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1 Introduction

The Banach contraction principle [1] is the first result which was introduced by Stefan Banach in 1922 in
which notions of fixed point and metric space play an important role. Let ©, @ be non-empty subsets of
metric space (M, o). A point w € M is called a fixed point of £ : ® — @ if Lw = w. Because of significance
and simplicity of the concept of the fixed point, this conception has been improved and lengthened in many
distinct ways. In 2010, Basha [2] gave the conception of best proximity point and extended the famous
Banach’s contraction principle. For more particular on this perspective, we refer the readers to [3-15].
On the other hand, the well-known extensions of the notion of metric spaces have been done by Bakhtin
[16] which was conventionally given by Czerwik [17] in 1993 by generalizing the Banach contraction
principle. Jleli and Samet [18] introduced a novel metric space known as ¥ -metric space to extend the
classical metric space and b-metric space. Later on, Al-Mezel et al. [19] introduced the notion of generalized
(aB-)-contractions in F -metric spaces with the help of a-admissibility of the mapping and obtained fixed-
point results in this generalized space.

In this article, we introduce a-)-proximal contraction in the background of ¥ -metric space and prove
the existence of best proximity points for these contractions.

2 Preliminaries

We state this section with definition of b-metric space in this manner.

Definition 2.1. (See [17]). Let M # @ and s > 1. A function g, : M x M — [0, o) is called a b-metric if the
following assertions hold:
(b1) op(w, @) = 0 if and only if w = w;
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(b2) op(w, @) = op(w, w),
(b3) O'b((l), V) < S[Gb(w, w) + Gb(w, V)],
Yw,o,v e M.

The pair (M, op) is called a b-metric space.

Jleli and Samet [18] established a fascinating extension of a metric space as follows.
Let ¥ be the set of functions f: (0, +c0) — R satisfying the following conditions:
(F1) 0<s<1= f(s) <fQ,
(F2) forall {i,} cR™, lim,_l, =0 & lim,_.f(1,) = —co.

Definition 2.2. [18] Let M # @ and let o7 : M x M — [0, +00). Assume that 3(f, a) € F x [0, +00)

such that

D1) (w,w) e M x M, o(w, w) = 0 if and only if w = w.

(D2) oF(w, w) = oF(@, w), V(w, m) € M x M.

(D3) For every (w, @) € M x M, for every N € N, N > 2, and for every (ui)f\il c M, with (u, uy) = (w, @),
we have

N-1
or(w, @) > 0 = f(or(w, ®)) < f( Y or(us, um)) +a.

i=1

Then (M, o) is called an ¥ -metric space.

Example 2.1. (See [18]) The function o7 : R x R — [0, +00)

(w - w)? if (w,w) € [0, 3] x [0, 3]

or(w, @) = {|w - if (w,@) ¢ [0, 3] x [0, 3],

with f(1) = In(1) and a = In(3), is an ¥ -metric.

Remark 2.1. It is clear from the definition that any metric space is an ¥ -metric space, but the inverse is not
true in general.

Definition 2.3. (See [18]) Let (M, o) be an ¥ -metric space.
(i) Let {k,} € M. The sequence {w,} is said to be ¥ -convergent to w € M if {w,} is convergent to w
regarding ¥ -metric o¢.
(ii) The sequence {wy} is called ¥ -Cauchy, iff

lim or(wy, wy) = 0.
n,m—oo

(iii) If every F -Cauchy sequence in M is ¥ -converges to a point in M, then (M, o¢) is ¥ -complete.
Theorem 2.1. [18] Let (M, d#) be an ¥ -metric space and L : M — M and assume that the conditions given
below are satisfied:

(i) (M, o) is F -complete,
(ii) 3k € (0, 1), such that

07 (L(w), L)) < kor(w, ).
Then L has a unique fixed point w* € M. Moreover, for any wy, € M, the sequence {w,} ¢ M defined by
Wni1 = L(wy), neN,

is F -convergent to w*.
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For more characteristics in these ways, we mention the researchers to [18-32].
Motivated with Basha [2], we define the notion of best proximity point in the context of ¥ -metric space
in this way.

Definition 2.4. Let (M, 0#) is ¥ -metric space and ©, ® € N(M). An element w* € O is professed to be a
best proximity point of £ : ® — @ if this assertion hold
0'7-'((1)*, Lw*) < 0'7-'(6, D).

Consistent with Eldred and Veeramani [3], we give the ¥ -distance between the pair (0, @) of two nonempty
sets which satisfy the property P.

Definition 2.5. Let (M, 05) is ¥ -metric space and ©, ® € N(M), then o+(0, @) is ¥ -distance between two
nonempty sets ® and ®. Now define 0 and @, by

O ={w € © : Ju € ® such that or(w, u) = 05(0, ®)}
Oy ={u € ®: 3w € 0 such that or(w, u) = 07(0, O)}.
Then (O, @) is called to have the property P if ©, + & and

W, € Bp, u, v e Dy, 0r(w,u) =0r(@,V) =070, D) = 05w, ®) = 05U, V).

Definition 2.6. Let (M, 0#) is F -metric space and 0, ® € N(M). A mapping £ : © — @ is called a-prox-
imal admissible (a-prox admis) if 3 a function a : ® x @ — [0, co0) such that

alw,w) >1
or(u, Lw) = 07(0,D)r = a(u,v) =1,
UT(V9 LZD) = 0-7"(8) q))

where w, @, u, v € O.

3 Best proximity point results in ¥ -metric spaces

We represent by W the collection of non-decreasing functions ¥ : [0, co) — [0, co) such that Zﬁillp”(l) < 00
for each1 > 0. If € ¥, then (1) < 1 for all 1 > 0. We also denote N(M) and CI(M) as set of non-empty
subsets of M and closed subsets of M, respectively.

Definition 3.1. Let (M, o) is ¥ -metric space and 6, ® € N(M). A mapping L : © — @ is said to be an
a-y-proximal contraction if there exists ) ¢ Yand a : ® x © — [0, co) such that

a(w, )or(Lw, L) < YP(or(w, @)) 6))]

Yw, m € 0.

Theorem 3.1. Let (M, 07) is complete ¥ -metric space and ©, ® € CI(M) such that ©y + &. Let
a:0 x0 — [0,00)and P € V. Assume that L : © — @ be an a-\-proximal contraction and a-prox admis
satisfying these assertions:

(1) L(©g) € Dy and (0, D) fulfils the property P;

(i1) Jwg, w, € O such that

o (w1, Lwy) = 07(0, D), and a(wo, wy) = 1.
(iti) L is continuous.

Then w* € O such that o7 (w*, Lw*) < 07(0, D).



4 —— Durdana Lateef DE GRUYTER

Proof. By the hypothesis (ii), Jwg, w; € Oy such that
o7 (w1, Lwg) = 050, ), a(wy, wy) > 1. 2
Since L(0g) € @y, Jw, € Oy such that
o5 (w7, Lwy) = 05(0, D).

Now, we have a(wg, wy) = 1, o7 (w1, Lwy) = 07(0, D), and 05 (w;, Lw;) = 07(0, ®). As the mapping L is
a-prox admis, we obtain a(w;, w,) > 1. Hence,

or(wy, Lwy) = 0£(0, D), a(w, wy) = 1. 3
Again since £(0g) € @y, Jws € B¢ such that
05 (w3, Lwy) = 0£(0, D).

Now, we have a(w,, w;) > 1, 05 (w,, Lw,) = 07(0, ®) and o5 (w3, Lw,) = 07(0, @). As the mapping L is
a-prox admis, we obtain a(w,, w3) > 1. Hence,

07 (w3, Lwy) = 07(0, D), alwy, w3) > 1. (4)
By pursuing in this way, by induction, we can generate {w,} c ©¢ such that
07 (Wns1, Lwn) = 07(0, D),  a(Wn, Wni1) > 1, 5)
vn € N U {0}. Assume that wy = wy,, for some k. From (5), we have
07 (Wi, Lwi) = 07 (W1, Lwi) = 07(0, D),

i.e., wy is a best proximity point of £. Hence, we assume that o7 (w,_1, w,) > 0 foralln € N U {0}. As (0, @)
satisfies the property P, we summarize from (5) that

05 (Wn, Wns1) = OF (LWp-1, LWp),
vn € N U {0}. So by (1), we have
07 (Wn, Wni1) < AW, Wni1)07(Wny Wni1) = A(Wn, Wne1)0F (LWn-1, Lwn) < P(OF(Wn-1, Wn)) (6)
Vn > 0. By using the monotonicity of i) and (6), we obtain
07 (Wn, Wn41) < P07 (Wo, W1))

vn € N U {0}. Let € > 0 be fixed and (f, a) € F x [0, +00) be such that (D3) is satisfied. By (¥3), 36 > 0 such
that

0<1<6=f@)<f(e) - a. (7)
Let n(e) € N such that ann(é)lp"(af(wo, w1)) < 6. Hence, by (6), (7), and (¥7), we have
m-1
f ( Y Yi(ar(wo, wl))] <f [ Y Yo (wo, w1))] <f(e)-a 8)
i=n n>n(6)

for m > n > n(¢). By using (Ds3) and (8), we obtain or(wy,, w,) > 0, m > n > n(g) implies
m-1 m-1
floF(wm, wn) < f ( Z o7 (w;, wm)) tas< f( Z Yo7 (wo, wl))] +a < f(e),

which implies by (#7) that o7 (wn, w,) < €, m > n > n(¢). This proves that {w,} is ¥ -Cauchy. Since (M, o#)
is ¥ -complete and O is closed, Jw* € O such that {w,} is ¥ -convergent to w*, i.e.,

lim o (wy, w*) = 0, 9

n—oo

ie., Lw, - Lw* asn — oo. By using the continuity of o, we obtain
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07(0, D) = 05 (Wny1, Lwy) — ox(w*, Lw*)

as n — oo. Therefore, oF(w*, Lw*) = 07(0, ®). O

(k) If{wn} € O such that a(wy, wyy) = 1, forallnand w, - w € ® asn — oo, then 3 {wy} of {w,} such that
a(wn, w) = 1, for all k.

Theorem 3.2. Let (M, 0F) be a complete ¥ -metric space and ©, ® € CI(M) such that ©, + &. Let
a:0x0 — [0,00) and P € V. Assume that L : © — ® be an a-\-proximal contraction and a-proximal
admissible satisfies these assertions:
(i) L(©g) € @y and (0, D) satisfies the property P;
(i1) Jwy, w, € Oy such that
o7 (w1, Lwo) = 07(0, D), and a(wy, wy) = 1.

(iii) (J) holds.
Then Jw* € M such that o (w*, Lw*) < 0+(0, D).

Proof. Backing the result of Theorem 3.1, 3 {w,} ¢ © such that (1) holds and {w,} is ¥ -convergent to w*, i.e.,

lim o7 (wy, w*) = 0.

n—oo0

By the property (k), 3 {wn} of {w,} such that a(wny), w*) > 1, for all k. We declare that Lw,g) — Lw* as
k — o0. So by (1), we obtain

07 (LWn(ky, Lw*) < A(Wneiy, 0)OF(LWn(r)s LW*) < P(OF (Wneicy, W*))
Vk. By taking k — co and using the continuity of o7, we have
0r(0, ®) = 0 (Wn@y+1, LWney) — o7 (w*, Lw*)
as n — oo. Therefore,
or(w*, Lw*) = 0r(0, ©)
thus proved. O
Definition3.2.Let £ : © - ®anda : © x © — [0, c0). The mapping £ is said to be (a, or)-regular if for all
(w, @) € a7'[0, 1), I p € Oy such that
a(w,m)>1 and a(w,p) = 1.

Theorem 3.3. Besides to the supposition of Theorem 3.1 (respectively Theorem 3.2), assume that L is (a, 0)
-regular. Then, 3 w* € © such that or(w*, Lw*) < 07(0, @), which is unique.

Proof. It is clear from the Theorem 3.1 that the set of best proximity points of £ is non-empty. Assume that
Jw* € Oy of L, ie.,
or(Lw*, w*) = o5 (Lo*, ®*) = 07(0, D). (10)
By using the property P and (10), we obtain that
oF(Lw*, L©*) = o (w*, ©*). (11)

We discuss two cases.
Case 1. If a(w*, @*) > 1, by using (10), we obtain that

O-‘F(w*’ ID*) = 0-7»'(.1:(1)*, Lw*) < a(w*) W*)GT(L(U*) Lw*) < l/)(af(a)*! w*))'

Since Y(1) < , for allt > 0, the aforementioned inequality satisfies only if or(w*, @*) = 0, i.e., w* = @*.
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Case 2. If a(w*, @*) < 1.

DE GRUYTER

By supposition, 3 g, € O such that a(w*, g,) =1 and a(w*, g,) = 1. Since L(By) < Dy, there exists

0, € O such that
Uf(gl’ LQO) = 0-‘7:(69 q))'

Now, we have
a(w*, 0y) =1

or(w*, Lw") = 05(6, D),
o7 (0, Loy) = 07(0, D).
As L is a-prox admis, so we have a(w*, p,) > 1. Hence,
or(0;, L0y) = 05(0, ) and a(w*, o) = 1.
By pursuing in this way, we can generate a sequence {p,} in 6, such that
07 (0,1 L0, = 07(0,®) and a(w*,p,) =1
vn > 0. By property P and (12), we obtain that
07 (Qp1» @) = 07 (LR, L)
vn e N U {0}. Since £ is an a-i-proximal contraction, we have
07 Q1> W) = 07 (Lo, L") < a(Q,, w)0r(LRy, Lw”) < P(07 (R, 7))
Vn > 0. By induction, we can obtain
07(Q,» @) < Y(07(Ry, @"))
vn > 0. Assume that g, = w*. Then by (13), we obtain
07 (0, W) = 07(Loy, Lw*) = 05 (Lw*, Lw*) = 0,

(12)

(13)

(14)

that is, p, = w*. By pursuing in this way and inductively, we have p, = w*, for all n > 0. Assume
07(0y, w*) > 0. By taking limit as n — oo in ( 14), we establish that p,, — w* whenever n — co. Thus, in
all the discussed cases, we obtain g, — w* asn — oo. Likewise, we can show that o, — @* asn — co. By

uniqueness of the limit, we obtain that w* = @*.

4 Applications

O

Theorem 4.1. Let (M, o#) is complete F -metric space, ©, @ € CI(M) such that ©y + &. Letp € V. Suppose

that £ : ©® — O satisfying
(1) L(0g) € ©¢ and (0, ®) satisfying the property P;
(i) oF(Lw, L) < Y(or(w, @)), for all w, m € O.

Then 3w* € M such that o (w*, Lw*) < 057(0, ®).

Proof. Definea : © x ® — [0, co) by
a(lw,m) =1

Yw, @ € O. Evidently £ is a-prox admis by the definition of a, and also it is an a—-i-proximal contraction.
Otherwise, for any w € 0, since L(0g) € @y, I € Oq such that o(Lw, @) = (6, ®). Furthermore, from

the hypothesis (ii), we obtain
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or(Lw, Lo) < Y(or(w, @)) < 05(w, @).

From the aforementioned inequality, we have £ is a continuous. Thus, all the assumptions of Theorem 3.1
are fulfilled and 3 is the best proximity point of £ directly from Theorem 3.1. Furthermore, from the
definition of a and from Theorem 3, we obtain that this best proximity point is unique. O

If we take (1) = k1, where O < k < 1 in Theorem 4.1, we establish this result.

Theorem 4.2. Let (M, o7) is complete F -metric space, ©, ® € CI(M) such that Oy + &. Let ) € V. Assume
that L : © — @ satisfying these assertions:

(i) L(Bg) € Dy and (0, D) satisfies the property P;

(ii) 3 k € (0, 1) such that o7 (Lw, L@) < koF(w, ), for all w, @ € O.

Then Jw* € M such that o7 (w*, Lw*) < 0+(0, D).

4.1 Results on 7 -metric space endowed with binary relation

Let (M, 07) be an ¥ -metric space and R be any binary relation on M and let
S=RURL
Evidently,
w,m € M, wSw ifandonlyif wRm or wRw.

Definition 4.1. A mapping £ : © — @ is called a proximal comparative mapping if
wlswz

or(uy, Luy) = 0p(0, D) ¢ = wSw,
0r(uz, Luy) = 0p(0©, O)

Ywq, Wy, Uy, Up € 6.

Theorem 4.3. Let (M, o) is complete F - metric space, ©, @ € CI(M) such that ©y + &. Let R be any binary
relation on M. Assume that £ : © — @ is continuous satisfying
(i) L(Bg) € Dy and (O, D) satisfies the P-Property;
(i) L is a proximal comparative mapping,
(iti) Jwgy, wy € Og such that

o7 (wy, Lwo) = 07(0, D), and woSwi,

(iv) 3y € ¥ such that
w,we0, wSw implies o5(Lw, Lw) < P(or(w, @)), (15)
Then 3w* € M such that o (w*, Lw*) < 07(0, D).

Proof. Definea : ® x ® — [0, co) by:

1 if wSw
a(w, ) = .
( ) {O otherwise.

Suppose that



8 =—— Durdana Lateef DE GRUYTER

a(wy, wy) =1
oF(uy, Lwy) = 05(0, D)
O-T(uz’ sz) = 0-7-(6’ CD)

for some w,, wy, Uy, u, € O©. By the definition of @, we obtain that

(1)18(1)2,
0-77(”1’ -La)l) = 0'7—'(@, (D)
07 (U, Lw,) = 07(0, D).

Then by supposition (ii), we obtain that u;Su,. Now by the definition of a, we have a(u;, ;) > 1. Thus, we
established that £ is a-prox admis. Supposition (iii) yields
o7 (w1, Lwo) = 07(0, D)
and a(wq, wy) > 1. Finally, condition (iv) implies that
a(w, @)or(Lw, Lo) < P(or(w, )

i.e., £ is an a—y-proximal contraction. Thus, all the assumption of Theorem 3.1 hold, and the required
result comes directly from this result. O

If we want to omit the continuity of £, then we use this assumption:
() if{wn}in M and w € M are such that w,Swp.1, for alln > 0 and lim,_, .07 (wn, w) = 0, then 3 {w,q} of
{wy} such that wpgSw for all k.

Theorem 4.4. Let ©, ® € CI(M), where (M, o7) is complete ¥ -metric space such that Oy + &. Let R be a
binary relation over M. Suppose that L : © — O satisfying
(i) L(0g) € @y and (0, D) fulfils the property P;
(if) L is a proximal comparative mapping,
(iii) Jwy, wy € Oq such that

o7 (wy, Lwg) = 07(0, D), and woeSwy,
(iv) 3Y € ¥ such that
w,® € 0,wSw implies or(Lw, L®) < Y(or(w, @)),
(v) (H) holds.
Then dw* € M such that o (w*, Lw*) < 057(0, D).

Proof. If we consider a : © x ® — [0, co) given by

1 if wSw
a(w, ) = .
( ) {O otherwise.

and by observing that assertion (H) yields condition (J), then from Theorem 3.2 we obtain the conclu-
sion. O

Theorem 4.5. Addition to the assumptions of Theorem 4.3 (respectively Theorem 4.4),assume that these
conditions fulfils: for all (w, @) € © x O with (w, ) ¢ S, Ap € O such that wSp and wSp. Then there exists
w* € M such that ox(w*, Lw*) < 0#(0, @) which is unique.
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4.2 Coupled best proximity points results

Definition 4.2. A point (w*, @*) € © x O is professed to be a coupled best proximity point of J if
or(w*, J(w*, @) = o5 (@", J(@", w*)) = 07(O, ©).

We establish the following notions.

M=MxM, X=0x0, N =0x0O.
Define £ : X —» X; by
Llw, o) = J(w, w),] (@, w)),
¥(w, @) € Ny. We supply the product set Mt with o/ given by:

or(w, u) + o (@, v)
: .

o5 ((w, ), (U, v)) =
Evidently, if (M, o#) is F -complete, then (90, of,/r) is F-complete.

Definition 4.3. A mapping J: © x © — @ is professed to be bi-proximal comparative (bi-prox comp)
mapping if
a)ISwz, (Dlswz
or(uy, J(w, @1)) = 0r(0, ) ¢ = wiSuy
0r(U, J (>, @5)) = 0p(0, ©)

Ywi, W, @1, @y, U, U € O,

Theorem 4.6. Let ©, @ € CI(M), where (M, o) is complete F -metric space such that ©y + & and R be a
binary relation on M. Assume that the mapping ] : © x © — @ is continuous satisfying
(i) J(©g x Bg) € ®q and (0, @) fulfils the property P,
(ii) ] is a bi-prox comp mapping,
(iii) 3 wo, Wy, w1, W1 € Oq such that
o7 (w1, J(wo, @o)) = 05(@1, ] (@0, wo)) = 07(0, D), and woeSw;, WeSws,

(iv) 3ay € ¥ in such that

(16)

w,m,u,v e, wSu,wSv = or(J(w, m),J(u,v)) < l/)( o7 (@, W) ; or (@, V)).

Then ] possess a coupled best proximity point.

Proof. Define a binary relation R, on M by (w, @), (u, v) € M, (w, @)R(u, v) if and only if wSu, @Sv. If we
represent by S, the symmetric relation devoted to R,, evidently, we obtain S, = R,. We assert that
L : 0 x © > ® has a best proximity point (w*, @*) € 09 x 0y, such that

o/ (0", @), LWw*, @) = 04Xy, Ry).
Represent by:
Ao ={(t, &) € Ny, 07((&, &), (b1, 1)) = 04(Xy, Ry)  for some (hy, 1) € Bo}
Bo ={(lm, ) € Ry, 04((&, &), (M1, hy)) = 04Xy, N,)  for some (&, &) € Aq}.
We can observe that
05Ny, Rp) = 04(0, D).

In fact, we have
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07 (N, Ny) = inf{of((&, &), (7, hy) : (&, &) € Ny, (I, hy) € Ny}
1.
= Elnf{ogc((ﬁl, h) + (&, 12)) : (&, By) € Ny x Ny, (8, p) € Ny x Ny}

= %(inf{aff((ﬁ, hy) : (&, Ay)) € © x O} + inf{oF((&, 712)) : (&2, ) € B x DY)

- 2(07(8,®) + 07(0, @)
=07(0, D).
Now, let (&, &) € Ap. Then there exists (fy, hy) € N, such that
07 ((8, &), (M, 1)) = 07 (N, Ry),
that is,
o7 (&, M) + (&, 1)) = 20#(O, D).
Thus, we have
o7 ((&, i) + (&, 1)) = 207(0, D)
o5 (4, hy) = 07(0, ®)
07 (&, hp) 2 07(0, D),
which implies that
07 (&4, ) = 07 (&, hy) = 07(O, D).
This implies that (&, &) € g x 0¢. Similarly, if (&, &) € O x 0y, we have (&, &) € Ap. Thus, we proved

that ©g x Oy = Ay. Likewise, we can prove that @y x @y = B. Since Oy + &, then A # &. Otherwise, from
(i), we have

L(X) = {J(w, w), J(@, w)) : (w, D) € By X Og} C J(Oy x Bg) x J(Bg x Bp) < Bo.
Suppose now that for some (¢, &), (w1, W) € Ry, (I, hy), (@1, @>) € Ny, we have
0 (b, &), (n, 1) = 0-(Xy, Rp)
0 (w1, W), (@1, @) = 05 (Ny, Ny).

This implies that

0F((81, 1) = 05 ((&, hp)) = 0#(0, D)
o7 (w1, @1)) = 07 ((W,, @;)) = 07(0, D).

Since (0, @) fulfils the property P, we obtain that

05 ((&, w1)) = 0 ((@1, hy))
and

05 ((&, w7)) = 05((W2, h2)),
which implies that

07/7((€1s 22)! (wl’ wZ)) = 07/7((h19 h2)’ (mb wZ))'
Thus, we showed that (¥, N;) fulfils the property P. Assume that for some
(&, &), (W1, wy), (W, ), (vi, Vo) € Ny,
we have
(&, ©)Sx w1, wy)
0 ((w, ), L4, &) = 05Ny, Xy)

0 (1, v2), L(w1, 1)) = 05Xy, Xy).
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This implies that
ElSa)l, EzSa)z

o7 (u1, J(&, &) = 07(0, )
o7 (vi, J (w1, w)) = 07(O, D),
and
LSw,, 4Sw,
o7 (U2, J (&, &) = 07(0, ©)
07 (v2, J(w2, w1)) = 07(0, D).
Since J is a bi-prox comp, so we have
wuSvy, LSV,,
that is,
(wy, u2)S2(v1, o).
which shows £ is a prox comp. Now, from condition (iii), we obtain
07 (w1, J(wo, @o)) + 07 (@1, J (o, wo)) = 207(0, ©)
and
(wo, @o)Sao(w1, @),
which implies that
04 (w1, 1), L(Wwo, W) = 05 (Ry, Ny)

and
(wo, @o)SH(ws, @1).

Moreover, if (w, @), (u, v) € N; are such that
(CUO, wO)SZ(uy V):

i.e., wSu and @Sv, from condition (iv), we have

or(J(w, @), J(u, v)) < 1/)( or(w, u) ;r or (@, v))

and

or(J(@, w), J(v,w)) < ll)(

or(w, u) + or(m, v))
> .

Adding (17) to (18), we obtain that
o7 (((w, @), J (@, w)), J(u, v), J(v, w))) < Y(o5(w, ), (u, v))),
i.e.,

0 (L(w, @), L, V) < Yoz (@, @), (U, v))).

— 11

a7

(18)

Now, all the assumptions of Theorem 4.3 hold, and thus, we conclude then that J possess a best proximity

point (w*, @*) € Ay, that is, (w*, @*) € Oy x By, which satisfies
0'7/7(((‘)*’ lD*), .C((U*, lD*)) = U‘J/T(le NZ)

As we already proved that
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0-7/:(le NZ) = 07‘-(6’ (D)’
so the aforementioned equality implies immediately that

0-7-((”5 ]((U*’ ZD*)) = 0'7/:(13*, ](w*s 0)*)) = o‘f(@a (D) D

Theorem 4.7. Let (M, o7) is complete F - metric space, ©, @ € CI(M) such that ©y + &. Let R is binary
relation over M. Assume that the mapping J : © x © — @ is continuous satisfying
(i) J(Og x Bg) € D¢ and (O, @) fulfils the property P;
(ii) J is a bi-proximal comparative mapping,
(iii) there exist wy, Wg, W1, W € Oy such that

05 (w1, J(Wwo, o)) = 05 (1, J(@o, Wo)) = 0£(0, D), and woSwi, WS,

(iv) Ja € V¥ in such that

w, @, uU,v e 0, wSu,wSv = or(J(w, w),J(u,v)) < l/)( o7 (@, W) + 07 (®, V)),

2
(v) (H) holds.
Then J has a coupled best proximity point.

Theorem 4.8. Besides the assumptions of Theorem 4.6 (respectively Theorem 4.7), assume that this condition
holds: V(w, @) € © x ©, 3p € Oq such that wSp and wSp. Then L has a unique best proximity point (w*, @*)
€0 x ©. Moreover, we have w* = w*.

Proof. Suppose (w, @), (u, v)e® x O. By the assumptions, there exists z; € 6, such that wSp, and uSp,.
Likewise, there exists p, € ©p such that @Sp, and vSp,. Hence, we obtain (w,®)S,(0;, 0,) and
(u, v)Sy(0;, 0,), where (p;, 0,) € B9 x By. Now, by Theorem 4.5, we establish that £ has a unique best
proximity point, i.e., a unique coupled best proximity point of L. O

By setting © = @ in Theorem 3.1, we establish this result.
Theorem 4.9. Let (M, o) is complete F -metric space and © € CI(M). Assume that L : © — O satisfies the

condition:

o7 (Lw, Lo) < Y(or(w, @))

Yw, m € ©, where i € V. Then there exists w* € O such that Lw* = w*, which is unique.

By setting (1) = k1 for some k € (0, 1) and 1 > O in Theorem 4.9, we obtain the main result of Jleli and
Samet [18].

Theorem 4.10. Let (M, o7) is complete F -metric space and © € CI(M). Assume that L : © — O satisfies the
condition:

o-(Lw, L) < kor(w, @),

Yw, @ € 0, where k € (0, 1). Then w* € O such that Lw* = w*, which is unique.
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