\omega_n, \omega_m) > 0$, $m > n > n(\varepsilon)$ implies

$$f(\sigma_{\mathcal{F}}(\omega_m, \omega_n)) \leq f\left(\sum_{i=n}^{m-1} \sigma_{\mathcal{F}}(\omega_i, \omega_{i+1})\right) + \alpha \leq f\left(\sum_{i=n}^{m-1} \psi^i(\sigma_{\mathcal{F}}(\omega_0, \omega_1))\right) + \alpha < f(\varepsilon),$$

which implies by (\mathcal{F}_1) that $\sigma_{\mathcal{F}}(\omega_m, \omega_n) < \varepsilon$, $m > n > n(\varepsilon)$. This proves that $\{\omega_n\}$ is \mathcal{F} -Cauchy. Since $(\mathcal{M}, \sigma_{\mathcal{F}})$ is \mathcal{F} -complete and Θ is closed, $\exists \omega^* \in \Theta$ such that $\{\omega_n\}$ is \mathcal{F} -convergent to ω^* , i.e.,

$$\lim_{n \rightarrow \infty} \sigma_{\mathcal{F}}(\omega_n, \omega^*) = 0, \quad (9)$$

i.e., $\mathcal{L}\omega_n \rightarrow \mathcal{L}\omega^*$ as $n \rightarrow \infty$. By using the continuity of $\sigma_{\mathcal{F}}$, we obtain

$$\sigma_{\mathcal{F}}(\Theta, \Phi) = \sigma_{\mathcal{F}}(\omega_{n+1}, \mathcal{L}\omega_n) \rightarrow \sigma_{\mathcal{F}}(\omega^*, \mathcal{L}\omega^*)$$

as $n \rightarrow \infty$. Therefore, $\sigma_{\mathcal{F}}(\omega^*, \mathcal{L}\omega^*) = \sigma_{\mathcal{F}}(\Theta, \Phi)$. \square

(κ) If $\{\omega_n\} \subseteq \Theta$ such that $\alpha(\omega_n, \omega_{n+1}) \geq 1$, for all n and $\omega_n \rightarrow \omega \in \Theta$ as $n \rightarrow \infty$, then $\exists \{\omega_{n(k)}\}$ of $\{\omega_n\}$ such that $\alpha(\omega_{n(k)}, \omega) \geq 1$, for all k .

Theorem 3.2. Let $(\mathcal{M}, \sigma_{\mathcal{F}})$ be a complete \mathcal{F} -metric space and $\Theta, \Phi \in Cl(\mathcal{M})$ such that $\Theta_0 \neq \emptyset$. Let $\alpha : \Theta \times \Theta \rightarrow [0, \infty)$ and $\psi \in \Psi$. Assume that $\mathcal{L} : \Theta \rightarrow \Phi$ be an α - ψ -proximal contraction and α -proximal admissible satisfies these assertions:

- (i) $\mathcal{L}(\Theta_0) \subseteq \Phi_0$ and (Θ, Φ) satisfies the property P ;
- (ii) $\exists \omega_0, \omega_1 \in \Theta_0$ such that

$$\sigma_{\mathcal{F}}(\omega_1, \mathcal{L}\omega_0) = \sigma_{\mathcal{F}}(\Theta, \Phi), \quad \text{and} \quad \alpha(\omega_0, \omega_1) \geq 1.$$

(iii) (J) holds.

Then $\exists \omega^* \in \mathcal{M}$ such that $\sigma_{\mathcal{F}}(\omega^*, \mathcal{L}\omega^*) \leq \sigma_{\mathcal{F}}(\Theta, \Phi)$.

Proof. Backing the result of Theorem 3.1, $\exists \{\omega_n\} \subset \Theta$ such that (1) holds and $\{\omega_n\}$ is \mathcal{F} -convergent to ω^* , i.e.,

$$\lim_{n \rightarrow \infty} \sigma_{\mathcal{F}}(\omega_n, \omega^*) = 0.$$

By the property (κ), $\exists \{\omega_{n(k)}\}$ of $\{\omega_n\}$ such that $\alpha(\omega_{n(k)}, \omega^*) \geq 1$, for all k . We declare that $\mathcal{L}\omega_{n(k)} \rightarrow \mathcal{L}\omega^*$ as $k \rightarrow \infty$. So by (1), we obtain

$$\sigma_{\mathcal{F}}(\mathcal{L}\omega_{n(k)}, \mathcal{L}\omega^*) \leq \alpha(\omega_{n(k)}, \omega^*)\sigma_{\mathcal{F}}(\mathcal{L}\omega_{n(k)}, \mathcal{L}\omega^*) \leq \psi(\sigma_{\mathcal{F}}(\omega_{n(k)}, \omega^*))$$

$\forall k$. By taking $k \rightarrow \infty$ and using the continuity of $\sigma_{\mathcal{F}}$, we have

$$\sigma_{\mathcal{F}}(\Theta, \Phi) = \sigma_{\mathcal{F}}(\omega_{n(k)+1}, \mathcal{L}\omega_{n(k)}) \rightarrow \sigma_{\mathcal{F}}(\omega^*, \mathcal{L}\omega^*)$$

as $n \rightarrow \infty$. Therefore,

$$\sigma_{\mathcal{F}}(\omega^*, \mathcal{L}\omega^*) = \sigma_{\mathcal{F}}(\Theta, \Phi)$$

thus proved. \square

Definition 3.2. Let $\mathcal{L} : \Theta \rightarrow \Phi$ and $\alpha : \Theta \times \Theta \rightarrow [0, \infty)$. The mapping \mathcal{L} is said to be $(\alpha, \sigma_{\mathcal{F}})$ -regular if for all $(\omega, \varpi) \in \alpha^{-1}[0, 1)$, $\exists \varrho \in \Theta_0$ such that

$$\alpha(\omega, \varpi) \geq 1 \quad \text{and} \quad \alpha(\varpi, \varrho) \geq 1.$$

Theorem 3.3. Besides to the supposition of Theorem 3.1 (respectively Theorem 3.2), assume that \mathcal{L} is $(\alpha, \sigma_{\mathcal{F}})$ -regular. Then, $\exists \omega^* \in \Theta$ such that $\sigma_{\mathcal{F}}(\omega^*, \mathcal{L}\omega^*) \leq \sigma_{\mathcal{F}}(\Theta, \Phi)$, which is unique.

Proof. It is clear from the Theorem 3.1 that the set of best proximity points of \mathcal{L} is non-empty. Assume that $\exists \varpi^* \in \Theta_0$ of \mathcal{L} , i.e.,

$$\sigma_{\mathcal{F}}(\mathcal{L}\omega^*, \varpi^*) = \sigma_{\mathcal{F}}(\mathcal{L}\varpi^*, \varpi^*) = \sigma_{\mathcal{F}}(\Theta, \Phi). \quad (10)$$

By using the property P and (10), we obtain that

$$\sigma_{\mathcal{F}}(\mathcal{L}\omega^*, \mathcal{L}\varpi^*) = \sigma_{\mathcal{F}}(\omega^*, \varpi^*). \quad (11)$$

We discuss two cases.

Case 1. If $\alpha(\omega^*, \varpi^*) \geq 1$, by using (10), we obtain that

$$\sigma_{\mathcal{F}}(\omega^*, \varpi^*) = \sigma_{\mathcal{F}}(\mathcal{L}\omega^*, \mathcal{L}\varpi^*) \leq \alpha(\omega^*, \varpi^*)\sigma_{\mathcal{F}}(\mathcal{L}\omega^*, \mathcal{L}\varpi^*) \leq \psi(\sigma_{\mathcal{F}}(\omega^*, \varpi^*)).$$

Since $\psi(\iota) < \iota$, for all $\iota > 0$, the aforementioned inequality satisfies only if $\sigma_{\mathcal{F}}(\omega^*, \varpi^*) = 0$, i.e., $\omega^* = \varpi^*$.

Case 2. If $\alpha(\omega^*, \varpi^*) < 1$.

By supposition, $\exists \varrho_0 \in \Theta_0$ such that $\alpha(\omega^*, \varrho_0) \geq 1$ and $\alpha(\varpi^*, \varrho_0) \geq 1$. Since $\mathcal{L}(\Theta_0) \subseteq \Phi_0$, there exists $\varrho_1 \in \Theta_0$ such that

$$\sigma_{\mathcal{F}}(\varrho_1, \mathcal{L}\varrho_0) = \sigma_{\mathcal{F}}(\Theta, \Phi).$$

Now, we have

$$\begin{aligned} \alpha(\omega^*, \varrho_0) &\geq 1 \\ \sigma_{\mathcal{F}}(\omega^*, \mathcal{L}\omega^*) &= \sigma_{\mathcal{F}}(\Theta, \Phi), \\ \sigma_{\mathcal{F}}(\varrho_1, \mathcal{L}\varrho_0) &= \sigma_{\mathcal{F}}(\Theta, \Phi). \end{aligned}$$

As \mathcal{L} is α -prox admis, so we have $\alpha(\omega^*, \varrho_1) \geq 1$. Hence,

$$\sigma_{\mathcal{F}}(\varrho_1, \mathcal{L}\varrho_0) = \sigma_{\mathcal{F}}(\Theta, \Phi) \quad \text{and} \quad \alpha(\omega^*, \varrho_1) \geq 1.$$

By pursuing in this way, we can generate a sequence $\{\varrho_n\}$ in Θ_0 such that

$$\sigma_{\mathcal{F}}(\varrho_{n+1}, \mathcal{L}\varrho_n) = \sigma_{\mathcal{F}}(\Theta, \Phi) \quad \text{and} \quad \alpha(\omega^*, \varrho_n) \geq 1 \quad (12)$$

$\forall n \geq 0$. By property P and (12), we obtain that

$$\sigma_{\mathcal{F}}(\varrho_{n+1}, \omega^*) = \sigma_{\mathcal{F}}(\mathcal{L}\varrho_n, \mathcal{L}\omega^*) \quad (13)$$

$\forall n \in \mathbb{N} \cup \{0\}$. Since \mathcal{L} is an α - ψ -proximal contraction, we have

$$\sigma_{\mathcal{F}}(\varrho_{n+1}, \omega^*) = \sigma_{\mathcal{F}}(\mathcal{L}\varrho_n, \mathcal{L}\omega^*) \leq \alpha(\varrho_n, \omega^*)\sigma_{\mathcal{F}}(\mathcal{L}\varrho_n, \mathcal{L}\omega^*) \leq \psi(\sigma_{\mathcal{F}}(\varrho_n, \omega^*))$$

$\forall n \geq 0$. By induction, we can obtain

$$\sigma_{\mathcal{F}}(\varrho_n, \omega^*) \leq \psi^n(\sigma_{\mathcal{F}}(\varrho_0, \omega^*)) \quad (14)$$

$\forall n \geq 0$. Assume that $\varrho_0 = \omega^*$. Then by (13), we obtain

$$\sigma_{\mathcal{F}}(\varrho_1, \omega^*) = \sigma_{\mathcal{F}}(\mathcal{L}\varrho_0, \mathcal{L}\omega^*) = \sigma_{\mathcal{F}}(\mathcal{L}\omega^*, \mathcal{L}\omega^*) = 0,$$

that is, $\varrho_1 = \omega^*$. By pursuing in this way and inductively, we have $\varrho_n = \omega^*$, for all $n \geq 0$. Assume $\sigma_{\mathcal{F}}(\varrho_0, \omega^*) > 0$. By taking limit as $n \rightarrow \infty$ in (14), we establish that $\varrho_n \rightarrow \omega^*$ whenever $n \rightarrow \infty$. Thus, in all the discussed cases, we obtain $\varrho_n \rightarrow \omega^*$ as $n \rightarrow \infty$. Likewise, we can show that $\varrho_n \rightarrow \varpi^*$ as $n \rightarrow \infty$. By uniqueness of the limit, we obtain that $\omega^* = \varpi^*$. \square

4 Applications

Theorem 4.1. Let $(\mathcal{M}, \sigma_{\mathcal{F}})$ is complete \mathcal{F} -metric space, $\Theta, \Phi \in Cl(\mathcal{M})$ such that $\Theta_0 \neq \emptyset$. Let $\psi \in \Psi$. Suppose that $\mathcal{L} : \Theta \rightarrow \Phi$ satisfying

- (i) $\mathcal{L}(\Theta_0) \subseteq \Phi_0$ and (Θ, Φ) satisfying the property P ;
- (ii) $\sigma_{\mathcal{F}}(\mathcal{L}\omega, \mathcal{L}\varpi) \leq \psi(\sigma_{\mathcal{F}}(\omega, \varpi))$, for all $\omega, \varpi \in \Theta$.

Then $\exists \omega^* \in \mathcal{M}$ such that $\sigma_{\mathcal{F}}(\omega^*, \mathcal{L}\omega^*) \leq \sigma_{\mathcal{F}}(\Theta, \Phi)$.

Proof. Define $\alpha : \Theta \times \Theta \rightarrow [0, \infty)$ by

$$\alpha(\omega, \varpi) = 1$$

$\forall \omega, \varpi \in \Theta$. Evidently \mathcal{L} is α -prox admis by the definition of α , and also it is an α - ψ -proximal contraction. Otherwise, for any $\omega \in \Theta_0$, since $\mathcal{L}(\Theta_0) \subseteq \Phi_0$, $\exists \varpi \in \Theta_0$ such that $\sigma_{\mathcal{F}}(\mathcal{L}\omega, \varpi) = \sigma_{\mathcal{F}}(\Theta, \Phi)$. Furthermore, from the hypothesis (ii), we obtain

$$\sigma_{\mathcal{F}}(\mathcal{L}\omega, \mathcal{L}\varpi) \leq \psi(\sigma_{\mathcal{F}}(\omega, \varpi)) < \sigma_{\mathcal{F}}(\omega, \varpi).$$

From the aforementioned inequality, we have \mathcal{L} is a continuous. Thus, all the assumptions of Theorem 3.1 are fulfilled and \exists is the best proximity point of \mathcal{L} directly from Theorem 3.1. Furthermore, from the definition of α and from Theorem 3, we obtain that this best proximity point is unique. \square

If we take $\psi(1) = k1$, where $0 < k < 1$ in Theorem 4.1, we establish this result.

Theorem 4.2. *Let $(\mathcal{M}, \sigma_{\mathcal{F}})$ is complete \mathcal{F} -metric space, $\Theta, \Phi \in Cl(\mathcal{M})$ such that $\Theta_0 \neq \emptyset$. Let $\psi \in \Psi$. Assume that $\mathcal{L} : \Theta \rightarrow \Phi$ satisfying these assertions:*

- (i) $\mathcal{L}(\Theta_0) \subseteq \Phi_0$ and (Θ, Φ) satisfies the property P ;
- (ii) $\exists k \in (0, 1)$ such that $\sigma_{\mathcal{F}}(\mathcal{L}\omega, \mathcal{L}\varpi) \leq k\sigma_{\mathcal{F}}(\omega, \varpi)$, for all $\omega, \varpi \in \Theta$.

Then $\exists \omega^ \in \mathcal{M}$ such that $\sigma_{\mathcal{F}}(\omega^*, \mathcal{L}\omega^*) \leq \sigma_{\mathcal{F}}(\Theta, \Phi)$.*

4.1 Results on \mathcal{F} -metric space endowed with binary relation

Let $(\mathcal{M}, \sigma_{\mathcal{F}})$ be an \mathcal{F} -metric space and R be any binary relation on \mathcal{M} and let

$$S = R \cup R^{-1}.$$

Evidently,

$$\omega, \varpi \in \mathcal{M}, \quad \omega S \varpi \quad \text{if and only if } \omega R \varpi \quad \text{or} \quad \varpi R \omega.$$

Definition 4.1. A mapping $\mathcal{L} : \Theta \rightarrow \Phi$ is called a proximal comparative mapping if

$$\left. \begin{array}{l} \omega_1 S \omega_2 \\ \sigma_{\mathcal{F}}(u_1, \mathcal{L}u_1) = \sigma_{\mathcal{F}}(\Theta, \Phi) \\ \sigma_{\mathcal{F}}(u_2, \mathcal{L}u_2) = \sigma_{\mathcal{F}}(\Theta, \Phi) \end{array} \right\} \Rightarrow u_1 S u_2$$

$$\forall \omega_1, \omega_2, u_1, u_2 \in \Theta.$$

Theorem 4.3. *Let $(\mathcal{M}, \sigma_{\mathcal{F}})$ is complete \mathcal{F} -metric space, $\Theta, \Phi \in Cl(\mathcal{M})$ such that $\Theta_0 \neq \emptyset$. Let R be any binary relation on \mathcal{M} . Assume that $\mathcal{L} : \Theta \rightarrow \Phi$ is continuous satisfying*

- (i) $\mathcal{L}(\Theta_0) \subseteq \Phi_0$ and (Θ, Φ) satisfies the P -Property;
- (ii) \mathcal{L} is a proximal comparative mapping,
- (iii) $\exists \omega_0, \omega_1 \in \Theta_0$ such that

$$\sigma_{\mathcal{F}}(\omega_1, \mathcal{L}\omega_0) = \sigma_{\mathcal{F}}(\Theta, \Phi), \quad \text{and} \quad \omega_0 S \omega_1,$$

- (iv) $\exists \psi \in \Psi$ such that

$$\omega, \varpi \in \Theta, \quad \omega S \varpi \quad \text{implies} \quad \sigma_{\mathcal{F}}(\mathcal{L}\omega, \mathcal{L}\varpi) \leq \psi(\sigma_{\mathcal{F}}(\omega, \varpi)), \quad (15)$$

Then $\exists \omega^ \in \mathcal{M}$ such that $\sigma_{\mathcal{F}}(\omega^*, \mathcal{L}\omega^*) \leq \sigma_{\mathcal{F}}(\Theta, \Phi)$.*

Proof. Define $\alpha : \Theta \times \Theta \rightarrow [0, \infty)$ by:

$$\alpha(\omega, \varpi) = \begin{cases} 1 & \text{if } \omega S \varpi \\ 0 & \text{otherwise.} \end{cases}$$

Suppose that

$$\begin{cases} \alpha(\omega_1, \omega_2) \geq 1 \\ \sigma_{\mathcal{F}}(u_1, \mathcal{L}\omega_1) = \sigma_{\mathcal{F}}(\Theta, \Phi) \\ \sigma_{\mathcal{F}}(u_2, \mathcal{L}\omega_2) = \sigma_{\mathcal{F}}(\Theta, \Phi) \end{cases}$$

for some $\omega_1, \omega_2, u_1, u_2 \in \Theta$. By the definition of α , we obtain that

$$\begin{cases} \omega_1 S \omega_2, \\ \sigma_{\mathcal{F}}(u_1, \mathcal{L}\omega_1) = \sigma_{\mathcal{F}}(\Theta, \Phi) \\ \sigma_{\mathcal{F}}(u_2, \mathcal{L}\omega_2) = \sigma_{\mathcal{F}}(\Theta, \Phi). \end{cases}$$

Then by supposition (ii), we obtain that $u_1 S u_2$. Now by the definition of α , we have $\alpha(u_1, u_2) \geq 1$. Thus, we established that \mathcal{L} is α -prox admis. Supposition (iii) yields

$$\sigma_{\mathcal{F}}(\omega_1, \mathcal{L}\omega_0) = \sigma_{\mathcal{F}}(\Theta, \Phi)$$

and $\alpha(\omega_0, \omega_1) \geq 1$. Finally, condition (iv) implies that

$$\alpha(\omega, \varpi) \sigma_{\mathcal{F}}(\mathcal{L}\omega, \mathcal{L}\varpi) \leq \psi(\sigma_{\mathcal{F}}(\omega, \varpi))$$

i.e., \mathcal{L} is an α - ψ -proximal contraction. Thus, all the assumption of Theorem 3.1 hold, and the required result comes directly from this result. \square

If we want to omit the continuity of \mathcal{L} , then we use this assumption:

(H) if $\{\omega_n\}$ in \mathcal{M} and $\omega \in \mathcal{M}$ are such that $\omega_n S \omega_{n+1}$, for all $n \geq 0$ and $\lim_{n \rightarrow \infty} \sigma_{\mathcal{F}}(\omega_n, \omega) = 0$, then $\exists \{\omega_{n(k)}\}$ of $\{\omega_n\}$ such that $\omega_{n(k)} S \omega$ for all k .

Theorem 4.4. Let $\Theta, \Phi \in Cl(\mathcal{M})$, where $(\mathcal{M}, \sigma_{\mathcal{F}})$ is complete \mathcal{F} -metric space such that $\Theta_0 \neq \emptyset$. Let \mathcal{R} be a binary relation over \mathcal{M} . Suppose that $\mathcal{L} : \Theta \rightarrow \Phi$ satisfying

- (i) $\mathcal{L}(\Theta_0) \subseteq \Phi_0$ and (Θ, Φ) fulfils the property P;
- (ii) \mathcal{L} is a proximal comparative mapping,
- (iii) $\exists \omega_0, \omega_1 \in \Theta_0$ such that

$$\sigma_{\mathcal{F}}(\omega_1, \mathcal{L}\omega_0) = \sigma_{\mathcal{F}}(\Theta, \Phi), \quad \text{and} \quad \omega_0 S \omega_1,$$

- (iv) $\exists \psi \in \Psi$ such that

$$\omega, \varpi \in \Theta, \omega S \varpi \quad \text{implies} \quad \sigma_{\mathcal{F}}(\mathcal{L}\omega, \mathcal{L}\varpi) \leq \psi(\sigma_{\mathcal{F}}(\omega, \varpi)),$$

- (v) (H) holds.

Then $\exists \omega^* \in \mathcal{M}$ such that $\sigma_{\mathcal{F}}(\omega^*, \mathcal{L}\omega^*) \leq \sigma_{\mathcal{F}}(\Theta, \Phi)$.

Proof. If we consider $\alpha : \Theta \times \Theta \rightarrow [0, \infty)$ given by

$$\alpha(\omega, \varpi) = \begin{cases} 1 & \text{if } \omega S \varpi \\ 0 & \text{otherwise.} \end{cases}$$

and by observing that assertion (H) yields condition (J), then from Theorem 3.2 we obtain the conclusion. \square

Theorem 4.5. Addition to the assumptions of Theorem 4.3 (respectively Theorem 4.4), assume that these conditions fulfils: for all $(\omega, \varpi) \in \Theta \times \Theta$ with $(\omega, \varpi) \notin S$, $\exists \varrho \in \Theta_0$ such that $\omega S \varrho$ and $\varpi S \varrho$. Then there exists $\omega^* \in \mathcal{M}$ such that $\sigma_{\mathcal{F}}(\omega^*, \mathcal{L}\omega^*) \leq \sigma_{\mathcal{F}}(\Theta, \Phi)$ which is unique.

4.2 Coupled best proximity points results

Definition 4.2. A point $(\omega^*, \varpi^*) \in \Theta \times \Theta$ is professed to be a coupled best proximity point of J if

$$\sigma_{\mathcal{F}}(\omega^*, J(\omega^*, \varpi^*)) = \sigma_{\mathcal{F}}(\varpi^*, J(\omega^*, \omega^*)) = \sigma_{\mathcal{F}}(\Theta, \Phi).$$

We establish the following notions.

$$\mathfrak{M} = \mathcal{M} \times \mathcal{M}, \quad \mathfrak{N}_1 = \Theta \times \Theta, \quad \mathfrak{N}_2 = \Phi \times \Phi.$$

Define $\mathcal{L} : \mathfrak{N}_1 \rightarrow \mathfrak{N}_2$ by

$$\mathcal{L}(\omega, \varpi) = (J(\omega, \varpi), J(\varpi, \omega)),$$

$\forall (\omega, \varpi) \in \mathfrak{N}_1$. We supply the product set \mathfrak{M} with $\sigma'_{\mathcal{F}}$ given by:

$$\sigma'_{\mathcal{F}}((\omega, \varpi), (u, v)) = \frac{\sigma_{\mathcal{F}}(\omega, u) + \sigma_{\mathcal{F}}(\varpi, v)}{2}.$$

Evidently, if $(\mathcal{M}, \sigma_{\mathcal{F}})$ is \mathcal{F} -complete, then $(\mathfrak{M}, \sigma'_{\mathcal{F}})$ is F -complete.

Definition 4.3. A mapping $J : \Theta \times \Theta \rightarrow \Phi$ is professed to be bi-proximal comparative (bi-prox comp) mapping if

$$\left. \begin{array}{l} \omega_1 S \omega_2, \varpi_1 S \varpi_2 \\ \sigma_{\mathcal{F}}(u_1, J(\omega_1, \varpi_1)) = \sigma_{\mathcal{F}}(\Theta, \Phi) \\ \sigma_{\mathcal{F}}(u_2, J(\omega_2, \varpi_2)) = \sigma_{\mathcal{F}}(\Theta, \Phi) \end{array} \right\} \Rightarrow u_1 S u_2$$

$\forall \omega_1, \omega_2, \varpi_1, \varpi_2, u_1, u_2 \in \Theta$.

Theorem 4.6. Let $\Theta, \Phi \in Cl(\mathcal{M})$, where $(\mathcal{M}, \sigma_{\mathcal{F}})$ is complete \mathcal{F} -metric space such that $\Theta_0 \neq \emptyset$ and R be a binary relation on \mathcal{M} . Assume that the mapping $J : \Theta \times \Theta \rightarrow \Phi$ is continuous satisfying

- (i) $J(\Theta_0 \times \Theta_0) \subseteq \Phi_0$ and (Θ, Φ) fulfils the property P ,
- (ii) J is a bi-prox comp mapping,
- (iii) $\exists \omega_0, \varpi_0, \omega_1, \varpi_1 \in \Theta_0$ such that

$$\sigma_{\mathcal{F}}(\omega_1, J(\omega_0, \varpi_0)) = \sigma_{\mathcal{F}}(\varpi_1, J(\varpi_0, \omega_0)) = \sigma_{\mathcal{F}}(\Theta, \Phi), \quad \text{and} \quad \omega_0 S \omega_1, \varpi_0 S \varpi_1,$$

(iv) $\exists \psi \in \Psi$ in such that

$$\omega, \varpi, u, v \in \Theta, \omega S u, \varpi S v \Rightarrow \sigma_{\mathcal{F}}(J(\omega, \varpi), J(u, v)) \leq \psi\left(\frac{\sigma_{\mathcal{F}}(\omega, u) + \sigma_{\mathcal{F}}(\varpi, v)}{2}\right). \quad (16)$$

Then J possess a coupled best proximity point.

Proof. Define a binary relation R_2 on \mathcal{M} by $(\omega, \varpi), (u, v) \in \mathfrak{M}, (\omega, \varpi) R_2 (u, v)$ if and only if $\omega S u, \varpi S v$. If we represent by S_2 the symmetric relation devoted to R_2 , evidently, we obtain $S_2 = R_2$. We assert that $\mathcal{L} : \Theta \times \Theta \rightarrow \Phi$ has a best proximity point $(\omega^*, \varpi^*) \in \Theta_0 \times \Theta_0$, such that

$$\sigma'_{\mathcal{F}}((\omega^*, \varpi^*), \mathcal{L}(\omega^*, \varpi^*)) = \sigma'_{\mathcal{F}}(\mathfrak{N}_1, \mathfrak{N}_2).$$

Represent by:

$$\begin{aligned} \mathcal{A}_0 &= \{(\ell_1, \ell_2) \in \mathfrak{N}_1, \sigma'_{\mathcal{F}}((\ell_1, \ell_2), (h_1, h_2)) = \sigma'_{\mathcal{F}}(\mathfrak{N}_1, \mathfrak{N}_2) \quad \text{for some } (h_1, h_2) \in \mathcal{B}_0\} \\ \mathcal{B}_0 &= \{(h_1, h_2) \in \mathfrak{N}_2, \sigma'_{\mathcal{F}}((\ell_1, \ell_2), (h_1, h_2)) = \sigma'_{\mathcal{F}}(\mathfrak{N}_1, \mathfrak{N}_2) \quad \text{for some } (\ell_1, \ell_2) \in \mathcal{A}_0\}. \end{aligned}$$

We can observe that

$$\sigma'_{\mathcal{F}}(\mathfrak{N}_1, \mathfrak{N}_2) = \sigma_{\mathcal{F}}(\Theta, \Phi).$$

In fact, we have

$$\begin{aligned}
\sigma'_F(N_1, N_2) &= \inf\{\sigma'_F((\ell_1, \ell_2), (\hbar_1, \hbar_2)) : (\ell_1, \ell_2) \in N_1, (\hbar_1, \hbar_2) \in N_2\} \\
&= \frac{1}{2} \inf\{\sigma_F((\ell_1, \hbar_1) + (\ell_2, \hbar_2)) : (\ell_1, \hbar_1) \in N_1 \times N_2, (\ell_2, \hbar_2) \in N_1 \times N_2\} \\
&= \frac{1}{2}(\inf\{\sigma_F((\ell_1, \hbar_1) : (\ell_1, \hbar_1)) \in \Theta \times \Phi\} + \inf\{\sigma_F((\ell_2, \hbar_2)) : (\ell_2, \hbar_2) \in \Theta \times \Phi\}) \\
&= \frac{1}{2}(\sigma_F(\Theta, \Phi) + \sigma_F(\Theta, \Phi)) \\
&= \sigma_F(\Theta, \Phi).
\end{aligned}$$

Now, let $(\ell_1, \ell_2) \in \mathcal{A}_0$. Then there exists $(\hbar_1, \hbar_2) \in N_2$ such that

$$\sigma'_F((\ell_1, \ell_2), (\hbar_1, \hbar_2)) = \sigma'_F(N_1, N_2),$$

that is,

$$\sigma_F((\ell_1, \hbar_1) + (\ell_2, \hbar_2)) = 2\sigma_F(\Theta, \Phi).$$

Thus, we have

$$\begin{cases} \sigma_F((\ell_1, \hbar_1) + (\ell_2, \hbar_2)) = 2\sigma_F(\Theta, \Phi) \\ \sigma_F(\ell_1, \hbar_1) \geq \sigma_F(\Theta, \Phi) \\ \sigma_F(\ell_2, \hbar_2) \geq \sigma_F(\Theta, \Phi), \end{cases}$$

which implies that

$$\sigma_F(\ell_1, \hbar_1) = \sigma_F(\ell_2, \hbar_2) = \sigma_F(\Theta, \Phi).$$

This implies that $(\ell_1, \ell_2) \in \Theta_0 \times \Theta_0$. Similarly, if $(\ell_1, \ell_2) \in \Theta_0 \times \Theta_0$, we have $(\ell_1, \ell_2) \in \mathcal{A}_0$. Thus, we proved that $\Theta_0 \times \Theta_0 = \mathcal{A}_0$. Likewise, we can prove that $\Phi_0 \times \Phi_0 = \mathcal{B}_0$. Since $\Theta_0 \neq \emptyset$, then $\mathcal{A}_0 \neq \emptyset$. Otherwise, from (i), we have

$$\mathcal{L}(N_1) = \{(J(\omega, \varpi), J(\varpi, \omega)) : (\omega, \varpi) \in \Theta_0 \times \Theta_0\} \subset J(\Theta_0 \times \Theta_0) \times J(\Theta_0 \times \Theta_0) \subseteq \mathcal{B}_0.$$

Suppose now that for some $(\ell_1, \ell_2), (\omega_1, \omega_2) \in N_1, (\hbar_1, \hbar_2), (\varpi_1, \varpi_2) \in N_2$, we have

$$\begin{aligned}
\sigma'_F((\ell_1, \ell_2), (\hbar_1, \hbar_2)) &= \sigma'_F(N_1, N_2) \\
\sigma'_F((\omega_1, \omega_2), (\varpi_1, \varpi_2)) &= \sigma'_F(N_1, N_2).
\end{aligned}$$

This implies that

$$\begin{aligned}
\sigma_F((\ell_1, \hbar_1)) &= \sigma_F((\ell_2, \hbar_2)) = \sigma_F(\Theta, \Phi) \\
\sigma_F((\omega_1, \varpi_1)) &= \sigma_F((\omega_2, \varpi_2)) = \sigma_F(\Theta, \Phi).
\end{aligned}$$

Since (Θ, Φ) fulfils the property P , we obtain that

$$\sigma_F((\ell_1, \omega_1)) = \sigma_F((\varpi_1, \hbar_1))$$

and

$$\sigma_F((\ell_2, \omega_2)) = \sigma_F((\varpi_2, \hbar_2)),$$

which implies that

$$\sigma'_F((\ell_1, \ell_2), (\omega_1, \omega_2)) = \sigma'_F((\hbar_1, \hbar_2), (\varpi_1, \varpi_2)).$$

Thus, we showed that (N_1, N_2) fulfils the property P . Assume that for some

$$(\ell_1, \ell_2), (\omega_1, \omega_2), (u_1, u_2), (v_1, v_2) \in N_1,$$

we have

$$(\ell_1, \ell_2)S_2(\omega_1, \omega_2)$$

$$\sigma'_F((u_1, u_2), \mathcal{L}(\ell_1, \ell_2)) = \sigma'_F(N_1, N_2)$$

$$\sigma'_F((v_1, v_2), \mathcal{L}(\omega_1, \omega_2)) = \sigma'_F(N_1, N_2).$$

This implies that

$$\begin{aligned} & \ell_1 \mathcal{S} \omega_1, \ell_2 \mathcal{S} \omega_2 \\ & \sigma_{\mathcal{F}}(\omega_1, J(\ell_1, \ell_2)) = \sigma_{\mathcal{F}}(\Theta, \Phi) \\ & \sigma_{\mathcal{F}}(\omega_2, J(\ell_2, \ell_1)) = \sigma_{\mathcal{F}}(\Theta, \Phi), \end{aligned}$$

and

$$\begin{aligned} & \ell_2 \mathcal{S} \omega_2, \ell_1 \mathcal{S} \omega_1 \\ & \sigma_{\mathcal{F}}(\omega_2, J(\ell_2, \ell_1)) = \sigma_{\mathcal{F}}(\Theta, \Phi) \\ & \sigma_{\mathcal{F}}(\omega_1, J(\ell_1, \ell_2)) = \sigma_{\mathcal{F}}(\Theta, \Phi). \end{aligned}$$

Since \mathcal{J} is a bi-prox comp, so we have

$$u_1 \mathcal{S} v_1, u_2 \mathcal{S} v_2,$$

that is,

$$(u_1, u_2) \mathcal{S}_2 (v_1, v_2).$$

which shows \mathcal{L} is a prox comp. Now, from condition (iii), we obtain

$$\sigma_{\mathcal{F}}(\omega_1, J(\omega_0, \varpi_0)) + \sigma_{\mathcal{F}}(\varpi_1, J(\varpi_0, \omega_0)) = 2\sigma_{\mathcal{F}}(\Theta, \Phi)$$

and

$$(\omega_0, \varpi_0) \mathcal{S}_2 (\omega_1, \varpi_1),$$

which implies that

$$\sigma_{\mathcal{F}}'((\omega_1, \varpi_1), \mathcal{L}(\omega_0, \varpi_0)) = \sigma_{\mathcal{F}}'(\aleph_1, \aleph_2)$$

and

$$(\omega_0, \varpi_0) \mathcal{S}_2 (\omega_1, \varpi_1).$$

Moreover, if $(\omega, \varpi), (u, v) \in \aleph_1$ are such that

$$(\omega_0, \varpi_0) \mathcal{S}_2 (u, v),$$

i.e., $\omega \mathcal{S} u$ and $\varpi \mathcal{S} v$, from condition (iv), we have

$$\sigma_{\mathcal{F}}(J(\omega, \varpi), J(u, v)) \leq \psi \left(\frac{\sigma_{\mathcal{F}}(\omega, u) + \sigma_{\mathcal{F}}(\varpi, v)}{2} \right) \quad (17)$$

and

$$\sigma_{\mathcal{F}}(J(\varpi, \omega), J(v, u)) \leq \psi \left(\frac{\sigma_{\mathcal{F}}(\varpi, v) + \sigma_{\mathcal{F}}(\omega, u)}{2} \right). \quad (18)$$

Adding (17) to (18), we obtain that

$$\sigma_{\mathcal{F}}'((J(\omega, \varpi), J(\varpi, \omega)), (J(u, v), J(v, u))) \leq \psi(\sigma_{\mathcal{F}}'((\omega, \varpi), (u, v))),$$

i.e.,

$$\sigma_{\mathcal{F}}'(\mathcal{L}(\omega, \varpi), \mathcal{L}(u, v)) \leq \psi(\sigma_{\mathcal{F}}'((\omega, \varpi), (u, v))).$$

Now, all the assumptions of Theorem 4.3 hold, and thus, we conclude then that J possess a best proximity point $(\omega^*, \varpi^*) \in \mathcal{A}_0$, that is, $(\omega^*, \varpi^*) \in \Theta_0 \times \Theta_0$, which satisfies

$$\sigma_{\mathcal{F}}'((\omega^*, \varpi^*), \mathcal{L}(\omega^*, \varpi^*)) = \sigma_{\mathcal{F}}'(\aleph_1, \aleph_2).$$

As we already proved that

$$\sigma_{\mathcal{F}}'(\mathbf{x}_1, \mathbf{x}_2) = \sigma_{\mathcal{F}}(\Theta, \Phi),$$

so the aforementioned equality implies immediately that

$$\sigma_{\mathcal{F}}(\omega, J(\omega^*, \varpi^*)) = \sigma_{\mathcal{F}}'(\varpi^*, J(\varpi^*, \omega^*)) = \sigma_{\mathcal{F}}(\Theta, \Phi). \quad \square$$

Theorem 4.7. *Let $(\mathcal{M}, \sigma_{\mathcal{F}})$ is complete \mathcal{F} -metric space, $\Theta, \Phi \in Cl(\mathcal{M})$ such that $\Theta_0 \neq \emptyset$. Let R is binary relation over \mathcal{M} . Assume that the mapping $\mathcal{J} : \Theta \times \Theta \rightarrow \Phi$ is continuous satisfying*

- (i) $\mathcal{J}(\Theta_0 \times \Theta_0) \subseteq \Phi_0$ and (Θ, Φ) fulfils the property P ;
- (ii) \mathcal{J} is a bi-proximal comparative mapping,
- (iii) there exist $\omega_0, \varpi_0, \omega_1, \varpi_1 \in \Theta_0$ such that

$$\sigma_{\mathcal{F}}(\omega_1, \mathcal{J}(\omega_0, \varpi_0)) = \sigma_{\mathcal{F}}(\varpi_1, \mathcal{J}(\varpi_0, \omega_0)) = \sigma_{\mathcal{F}}(\Theta, \Phi), \quad \text{and} \quad \omega_0 S \omega_1, \quad \varpi_0 S \varpi_1,$$

- (iv) $\exists a \psi \in \Psi$ in such that

$$\omega, \varpi, u, v \in \Theta, \omega S u, \varpi S v \Rightarrow \sigma_{\mathcal{F}}(J(\omega, \varpi), J(u, v)) \leq \psi \left(\frac{\sigma_{\mathcal{F}}(\omega, u) + \sigma_{\mathcal{F}}(\varpi, v)}{2} \right),$$

- (v) (H) holds.

Then \mathcal{J} has a coupled best proximity point.

Theorem 4.8. *Besides the assumptions of Theorem 4.6 (respectively Theorem 4.7), assume that this condition holds: $\forall (\omega, \varpi) \in \Theta \times \Theta, \exists \varrho \in \Theta_0$ such that $\omega S \varrho$ and $\varpi S \varrho$. Then \mathcal{L} has a unique best proximity point $(\omega^*, \varpi^*) \in \Theta \times \Theta$. Moreover, we have $\omega^* = \varpi^*$.*

Proof. Suppose $(\omega, \varpi), (u, v) \in \Theta \times \Theta$. By the assumptions, there exists $z_1 \in \Theta_0$ such that $\omega S z_1$ and $u S z_1$. Likewise, there exists $z_2 \in \Theta_0$ such that $\varpi S z_2$ and $v S z_2$. Hence, we obtain $(\omega, \varpi) S_2(z_1, z_2)$ and $(u, v) S_2(z_1, z_2)$, where $(z_1, z_2) \in \Theta_0 \times \Theta_0$. Now, by Theorem 4.5, we establish that \mathcal{L} has a unique best proximity point, i.e., a unique coupled best proximity point of \mathcal{L} . \square

By setting $\Theta = \Phi$ in Theorem 3.1, we establish this result.

Theorem 4.9. *Let $(\mathcal{M}, \sigma_{\mathcal{F}})$ is complete \mathcal{F} -metric space and $\Theta \in Cl(\mathcal{M})$. Assume that $\mathcal{L} : \Theta \rightarrow \Theta$ satisfies the condition:*

$$\sigma_{\mathcal{F}}(\mathcal{L}\omega, \mathcal{L}\varpi) \leq \psi(\sigma_{\mathcal{F}}(\omega, \varpi))$$

$\forall \omega, \varpi \in \Theta$, where $\psi \in \Psi$. Then there exists $\omega^* \in \Theta$ such that $\mathcal{L}\omega^* = \omega^*$, which is unique.

By setting $\psi(1) = k_1$ for some $k \in (0, 1)$ and $1 > 0$ in Theorem 4.9, we obtain the main result of Jleli and Samet [18].

Theorem 4.10. *Let $(\mathcal{M}, \sigma_{\mathcal{F}})$ is complete \mathcal{F} -metric space and $\Theta \in Cl(\mathcal{M})$. Assume that $\mathcal{L} : \Theta \rightarrow \Theta$ satisfies the condition:*

$$\sigma_{\mathcal{F}}(\mathcal{L}\omega, \mathcal{L}\varpi) \leq k\sigma_{\mathcal{F}}(\omega, \varpi),$$

$\forall \omega, \varpi \in \Theta$, where $k \in (0, 1)$. Then $\exists \omega^* \in \Theta$ such that $\mathcal{L}\omega^* = \omega^*$, which is unique.

Author contributions: The author has accepted responsibility for the entire content of this article and approved its submission.

Conflict of interest: The author states no conflict of interest.

References

- [1] S. Banach, *Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales*, Fundam. Math. **3** (1922), 133–181.
- [2] S. S. Basha, *Extensions of Banach's contraction principle*, Numer. Funct. Anal. Optim. **31** (2010), 569–576.
- [3] A. Eldred and P. Veeramani, *Existence and convergence of best proximity points*, J. Math. Anal. Appl. **323** (2006), no. 2, 1001–1006.
- [4] B. Samet, C. Vetro, and P. Vetro, *Fixed point theorem for α - ψ -contractive type mappings*, Nonlinear Anal. **75** (2012), 2154–2165.
- [5] M. Jleli and B. Samet, *Best proximity points for $(\alpha$ - ψ)-proximal contractive type mappings and applications*, Bulletin des Sciences Mathématiques **137** (2013), 977–995.
- [6] A. Abkar and M. Gabeleh, *Best proximity points for cyclic mappings in ordered metric spaces*, J. Optim. Theory Appl. **150** (2011), 188–193.
- [7] A. Abkar and M. Gabeleh, *The existence of best proximity points for multivalued non-self-mappings*, Acad. Cienc. Exactas Fs. Nat. Ser. A Math. RACSAM **107** (2013), 319–325.
- [8] G. Gecheva, M. Hristov, D. Nedelcheva, M. Ruseva, and B. Zlatanov, *Applications of coupled fixed points for multivalued maps in the equilibrium in duopoly markets and in aquatic ecosystems*, Axioms **10** (2021), no. 2, 44, DOI: <https://doi.org/10.3390/axioms10020044>.
- [9] M. Hristov, A. Ilchev, and B. Zlatanov, *On some application on coupled and best proximity points theorems*, In: AIP Confer. Proc. **2333** (2021), 080008, DOI: <https://doi.org/10.1063/5.0041716>.
- [10] M. Hristov, A. Ilchev, and B. Zlatanov, *Coupled fixed points for Chatterjea type maps with the mixed monotone property in partially ordered metric spaces*, AIP Confer. Proc. **2172** (2019), 060003, DOI: <https://doi.org/10.1063/1.5133531>.
- [11] B. Zlatanov, *Best proximity points in modular function spaces*, Arabian J. Math. **4** (2015), no. 3, 215–227.
- [12] A. Ilchev and B. Zlatanov, *Fixed and best proximity points for Kannan cyclic contractions in modular function spaces*, J. Fixed Point Theory Appl. **19** (2017), no. 4, 2873–2893.
- [13] A. Ilchev and B. Zlatanov, *Coupled fixed points and coupled best proximity points in modular function spaces*, Int. J. Pure Appl. Math. **118** (2018), no. 4, 957–977.
- [14] A. Ilchev and B. Zlatanov, *Coupled fixed points and coupled best proximity points for cyclic Kannan type contraction maps in modular function spaces*, Matex Confer. Proc. **1** (2018), 75–88.
- [15] B. Zlatanov, *Coupled best proximity points for cyclic contractive maps and their applications*, Fixed Point Theory **22** (2021), 431–452.
- [16] I. A. Bakhtin, *The contraction mapping principle in almost metric spaces*, Funct. Anal. **30** (1989), 26–37.
- [17] S. Czerwinski, *Contraction mappings in b -metric spaces*, Acta Math. Inform. Univ. Ostrava. **1** (1993), 5–11.
- [18] M. Jleli and B. Samet, *On a new generalization of Metric Spaces*, J. Fixed Point Theory Appl. **20** (2018), 128.
- [19] S. A. Al-Mezel, J. Ahmad, and G. Marino, *Fixed point theorems for generalized $(\alpha\beta\psi)$ -Contractions in \mathcal{F} -metric spaces with applications*, Mathematics **8** (2020), no. 4, 584, DOI: <https://doi.org/10.3390/math8040584>.
- [20] J. Ahmad, A. S. Al-Rawashdeh, and A. E. Al-Mazrooei, *Fixed point results for $(\alpha, \perp_{\mathcal{F}})$ -contractions in orthogonal \mathcal{F} -metric spaces with applications*, J. Funct. Spaces **2022** (2022), no. 3, 1–10.
- [21] M. Alansari, S. Mohammed, and A. Azam, *Fuzzy fixed point results in \mathcal{F} -metric spaces with applications*, J. Function Spaces. **2020** (2020), 5142815, 11 pages.
- [22] A. E. Al-Mazrooei and J. Ahmad, *Fixed point theorems for rational contractions in \mathcal{F} -metric spaces*, J. Math. Anal. **10** (2019), 79–86.
- [23] L. A. Alnaser, D. Lateef, H. A. Fouad, and J. Ahmad, *Relation theoretic contraction results in \mathcal{F} -metric spaces*, J. Nonlinear Sci. Appl. **12** (2019), 337–344.
- [24] L. A. Alnaser, D. Lateef, H. A. Fouad, and J. Ahmad, *New fixed point theorems with applications to non-linear neutral differential equations*, Symmetry **11** (2019), 602.
- [25] O. Alqahtani, E. Karapinar, and P. Shahi, *Common fixed point results in function weighted metric spaces*, J. Inequal. Appl. **2019** (2019), 164.
- [26] A. Beraž, H. Garai, B. Damjanović, and A. Chanda, *Some interesting results on \mathcal{F} -metric spaces*, Filomat **33** (2019), no. 10, 3257–3268.
- [27] D. Lateef and D. J. Ahmad, *Dass and Guptaas Fixed point theorem in \mathcal{F} -metric spaces*, J. Nonlinear Sci. Appl. **12** (2019), 405–411.
- [28] A. Hussain, H. Al-Sulami, N. Hussain, and H. Farooq, *Newly fixed disc results using advanced contractions on \mathcal{F} -metric space*, J. Appl. Anal. Comput. **10** (2020), no. 6, 2313–2322.
- [29] F. Jahangir, P. Haghmaram, and K. Nourouzi, *A note on \mathcal{F} -metric spaces*, J. Fixed Point Theory Appl. **23** (2021), 2.
- [30] T. Kanwal, A. Hussain, H. Baghani, and M. de la Sen, *New fixed point theorems in orthogonal \mathcal{F} -metric spaces with application to fractional differential equation*, Symmetry **12** (2020), no. 5, 832.
- [31] Z. D. Mitrović, H. Aydi, N. Hussain, and A. Mukheimer, *Reich, Jungck, and Berinde common fixed point results on \mathcal{F} -metric spaces and an application*, Mathematics. **7** (2019), no. 5, 387.

- [32] A. Tomar and M. Joshi, *Relation-theoretic nonlinear contractions in an \mathcal{F} -metric space and applications*, Rendiconti del Circolo Matematico di Palermo Series **70** (2021), 835–852.
- [33] C. Zhu, J. Chen, J. Chen, C. Chen, and H. Huang, *A new generalization of \mathcal{F} -metric spaces and some fixed point theorems and applications*, J. Appl. Anal. Comput. **11** (2021), 2649–2663.
- [34] D. Guo and V. Lakshmikantham, *Coupled fixed points of nonlinear operators with application*, Nonlinear Anal. **11** (1987), no. 5, 623–632.
- [35] T. Bhaskar and V. Lakshmikantham, *Fixed point theorems in partially ordered metric spaces and applications*, Nonlinear Anal. **65** (2006), no. 7, 1379–1393.