Home Mathematics Weighted Hermite-Hadamard inequalities for r-times differentiable preinvex functions for k-fractional integrals
Article Open Access

Weighted Hermite-Hadamard inequalities for r-times differentiable preinvex functions for k-fractional integrals

  • Fiza Zafar EMAIL logo , Sikander Mehmood and Asim Asiri
Published/Copyright: August 10, 2023
Become an author with De Gruyter Brill

Abstract

In this article, we have established some new bounds of Fejér-type Hermite-Hadamard inequality for k -fractional integrals involving r -times differentiable preinvex functions. It is noteworthy that in the past, there was no weighted version of the left and right sides of the Hermite-Hadamard inequality for k -fractional integrals for generalized convex functions available in the literature.

MSC 2010: 26D10; 26A51; 26A33

1 Introduction

In various disciplines of science, the Hermite-Hadamard inequality for convex functions is studied as it develops a link between convex function theory and integral inequalities. Many generalizations of convex functions have been discovered recently. Researchers have also shown a lot of interest in generalizing this concept for preinvex functions. These inequalities have applications in a variety of areas, including optimization, numerical analysis and statistics. He Chengtian’s inequality and the Hermite-Hadamard inequality are frequently used in engineering, particularly in 3D printing technology, to estimate the maximal and lowest printing velocity because it is hard to predict the velocity precisely, see, e.g., [1,2].

Let ψ be a convex function such that ψ : Ω R R and σ a , σ b Ω with σ a < σ b , then

(1) ψ σ a + σ b 2 1 σ b σ a σ a σ b ψ ( t ) d t ψ ( σ a ) + ψ ( σ b ) 2

is the well-known Hermite-Hadamard inequality for convex functions.

The generalization of inequality (1) is given by Fejér [3] as follows:

(2) ψ σ a + σ b 2 σ a σ b ϕ ( t ) d t σ a σ b ϕ ( t ) ψ ( t ) d t ψ ( σ a ) + ψ ( σ b ) 2 σ a σ b ϕ ( t ) d t ,

where ϕ : [ σ a ; σ b ] R is a nonnegative, integrable function and symmetric about t = σ a + σ b 2 .

Due to the wide applications of fractional calculus and Hermite-Hadamard inequalities in different fields of sciences, researchers are working on Hermite-Hadamard-type inequalities for fractional and generalized fractional integrals, see, e.g., [49].

In [10], Sarikaya et al. proposed the following inequalities as follows.

Theorem 1

Let ψ : [ σ a , σ b ] R R with 0 σ a < σ b and ψ L [ σ a , σ b ] be a convex function. If ψ is a positive, integrable function on [ σ a , σ b ] , then the following inequalities hold:

ψ σ a + σ b 2 Γ ( α + 1 ) 2 ( σ b σ a ) α [ J σ b α ψ ( σ a ) + J σ a α ψ ( σ b ) ] ψ ( σ a ) + ψ ( σ b ) 2 ,

with α > 0 .

In [11], Kilbas et al. defined left- and right-sided Riemann-Liouville fractional integrals as follows:

J σ a + þ ψ ( t ) = 1 Γ ( þ ) σ a t ( t s ) þ 1 ψ ( s ) d s , 0 σ a < t σ b ,

and

J σ b þ ψ ( t ) = 1 Γ ( þ ) t σ b ( s t ) þ 1 ψ ( s ) d s , 0 σ a t < σ b ,

where J σ a + þ and J σ b þ represent the left- and right-sided Riemann-Liouville fractional integrals, respectively, of the order þ R + .

We now give the definition of k -fractional integral, which is mainly due to [12].

Definition 1

The left-sided Riemann-Liouville k -fractional integral of order þ, k > 0 is defined as follows:

J σ a þ , k ψ ( t ) = 1 k Γ k ( þ ) σ a t ( t s ) þ k 1 ψ ( s ) d s , 0 σ a < t σ b ,

and the right-sided Riemann-Liouville k -fractional integral of order þ, k > 0 is defined as follows:

J σ b + þ , k ψ ( t ) = 1 k Γ k ( þ ) t σ b ( s t ) þ k 1 ψ ( s ) d s , 0 σ a t < σ b ,

where ψ L 1 ( [ σ a , σ b ] )

For k = 1 , the Riemann-Liouville k -fractional integrals become the Riemann-Liouville fractional integrals (see [11]).

Antczak [13] gave the idea of invex sets as:

Definition 2

A set Ω R be an invex w.r.t. the map : Ω × Ω R if, for every σ a , σ b Ω and s [ 0 , 1 ] , σ b + s ( σ a , σ b ) Ω .

The generalization of convex functions is given by Weir and Mond [14].

Definition 3

Let Ω R is an invex set and ψ : Ω R is called a preinvex function w.r.t. if

ψ ( σ b + s ( σ a , σ b ) ) t ψ ( σ a ) + ( 1 s ) ψ ( σ b )

σ a , σ b Ω and s [ 0 , 1 ] .

If ( σ a , σ b ) = σ a σ b , then in the classical sense, the preinvex functions become convex functions.

The situation of n -times differentiable preinvex functions has been added to the scope of these inequalities. Preinvex functions have constraints on their integrals that rely on the values of the function and its derivatives at the ends of the interval. These bounds are provided by the Hermite-Hadamard and Fejér inequalities, see, e.g., [1521].

The following lemma for n -times differentiable preinvex functions is proposed by Mehmood et al. (see [18]).

Lemma 1

Let Ω [ 0 , ) be an open invex subset with respect to : Ω × Ω R . Suppose ψ : Ω R is a function such that ψ ( n ) exists on Ω and ψ ( n ) is integrable on [ σ a , σ a + ( σ b , σ a ) ] for n N , n 1 , then for every σ a , σ b Ω with ( σ b , σ a ) > 0 , the following equality holds:

ψ ( σ a ) + ψ ( σ a + ( σ b , σ a ) ) 2 Γ ( þ + 1 ) 2 ( ( σ b , σ a ) ) þ [ J σ a þ, k ψ ( σ a + ( σ b , σ a ) ) + J ( σ a + ( σ b , σ a ) ) þ , k ψ ( σ a ) ] = κ = 1 n 1 Γ ( þ + 1 ) ( ( σ b , σ a ) ) κ 2 Γ ( þ + κ + 1 ) [ ( 1 ) κ 1 ψ ( κ ) ( σ a + ( σ b , σ a ) ) ψ ( κ ) ( σ a ) ] ( ( σ b , σ a ) ) n Γ ( þ + 1 ) 2 Γ ( þ + n ) × 0 1 [ ( 1 s ) þ + n 1 + ( 1 ) n s þ + n 1 ] ψ ( n ) ( σ a + s ( σ b , σ a ) ) d s ,

where þ > 0 and n 1 .

In this article, we have developed new Fejér-type Hermite-Hadamard identities for higher-order differentiable generalized convex functions for k -fractional integrals. Then, we have developed both the left- and right-hand sides of weighted Hermite-Hadamard inequalities.

2 Main results

In the main section, we make the assumption ϕ = sup t [ σ a , σ a + ( σ b , σ a ) ] ϕ ( t ) , where ϕ : [ σ a ; σ a + ( σ b , σ a ) ] R is a continuous function, ψ ( r ) is the r th derivative of ψ w.r.t. variable s and L [ σ a , σ b ] is the collection of all real-valued Riemann-integrable functions defined on the interval [ σ a , σ b ] .

Lemma 2

Let Ω R be an open invex set and be a function such that : Ω × Ω R . Suppose, ψ : Ω R is a differentiable mapping such that ψ ( r ) L [ σ a , σ a + ( σ b , σ a ) ] , where ( σ b , σ a ) > 0 . If w : [ σ a , σ a + ( σ b , σ a ) ] [ 0 , ) is an integrable mapping, then σ a , σ b Ω , we have the following equality:

(3) m = 0 r 1 ψ ( m ) σ a + 1 2 ( σ b , σ a ) 2 m ( σ b , σ a ) þ k + r m ( 1 ) r m 1 J σ a + 1 2 ( σ b , σ a ) þ, k ϕ ( σ a ) + ( 1 ) r + 1 J ( σ a + 1 2 ( σ b , σ a ) ) + þ, k ϕ ( σ a + ( σ b , σ a ) ) + ( 1 ) r 1 ( ( σ b , σ a ) ) þ k + r J ( σ a + 1 2 ( σ b , σ a ) ) þ, k ( ϕ ψ ) ( σ a ) + J σ a + 1 2 ( σ b , σ a ) + þ, k ( ϕ ψ ) ( σ a + ( σ b , σ a ) ) = 1 k Γ k ( þ ) 0 1 w ( s ) ψ ( r ) ( σ a + s ( σ b , σ a ) ) d s ,

where

w ( s ) = 0 s 0 s 0 s r integrals u þ k 1 ϕ ( σ a + u ( σ b , σ a ) ) ( d u ) r , s 0 , 1 2 1 s 1 s 1 s r integrals ( 1 u ) þ k 1 ϕ ( σ a + u ( σ b , σ a ) ) ( d u ) r , s 1 2 , 1 .

Proof

First, we consider

(4) 0 1 w ( s ) ψ ( r ) ( σ a + s ( σ b , σ a ) ) d s = 0 1 2 0 s 0 s 0 s r integrals u þ k 1 ϕ ( σ a + u ( σ b , σ a ) ) ( d u ) r × ψ ( r ) ( σ a + s ( σ b , σ a ) ) d s + 1 2 1 1 s 1 s 1 s r integrals ( 1 u ) þ k 1 ϕ ( σ a + u ( σ b , σ a ) ) ( d u ) r ψ ( r ) ( σ a + s ( σ b , σ a ) ) d s = I 1 + I 2 .

From the first integral, we have

I 1 = 0 1 2 0 s 0 s 0 s r integrals u þ k 1 ϕ ( σ a + u ( σ b , σ a ) ) ( d u ) r ψ ( r ) ( σ a + s ( σ b , σ a ) ) d s = 1 ( σ b , σ a ) 0 s 0 s 0 s r integrals u þ k 1 ϕ ( σ a + u ( σ b , σ a ) ) ( d u ) r ψ ( r 1 ) ( σ a + s ( σ b , σ a ) ) 0 1 2 1 ( σ b , σ a ) 0 1 2 0 s 0 s 0 s r 1 integrals u þ k 1 ϕ ( σ a + u ( σ b , σ a ) ) ( d u ) r 1 ψ ( r 1 ) ( σ a + s ( σ b , σ a ) ) d s .

I 1 = ψ ( r 1 ) ( σ a + 1 2 ( σ b , σ a ) ) ( σ b , σ a ) 0 1 2 0 1 2 0 1 2 r integrals s þ k 1 ϕ ( σ a + s ( σ b , σ a ) ) ( d s ) r 1 ( σ b , σ a ) 0 1 2 0 s 0 s 0 s r 1 integrals u þ k 1 ϕ ( σ a + u ( σ b , σ a ) ) ( d u ) r 1 ψ ( r 1 ) ( σ a + s ( σ b , σ a ) ) d s .

After generalization, we obtain

I 1 = ψ ( r 1 ) σ a + 1 2 ( σ b , σ a ) ( σ b , σ a ) 0 1 2 0 1 2 0 1 2 r integrals s þ k 1 ϕ ( σ a + s ( σ b , σ a ) ) ( d s ) r ψ ( r 2 ) ( σ a + 1 2 ( σ b , σ a ) ) ( ( σ b , σ a ) ) 2 0 1 2 0 1 2 0 1 2 r 1 integrals s þ k 1 ϕ ( σ a + s ( σ b , σ a ) ) ( d s ) r 1 + ( 1 ) r 2 ψ ( σ a + 1 2 ( σ b , σ a ) ) ( ( σ b , σ a ) ) r 1 0 1 2 0 1 2 s þ k 1 ϕ ( σ a + s ( σ b , σ a ) ) ( d s ) 2 + ( 1 ) r 1 ψ ( σ a + 1 2 ( σ b , σ a ) ) ( ( σ b , σ a ) ) r 0 1 2 s þ k 1 ϕ ( σ a + s ( σ b , σ a ) ) d s + ( 1 ) r 1 ( ( σ b , σ a ) ) r 0 1 2 s þ k 1 ψ ( σ a + s ( σ b , σ a ) ) ϕ ( σ a + s ( σ b , σ a ) ) d s .

After simplification, we obtain

I 1 = ψ ( r 1 ) σ a + 1 2 ( σ b , σ a ) 2 r 1 ( σ b , σ a ) 0 1 2 s þ k 1 ϕ ( σ a + s ( σ b , σ a ) ) d s ψ ( r 2 ) ( σ a + 1 2 ( σ b , σ a ) ) 2 r 2 ( ( σ b , σ a ) ) 2 0 1 2 s þ k 1 ϕ ( σ a + s ( σ b , σ a ) ) d s + ( 1 ) r 2 ψ ( σ a + 1 2 ( σ b , σ a ) ) 2 ( ( σ b , σ a ) ) r 1 0 1 2 s þ k 1 ϕ ( σ a + s ( σ b , σ a ) ) d s + ( 1 ) r 1 ψ σ a + 1 2 ( σ b , σ a ) ( ( σ b , σ a ) ) r 0 1 2 s þ k 1 ϕ ( σ a + s ( σ b , σ a ) ) d s + ( 1 ) r 1 ( ( σ b , σ a ) ) r 0 1 2 s þ k 1 ψ ( σ a + s ( σ b , σ a ) ) ϕ ( σ a + s ( σ b , σ a ) ) d s .

On substituting t = σ a + s ( σ b , σ a ) , we obtain

I 1 = ψ ( r 1 ) ( σ a + 1 2 ( σ b , σ a ) ) 2 r 1 ( σ b , σ a ) þ k + 1 σ a σ a + 1 2 ( σ b , σ a ) ( t σ a ) þ k 1 ϕ ( t ) d t ψ ( r 2 ) σ a + 1 2 ( σ b , σ a ) 2 r 2 ( ( σ b , σ a ) ) þ k + 2 σ a σ a + 1 2 ( σ b , σ a ) ( t σ a ) þ k 1 ϕ ( t ) d t + ( 1 ) r 2 ψ σ a + 1 2 ( σ b , σ a ) 2 ( ( σ b , σ a ) ) þ k + r 1 σ a σ a + 1 2 ( σ b , σ a ) ( t σ a ) þ k 1 ϕ ( t ) d t + ( 1 ) r 1 ψ ( σ a + 1 2 ( σ b , σ a ) ) ( ( σ b , σ a ) ) þ k + r σ a σ a + 1 2 ( σ b , σ a ) ( t σ a ) þ k 1 ϕ ( t ) d t + ( 1 ) r 1 ( ( σ b , σ a ) ) þ k + r σ a σ a + 1 2 ( σ b , σ a ) ( t σ a ) þ k 1 ψ ( t ) ϕ ( t ) d t .

From the definition of k -fractional integrals, we have

I 1 = ψ ( r 1 ) σ a + 1 2 ( σ b , σ a ) k Γ k ( þ ) 2 r 1 ( σ b , σ a ) þ k + 1 J σ a + 1 2 ( σ b , σ a ) þ, k ϕ ( σ a ) ψ ( r 2 ) σ a + 1 2 ( σ b , σ a ) k Γ k ( þ ) 2 r 2 ( ( σ b , σ a ) ) þ k + 2 J σ a + 1 2 ( σ b , σ a ) þ, k ϕ ( σ a ) + ( 1 ) r 2 ψ σ a + 1 2 ( σ b , σ a ) k Γ k ( þ ) 2 ( ( σ b , σ a ) ) þ k + r 1 J ( σ a + 1 2 ( σ b , σ a ) ) þ, k ϕ ( σ a ) + ( 1 ) r 1 ψ σ a + 1 2 ( σ b , σ a ) k Γ k ( þ ) ( ( σ b , σ a ) ) þ k + r J ( σ a + 1 2 ( σ b , σ a ) ) þ, k ϕ ( σ a ) + ( 1 ) r k Γ k ( þ ) ( ( σ b , σ a ) ) þ k + r J ( σ a + 1 2 ( σ b , σ a ) ) þ, k ( ϕ ψ ) ( σ a ) .

After summing the above series, we obtain

(5) I 1 = m = 0 r 1 ( 1 ) r m 1 ψ ( m ) σ a + 1 2 ( σ b , σ a ) 2 m ( σ b , σ a ) þ k + r m k Γ k ( þ ) J ( σ a + 1 2 ( σ b , σ a ) ) þ, k ϕ ( σ a ) + ( 1 ) r 1 ( ( σ b , σ a ) ) þ k + r k Γ k ( þ ) J σ a + 1 2 ( σ b , σ a ) þ, k ( ϕ ψ ) ( σ a ) .

Similarly from the second integral, we have

(6) I 2 = ( 1 ) r + 1 m = 0 r 1 ψ ( m ) σ a + 1 2 ( σ b , σ a ) 2 m ( σ b , σ a ) þ k + r m k Γ k ( þ ) J σ a + 1 2 ( σ . 2 , σ a ) + þ, k ϕ ( σ a + ( σ b , σ a ) ) + ( 1 ) r 1 ( ( σ b , σ a ) ) þ k + r k Γ k ( þ ) J σ a + 1 2 ( σ b , σ a ) + þ, k ( ϕ ψ ) ( σ a + ( σ b , σ a ) ) .

On utilizing equations (3) and (5) in equation (4) , we obtain the required result.□

Lemma 3

For k = r = 1 in equation (3), we obtain Lemma 1 of [5].

ψ σ a + 1 2 ( σ b , σ a ) ( σ b , σ a ) þ + 1 J ( σ a + 1 2 ( σ b , σ a ) ) þ ϕ ( σ a ) + J σ a + 1 2 ( σ b , σ a ) + þ ϕ ( σ a + ( σ b , σ a ) ) 1 ( ( σ b , σ a ) ) þ + 1 J ( σ a + 1 2 ( σ b , σ a ) ) þ ( ϕ ψ ) ( σ a ) + J σ a + 1 2 ( σ b , σ a ) + þ ( ϕ ψ ) ( σ a + ( σ b , σ a ) ) = 1 Γ ( þ ) 0 1 w ( s ) ψ ( σ a + s ( σ b , σ a ) ) d s ,

where

w ( s ) = 0 s u þ 1 ϕ ( σ a + u ( σ b , σ a ) ) d u , s 0 , 1 2 1 s ( 1 u ) þ 1 ϕ ( σ a + u ( σ b , σ a ) ) d u , s 1 2 , 1 .

Lemma 4

If ψ : [ σ a , σ a + ( σ b , σ a ) ] R is an integrable function, which is symmetric about σ a + 1 2 ( σ b , σ a ) with σ a < σ a + ( σ b , σ a ) , then we have

(7) J σ a + þ , k ψ ( σ a + ( σ b , σ a ) ) = J ( σ a + ( σ b , σ a ) ) þ, k ψ ( σ a ) = 1 2 [ J σ a + þ, k ψ ( σ a + ( σ b , σ a ) ) + J ( σ a + ( σ b , σ a ) ) þ, k ψ ( σ a ) ] ,

where þ > 0

Proof

Since ψ is symmetric about σ a + 1 2 ( σ b , σ a ) , we have ψ ( 2 σ a + ( σ b , σ a ) t ) = ψ ( t ) , for all t [ σ a , σ a + ( σ b , σ a ) ] . Taking 2 σ a + ( σ b , σ a ) s = t

J σ a + þ, k ψ ( σ a + ( σ b , σ a ) ) = 1 k Γ k ( þ ) σ a σ a + ( σ b , σ a ) [ ( σ a + ( σ b , σ a ) ) s ] þ k 1 ψ ( s ) d s = 1 k Γ k ( þ ) σ a σ a + ( σ b , σ a ) ( t σ a ) þ k 1 ψ ( 2 σ a + ( σ b , σ a ) t ) d t = 1 k Γ k ( þ ) σ a σ a + ( σ b , σ a ) ( t σ a ) þ k 1 ψ ( t ) d t = J ( σ a + ( σ b , σ a ) ) þ, k ψ ( σ a ) = 1 2 [ J σ a + þ, k ψ ( σ a + ( σ b , σ a ) ) + J ( σ a + ( σ b , σ a ) ) þ, k ψ ( σ a ) ] .

Lemma 5

Let Ω R be an open invex set and be a function such that : Ω × Ω R . Suppose ψ : Ω R is a differentiable mapping such that ψ ( r ) L [ σ a , σ a + ( σ b , σ a ) ] , where ( σ b , σ a ) > 0 . If w : [ σ a , σ a + ( σ b , σ a ) ] [ 0 , ) is an integrable mapping, then σ a , σ b Ω , we have the following equality:

(8) m = 0 r 1 ( 1 ) r + 1 ψ ( m ) ( σ a ) + ( 1 ) r m 1 ψ ( m ) ( σ a + ( σ b , σ a ) ) 2 ( ( σ b , σ a ) ) þ + r m × [ J ( σ a + ( σ b , σ a ) ) þ, k ϕ ( σ a ) + J σ a + þ, k ϕ ( σ a + ( σ b , σ a ) ) ] + ( 1 ) r J ( σ a + ( σ b , σ a ) ) þ, k ( ϕ ψ ) ( σ a ) + J σ a + þ, k ( ϕ ψ ) ( σ a + ( σ b , σ a ) ) ( ( σ b , σ a ) ) þ + r = 1 k Γ k ( þ ) 0 1 v ( s ) ψ ( r ) ( σ a + s ( σ b , σ a ) ) d s ,

where

v ( s ) = 0 s 0 s 0 s r integrals u þ k 1 ϕ ( σ a + u ( σ b , σ a ) ) ( d u ) r + 1 s 1 s 1 s r integrals ( 1 u ) þ k 1 ϕ ( σ a + u ( σ b , σ a ) ) ( d u ) r , s [ 0 , 1 ] .

Proof

First, we consider

(9) 0 1 v ( s ) ψ ( r ) ( σ a , σ a + s ( σ b , σ a ) ) d s = 0 1 0 s 0 s 0 s r integrals u þ k 1 ϕ ( σ a + u ( σ b , σ a ) ) ( d u ) r ψ ( r ) ( σ a + s ( σ b , σ a ) ) d s + 0 1 1 s 1 s . . 1 s r integrals ( 1 u ) þ k 1 ϕ ( σ a + u ( σ b , σ a ) ) ( d u ) r ψ ( r ) ( σ a + s ( σ b , σ a ) ) d s = I 1 + I 2 .

From the first integral, we have

I 1 = 0 1 0 s 0 s 0 s r integrals u þ k 1 ϕ ( σ a + u ( σ b , σ a ) ) ( d u ) r ψ ( r ) ( σ a + s ( σ b , σ a ) ) d s = 1 ( σ b , σ a ) 0 s 0 s 0 s r integrals u þ k 1 ϕ ( σ a + u ( σ b , σ a ) ) ( d u ) r ψ ( r 1 ) ( σ a + s ( σ b , σ a ) ) 0 1 1 ( σ b , σ a ) 0 1 0 s 0 s 0 s r 1 integrals u þ k 1 ϕ ( σ a + u ( σ b , σ a ) ) ( d u ) r 1 ψ ( r 1 ) ( σ a + s ( σ b , σ a ) ) d s

I 1 = ψ ( r 1 ) ( σ a + ( σ b , σ a ) ) ( σ b , σ a ) 0 1 0 1 0 1 r integrals s þ k 1 ϕ ( σ a + s ( σ b , σ a ) ) ( d s ) r 1 ( σ b , σ a ) 0 1 0 s 0 s 0 s r 1 integrals u þ k 1 ϕ ( σ a + u ( σ b , σ a ) ) ( d u ) r 1 ψ ( r 1 ) ( σ a + s ( σ b , σ a ) ) d s .

On generalizing the result, we have

I 1 = ψ ( r 1 ) ( σ a + ( σ b , σ a ) ) ( σ b , σ a ) 0 1 0 1 0 1 r integrals s þ k 1 ϕ ( σ a + s ( σ b , σ a ) ) ( d s ) r ψ ( r 2 ) ( σ a + ( σ b , σ a ) ) ( ( σ b , σ a ) ) 2 0 1 0 1 0 1 r 1 integrals s þ k 1 ϕ ( σ a + s ( σ b , σ a ) ) ( d s ) r 1 + ψ ( r 3 ) ( σ a + ( σ b , σ a ) ) ( ( σ b , σ a ) ) 3 0 1 0 1 0 1 r 2 integrals s þ k 1 ϕ ( σ a + s ( σ b , σ a ) ) ( d s ) r 2 + ( 1 ) r 2 ψ ( σ a + ( σ b , σ a ) ) ( ( σ b , σ a ) ) r 1 0 1 0 1 s þ k 1 ϕ ( σ a + s ( σ b , σ a ) ) ( d s ) 2 + ( 1 ) r 1 ψ ( σ a + ( σ b , σ a ) ) ( ( σ b , σ a ) ) r 0 1 s þ k 1 ϕ ( σ a + s ( σ b , σ a ) ) d s + ( 1 ) r 1 ( ( σ b , σ a ) ) r 0 1 s þ k 1 ψ ( σ a + s ( σ b , σ a ) ) ϕ ( σ a + s ( σ b , σ a ) ) d s .

After simplification, we obtain

I 1 = ψ ( r 1 ) ( σ a + ( σ b , σ a ) ) ( σ b , σ a ) 0 1 s þ k 1 ϕ ( σ a + s ( σ b , σ a ) ) d s ψ ( r 2 ) ( σ a + ( σ b , σ a ) ) ( ( σ b , σ a ) ) 2 0 1 s þ k 1 ϕ ( σ a + s ( σ b , σ a ) ) d s + ψ ( r 3 ) ( σ a + ( σ b , σ a ) ) ( ( σ b , σ a ) ) 3 0 1 s þ k 1 ϕ ( σ a + s ( σ b , σ a ) ) d s + ( 1 ) r 2 ψ ( σ a + ( σ b , σ a ) ) ( ( σ b , σ a ) ) r 1 0 1 s þ k 1 ϕ ( σ a + s ( σ b , σ a ) ) d s + ( 1 ) r 1 ψ ( σ a + ( σ b , σ a ) ) ( ( σ b , σ a ) ) r 0 1 s þ k 1 ϕ ( σ a + s ( σ b , σ a ) ) d s

+ ( 1 ) r 1 ( ( σ b , σ a ) ) r 0 1 s þ k 1 ψ ( σ a + s ( σ b , σ a ) ) ϕ ( σ a + s ( σ b , σ a ) ) d s .

After substituting t = σ a + s ( σ b , σ a ) , we have

I 1 = ψ ( r 1 ) ( σ a + ( σ b , σ a ) ) ( σ b , σ a ) þ k + 1 σ a σ a + ( σ b , σ a ) ( t σ a ) þ k 1 ϕ ( t ) d t ψ ( r 2 ) ( σ a + ( σ b , σ a ) ) ( ( σ b , σ a ) ) þ k + 2 σ a σ a + ( σ b , σ a ) ( t σ a ) þ k 1 ϕ ( t ) d t + ψ ( r 3 ) ( σ a + ( σ b , σ a ) ) ( ( σ b , σ a ) ) þ k + 3 σ a σ a + ( σ b , σ a ) ( t σ a ) þ k 1 ϕ ( t ) d t + ( 1 ) r 2 ψ ( σ a + ( σ b , σ a ) ) ( ( σ b , σ a ) ) þ k + r 1 σ a σ a + ( σ b , σ a ) ( t σ a ) þ k 1 ϕ ( t ) d t + ( 1 ) r 1 ψ ( σ a + ( σ b , σ a ) ) ( ( σ b , σ a ) ) þ k + r σ a σ a + ( σ b , σ a ) ( t σ a ) þ k 1 ϕ ( t ) d t + ( 1 ) r 1 ( ( σ b , σ a ) ) þ k + r σ a σ a + ( σ b , σ a ) ( t σ a ) þ k 1 ψ ( t ) ϕ ( t ) d t .

Using the definition of k -fractional integral,

I 1 = ψ ( r 1 ) ( σ a + ( σ b , σ a ) ) k Γ k ( þ ) ( σ b , σ a ) þ k + 1 J ( σ a + ( σ b , σ a ) ) þ, k ϕ ( σ a ) ψ ( r 2 ) ( σ a + ( σ b , σ a ) ) k Γ k ( þ ) ( ( σ b , σ a ) ) þ k + 2 J ( σ a + ( σ b , σ a ) ) þ, k ϕ ( σ a ) + ψ ( r 3 ) ( σ a + ( σ b , σ a ) ) k Γ k ( þ ) ( ( σ b , σ a ) ) þ k + 3 J ( σ a + ( σ b , σ a ) ) þ, k ϕ ( σ a ) + ( 1 ) r 2 ψ ( σ a + ( σ b , σ a ) ) k Γ k ( þ ) ( ( σ b , σ a ) ) þ k + r 1 J ( σ a + ( σ b , σ a ) ) þ, k ϕ ( σ a ) + ( 1 ) r 1 ψ ( σ a + ( σ b , σ a ) ) k Γ k ( þ ) ( ( σ b , σ a ) ) þ k + r J ( σ a + ( σ b , σ a ) ) þ, k ϕ ( σ a ) + ( 1 ) r k Γ k ( þ ) ( ( σ b , σ a ) ) þ k + r J ( σ a + ( σ b , σ a ) ) þ, k ( ϕ ψ ) ( σ a ) .

After summing the above series, we obtain

(10) I 1 = m = 0 r 1 ( 1 ) r m 1 ψ ( m ) ( σ a + ( σ b , σ a ) ) ( σ b , σ a ) þ k + r m k Γ k ( þ ) J ( σ a + ( σ b , σ a ) ) þ, k ϕ ( σ a ) + ( 1 ) r 1 ( ( σ b , σ a ) ) þ k + r k Γ k ( þ ) J ( σ a + ( σ b , σ a ) ) þ, k ( ϕ ψ ) ( σ a ) .

Similarly, from the second integral, we obtain

(11) I 2 = ( 1 ) r + 1 m = 0 r 1 ψ ( m ) ( σ a ) ( σ b , σ a ) þ k + r m k Γ k ( þ ) J σ a + þ, k ϕ ( σ a + ( σ b , σ a ) ) + ( 1 ) r 1 ( ( σ b , σ a ) ) þ k + r k Γ k ( þ ) J σ a + þ, k ( ϕ ψ ) ( σ a + ( σ b , σ a ) ) .

On utilizing equations (10) and (11) in equation (9) and using Lemma 4, we obtain the required result.□

Remark 1

For k = r = 1 in equation (8), we obtain Lemma 3 of [5].

ψ ( σ a ) + ψ ( σ a + ( σ b , σ a ) ) 2 ( ( σ b , σ a ) ) þ + 1 [ J ( σ a + ( σ b , σ a ) ) þ ϕ ( σ a ) + J σ a + þ ϕ ( σ a + ( σ b , σ a ) ) ] J ( σ a + ( σ b , σ a ) ) þ ( ϕ ψ ) ( σ a ) + J σ a + þ ( ϕ ψ ) ( σ a + ( σ b , σ a ) ) ( ( σ b , σ a ) ) þ + 1 = 1 Γ ( þ ) 0 1 v ( s ) ψ ( σ a + s ( σ b , σ a ) ) d s ,

where

v ( s ) = 0 s u þ 1 ϕ ( σ a + u ( σ b , σ a ) ) d u + 1 s ( 1 u ) þ 1 ϕ ( σ a + u ( σ b , σ a ) ) d u , s [ 0 , 1 ] .

Theorem 2

Let Ω R be an open invex set and be a function such that : Ω × Ω R þ . Suppose, ψ : Ω R is a differentiable mapping such that ψ ( r ) L [ σ a , σ a + ( σ b , σ a ) ] , where ( σ b , σ a ) > 0 . If there is an integral mapping such that ϕ : [ σ a , σ a + ( σ b , σ a ) ] [ 0 , ) and it is also symmetric with respect to σ a + 1 2 ( σ b , σ a ) . Let ψ ( r ) be a preinvex function on Ω , then σ a , σ b Ω , we have the following inequality:

(12) m = 0 r 1 ψ ( m ) ( σ a + 1 2 ( σ b , σ a ) ) 2 m ( σ b , σ a ) þ k + r m ( 1 ) r m 1 J ( σ a + 1 2 ( σ b , σ a ) ) þ, k ϕ ( σ a ) + ( 1 ) r + 1 J ( σ a + 1 2 ( σ b , σ a ) ) + þ, k ϕ ( σ a + ( σ b , σ a ) ) + ( 1 ) r 1 ( ( σ b , σ a ) ) þ k + r J ( σ a + 1 2 ( σ b , σ a ) ) þ, k ( ϕ ψ ) ( σ a ) + J σ a + 1 2 ( σ b , σ a ) + þ, k ( ϕ ψ ) ( σ a + ( σ b , σ a ) ) [ ψ ( r ) ( σ a ) + ψ ( r ) ( σ b ) ] ϕ k r Γ ( þ ) 2 þ k + r ( þ + k ( 1 + r ) ) ( þ + k r ) Γ k ( þ ) Γ ( þ + r 1 ) .

Proof

On taking the modulus of both sides of equation (3), we obtain

m = 0 r 1 ψ ( m ) ( σ a + 1 2 ( σ b , σ a ) ) 2 m ( σ b , σ a ) þ k + r m × ( 1 ) r m 1 J ( σ a + 1 2 ( σ b , σ a ) ) þ, k ϕ ( σ a ) + ( 1 ) r + 1 J ( σ a + 1 2 ( σ b , σ a ) ) + þ, k ϕ ( σ a + ( σ b , σ a ) ) + ( 1 ) r 1 ( ( σ b , σ a ) ) þ + r J ( σ a + 1 2 ( σ b , σ a ) ) þ ( ϕ ψ ) ( σ a ) + J σ a + 1 2 ( σ b , σ a ) + þ ( ϕ ψ ) ( σ a + ( σ b , σ a ) ) = 1 k Γ k ( þ ) 0 1 2 w ( s ) ψ ( r ) ( σ a + s ( σ b , σ a ) ) d s + 1 k Γ k ( þ ) 1 2 1 w ( s ) ψ ( r ) ( σ a + s ( σ b , σ a ) ) d s .

From preinvexity of ψ ( r ) on Ω and using the fact ϕ = sup t [ σ a , σ b ] ϕ ( t ) , we have

(13) m = 0 r 1 ψ ( m ) ( σ a + 1 2 ( σ b , σ a ) ) 2 m ( σ b , σ a ) þ k + r m ( 1 ) r m 1 J ( σ a + 1 2 ( σ b , σ a ) ) þ , k ϕ ( σ a ) + ( 1 ) r + 1 J ( σ a + 1 2 ( σ b , σ a ) ) + þ , k ϕ ( σ a + ( σ b , σ a ) ) + ( 1 ) r 1 ( ( σ b , σ a ) ) þ k + r J ( σ a + 1 2 ( σ b , σ a ) ) þ , k ( ϕ ψ ) ( σ a ) + J σ a + 1 2 ( σ b , σ a ) + þ , k ( ϕ ψ ) ( σ a + ( σ b , σ a ) ) ϕ k Γ k ( þ ) 0 1 2 0 s 0 s 0 s r integrals u þ k 1 ( d u ) r [ ( 1 s ) ψ ( r ) ( σ a ) + s ψ ( r ) ( σ b ) ] d s + ϕ k Γ k ( þ ) 1 2 1 1 s 1 s 1 s r integrals ( 1 u ) þ k 1 ( d u ) r [ ( 1 s ) ψ ( r ) ( σ a ) + s ψ ( r ) ( σ b ) ] d s = I 1 + I 2 .

From the first term of equation (13), we have

I 1 = ϕ k Γ k ( þ ) 0 1 2 0 s 0 s 0 s r integrals u þ k 1 ( d u ) r [ ( 1 s ) ψ ( r ) ( σ a ) + s ψ ( r ) ( σ b ) ] d s = k r 2 ϕ Γ ( þ ) Γ k ( þ ) Γ ( þ + r 1 ) 0 1 2 u þ k + r 2 u 1 2 [ ( 1 s ) ψ ( r ) ( σ a ) + s ψ ( r ) ( σ b ) ] d s d u = k r 2 ϕ Γ ( þ ) Γ k ( þ ) Γ ( þ + r 1 ) 0 1 2 u þ k + r 2 ψ ( r ) ( σ a ) ( 1 u ) 2 2 1 8 + ψ ( r ) ( σ b ) 1 8 u 2 2 d u .

Making the change of variable t = σ a + u ( σ b , σ a ) for u [ 0 , 1 ] ,

(14) I 1 = k r 2 ϕ Γ ( þ ) Γ k ( þ ) Γ ( þ + r 1 ) ψ ( r ) ( σ a ) ( σ b , σ a ) × σ a σ a + 1 2 ( σ b , σ a ) 1 2 1 t σ a ( σ b , σ a ) 2 1 8 t σ a ( σ b , σ a ) þ k + r 2 d t + k r 2 ϕ Γ ( þ ) Γ k ( þ ) Γ ( þ + r 1 ) ψ ( r ) ( σ b ) ( σ b , σ a ) × σ a σ a + 1 2 ( σ b , σ a ) 1 8 1 2 t σ a ( σ b , σ a ) 2 t σ a ( σ b , σ a ) þ k + r 2 d t .

From the second term of equation (13), we have

I 2 = ϕ k Γ k ( þ ) 1 2 1 1 s 1 s 1 s r integrals ( 1 u ) þ k 1 ( d u ) r [ ( 1 s ) ψ ( r ) ( σ a ) + s ψ ( r ) ( σ b ) ] d s = k r 2 ϕ Γ ( þ ) Γ k ( þ ) Γ ( þ + r 1 ) 1 2 1 1 s ( 1 u ) þ k + r 2 d u [ ( 1 s ) ψ ( r ) ( σ a ) + s ψ ( r ) ( σ b ) ] d s = k r 2 ϕ Γ ( þ ) Γ k ( þ ) Γ ( þ + r 1 ) 1 2 1 ( 1 u ) þ k + r 2 1 2 u [ ( 1 s ) ψ ( r ) ( σ a ) + s ψ ( r ) ( σ b ) ] d s d u = k r 2 ϕ Γ ( þ ) Γ k ( þ ) Γ ( þ + r 1 ) 1 2 1 ( 1 u ) þ k + r 2 ψ ( r ) ( σ a ) 1 8 ( 1 u ) 2 2 + ψ ( r ) ( σ b ) u 2 2 1 8 d u .

By the change of variable t = σ a + ( 1 u ) ( σ b , σ a ) ,

(15) I 2 = k r 2 ϕ Γ ( þ ) Γ k ( þ ) Γ ( þ + r 1 ) ψ ( r ) ( σ a ) ( σ b , σ a ) × σ a σ a + 1 2 ( σ b , σ a ) 1 8 1 2 t σ a ( σ b , σ a ) 2 t σ a ( σ b , σ a ) þ k + r 2 d t + k r 2 ϕ Γ ( þ ) Γ k ( þ ) Γ ( þ + r 1 ) ψ ( r ) ( σ b ) ( σ b , σ a ) × σ a σ a + 1 2 ( σ b , σ a ) 1 2 1 t σ a ( σ b , σ a ) 2 1 8 t σ a ( σ b , σ a ) þ k + r 2 d t .

Adding equations (14) and (15) based on equation (13), we obtain the required result as follows:

m = 0 r 1 ψ ( m ) σ a + 1 2 ( σ b , σ a ) 2 m ( σ b , σ a ) þ k + r m × ( 1 ) r m 1 J ( σ a + 1 2 ( σ b , σ a ) ) þ , k ϕ ( σ a ) + ( 1 ) r + 1 J ( σ a + 1 2 ( σ b , σ a ) ) + þ , k ϕ ( σ a + ( σ b , σ a ) ) + ( 1 ) r 1 ( ( σ b , σ a ) ) þ k + r J ( σ a + 1 2 ( σ b , σ a ) ) þ , k ( ϕ ψ ) ( σ a ) + J σ a + 1 2 ( σ b , σ a ) + þ , k ( ϕ ψ ) ( σ a + ( σ b , σ a ) ) [ ψ ( r ) ( σ a ) + ψ ( r ) ( σ b ) ] ϕ k r Γ ( þ ) 2 þ k + r ( þ + k ( 1 + r ) ) ( þ + k r ) Γ k ( þ ) Γ ( þ + r 1 ) .

Remark 2

For k = r = 1 in equation (12), we obtain Theorem 3 of [5].

ψ ( σ a + 1 2 ( σ b , σ a ) ) ( σ b , σ a ) þ + 1 J ( σ a + 1 2 ( σ b , σ a ) ) þ ϕ ( σ a ) + J ( σ a + 1 2 ( σ b , σ a ) ) + þ ϕ ( σ a + ( σ b , σ a ) ) + 1 ( ( σ b , σ a ) ) þ + 1 J ( σ a + 1 2 ( σ b , σ a ) ) þ ( ϕ ψ ) ( σ a ) + J σ a + 1 2 ( σ b , σ a ) + þ ( ϕ ψ ) ( σ a + ( σ b , σ a ) ) ϕ Γ ( þ + 2 ) 1 2 þ + 1 [ ψ ( σ a ) + ψ ( σ b ) ] .

Remark 3

For k =  þ  = 1 , ϕ = 1 , ( σ b , σ a ) = σ b σ a and r = 2 in equation (12), we obtain the special case

(16) ψ σ a + σ b 2 ( σ b σ a ) σ a σ b ψ ( t ) d t ( σ b σ a ) 2 [ ψ ( 2 ) ( σ a ) + ψ ( 2 ) ( σ b ) ] 48 .

Theorem 3

Let Ω R be an open invex set and be a function such that : Ω × Ω R þ . Suppose, ψ : Ω R is a differentiable mapping such that ψ ( r ) L [ σ a , σ a + ( σ b , σ a ) ] , where ( σ b , σ a ) > 0 . If there is an integral mapping such that ϕ : [ σ a , σ a + ( σ b , σ a ) ] [ 0 , ) and it is also symmetric with respect to σ a + 1 2 ( σ b , σ a ) . Let ψ ( r ) be a preinvex function on Ω , then σ a , σ b Ω , we have the following inequality:

(17) J = m = 0 r 1 ( 1 ) r + 1 ψ ( m ) ( σ a ) + ( 1 ) r m 1 ψ ( m ) ( σ a + ( σ b , σ a ) ) 2 ( ( σ b , σ a ) ) þ + r m × [ J ( σ a + ( σ b , σ a ) ) þ, k ϕ ( σ a ) + J σ a + þ, k ϕ ( σ a + ( σ b , σ a ) ) ] + ( 1 ) r J ( σ a + ( σ b , σ a ) ) þ, k ( ϕ ψ ) ( σ a ) + J σ a + þ, k ( ϕ ψ ) ( σ a + ( σ b , σ a ) ) ( ( σ b , σ a ) ) þ + r ϕ ( þ + r ) Γ ( þ + r 1 ) [ ψ ( r ) ( σ a ) + ψ ( r ) ( σ b ) ] .

Proof

Applying modulus on both sides of equation (8),

m = 0 r 1 ( 1 ) r + 1 ψ ( m ) ( σ a ) + ( 1 ) r m 1 ψ ( m ) ( σ a + ( σ b , σ a ) ) 2 ( ( σ b , σ a ) ) þ + r m × [ J ( σ a + ( σ b , σ a ) ) þ, k ϕ ( σ a ) + J σ a + þ , k ϕ ( σ a + ( σ b , σ a ) ) ] + ( 1 ) r J ( σ a + ( σ b , σ a ) ) þ, k ( ϕ ψ ) ( σ a ) + J σ a + þ, k ( ϕ ψ ) ( σ a + ( σ b , σ a ) ) ( ( σ b , σ a ) ) þ + r = 1 k Γ k ( þ ) 0 1 0 s 0 s 0 s r integrals u þ k 1 ϕ ( σ a + u ( σ b , σ a ) ) ( d u ) r + 1 s 1 s . . 1 s r integrals ( 1 u ) þ k 1 ϕ ( σ a + u ( σ b , σ a ) ) ( d u ) r ψ ( r ) ( σ a + s ( σ b , σ a ) ) d s .

From preinvexity of ψ ( r ) on Ω , we have

J = κ = 0 r 1 ( 1 ) r + 1 ψ ( κ ) ( σ a ) + ( 1 ) r κ 1 ψ ( κ ) ( σ a + ( σ b , σ a ) ) 2 ( ( σ b , σ a ) ) þ + r κ × [ J ( σ a + ( σ b , σ a ) ) þ ϕ ( σ a ) + J σ a + þ ϕ ( σ a + ( σ b , σ a ) ) ] + ( 1 ) r J ( σ a + ( σ b , σ a ) ) þ ( ϕ ψ ) ( σ a ) + J σ a + þ ( ϕ ψ ) ( σ a + ( σ b , σ a ) ) ( ( σ b , σ a ) ) þ + r = 1 k Γ k ( þ ) 0 1 0 s 0 s 0 s r integrals u þ k 1 ϕ ( σ a + u ( σ b , σ a ) ) ( d u ) r + 1 s 1 s . . 1 s r integrals ( 1 u ) þ k 1 ϕ ( σ a + u ( σ b , σ a ) ) ( d u ) r ( ( 1 s ) ψ ( r ) ( σ a ) + s ψ ( r ) ( σ b ) ) d s .

After simplification and letting ϕ = sup t [ σ a , σ b ] ϕ ( t ) , we obtain the required result

J k r 2 ϕ Γ ( þ ) Γ k ( þ ) Γ ( þ + r 1 ) 0 1 u þ k + r 2 0 u ( ( 1 s ) ψ ( r ) ( σ a ) + s ψ ( r ) ( σ b ) ) d s d u + k r 2 ϕ Γ ( þ ) Γ k ( þ ) Γ ( þ + r 1 ) 0 1 ( 1 u ) þ k + r 2 u 1 ( ( 1 s ) ψ ( r ) ( σ a ) + s ψ ( r ) ( σ b ) ) d s d u ϕ k r 1 Γ ( þ ) ( þ + k r ) Γ ( þ + r 1 ) Γ k ( þ ) [ ψ ( r ) ( σ a ) + ψ ( r ) ( σ b ) ] .

Remark 4

For k = r = 1 in equation (17), we have

ψ ( σ a ) + ψ ( σ a + ( σ b , σ a ) ) 2 ( ( σ b , σ a ) ) þ + 1 [ J ( σ a + ( σ b , σ a ) ) þ ϕ ( σ a ) + J σ a + þ ϕ ( σ a + ( σ b , σ a ) ) ] J ( σ a + ( σ b , σ a ) ) þ ( ϕ ψ ) ( σ a ) + J σ a + þ ( ϕ ψ ) ( σ a + ( σ b , σ a ) ) ( ( σ b , σ a ) ) þ + 1 ϕ ( þ + 1 ) Γ ( þ ) [ ψ ( σ a ) + ψ ( σ b ) ] .

Remark 5

For k = 1 , þ = 1 , ϕ = 1 and r = 2 in equation (17), we obtain the special case

(18) J = ψ ( σ a ) + ψ ( σ b ) 2 ( ( σ b , σ a ) ) 2 + ψ ( 1 ) ( σ a ) ψ ( 1 ) ( σ b ) 2 ( ( σ b , σ a ) ) 1 ( ( σ b , σ a ) ) 3 σ a σ b ϕ ( t ) d t ψ ( 2 ) ( σ a ) + ψ ( 2 ) ( σ b ) 3 .

3 Applications

In this section, some examples in the framework of special functions and special means are selected to fulfil the applicability of our obtained results.

3.1 Special functions

Let the function F v ¯ ( z ) : R [ 1 , ] be defined by Waston [22] as follows:

F v ¯ ( z ) = 2 v ¯ Γ ( v ¯ + 1 ) z v G v ¯ ( z ) , z R .

We consider the first kind of modified Bessel function denoted by г v ¯ ( z ) , which is given by [22] as follows:

G v ¯ ( z ) = n = 0 n = z 2 v ¯ + 2 n n ! Γ ( v ¯ + n + 1 ) .

Then, the first- and second-order derivatives of F v ¯ ( z ) are given as follows:

(19) F v ¯ ( z ) = z 2 ( v ¯ + 1 ) F v ¯ + 1 ( z ) . F v ¯ ( z ) = 1 4 ( v ¯ + 1 ) z 2 v ¯ + 2 F v ¯ + 2 ( z ) + 2 F v ¯ + 1 ( z ) . F v ¯ ( z ) = 1 2 ( v ¯ + 1 ) ( v ¯ + 2 ) z 3 v ¯ + 3 F v ¯ + 3 ( z ) + 6 z F v ¯ + 2 ( z ) .

Let ψ = F v ¯ ( z ) . Then, with the help of Remark given in equation (4) and using the three identities in equation (19), we can deduce

σ a + σ b 4 ( v ¯ + 1 ) F v ¯ + 1 σ a + σ b 2 ( σ b σ a ) [ F v ¯ ( σ b ) F v ¯ ( σ a ) ] ( σ b σ a ) 2 56 ( v ¯ + 1 ) ( v ¯ + 2 ) σ a 3 v ¯ + 3 F v ¯ + 3 ( σ a ) + 6 σ a F v ¯ + 2 ( σ a ) + σ b 3 v ¯ + 3 F v ¯ + 3 ( σ a ) + 6 σ b F v ¯ + 2 ( σ b ) .

3.2 Special means

We give the following special means for positive numbers σ a and σ b , where σ a < σ b

  1. Arithmetic mean is denoted by A ( σ a , σ b ) , and it is defined as follows:

    A ( σ a , σ b ) σ a + σ b 2 .

  2. Harmonic mean is denoted by H ( σ a , σ b ) , and it is defined as follows:

    H ( σ a , σ b ) 2 1 σ a + 1 σ b .

  3. Logarithmic mean is denoted by L ( σ a , σ b ) , and it is defined as follows:

    L ( σ a , σ b ) σ b σ a ln σ b ln σ a , σ a σ b .

  4. Logarithmic mean is denoted by L n ( σ a , σ b ) , and it is defined as follows:

    L n ( σ a , σ b ) σ b σ a ( n + 1 ) ( σ b σ a ) 1 n .

Proposition 1

For σ a , σ b R + , where σ a < σ b and m N , m > 1 , then the following inequality holds:

J = [ A ( σ a m + 1 , σ b m + 1 ) + ( σ b σ a ) ( m + 1 ) A ( σ a m + 1 , σ b m + 1 ) ] 1 ( σ b σ a ) ( m + 2 ) A ( σ a m + 2 , σ b m + 2 ) 2 3 ( σ b σ a ) 2 m ( m + 1 ) A ( σ a m 1 , σ b m 1 ) .

Proof

For ψ ( υ ) = υ m + 1 , ψ ( υ ) = ( m + 1 ) υ m and ψ ( υ ) = m ( m + 1 ) υ m 1 is a convex function on R + , where υ R + and m N , m 2 .

From equation (18), we obtain the required inequality.□

4 Conclusion

Finally, it can be said that research on weighted integral inequalities for r -times differentiable preinvex functions for k -fractional integrals has produced significant findings in the field of mathematical analysis. The findings of this study have shown that preinvex functions have the potential to be very useful mathematical tools, especially in the area of fractional calculus. Additional knowledge about the characteristics of preinvex functions and their uses in other mathematical domains is anticipated to be gained through further study in this area. Overall, the findings in this article have opened up new study directions and laid a strong platform for the future.

Acknowledgements

We wish to extend our heartfelt thanks to the anonymous reviewer for their valuable comments that have undoubtedly enhanced the quality of our article.

  1. Funding information: None declared.

  2. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Conflict of interest: The authors state that there is no conflict of interest.

  4. Ethical approval: The conducted research is not related to either human or animal use.

  5. Data availability statement: Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

[1] H. Liu, C. Liu, G. Bai, Y. Wu, C. He, R. Zhang, et al., Influence of pore defects on the hardened properties of 3-D printed concrete with coarse aggregate, Addit. Manuf. 55 (2022), 102843, DOI: https://doi.org/10.1016/j.addma.2022.102843. 10.1016/j.addma.2022.102843Search in Google Scholar

[2] C. H. He, S. H. Liu, C. Liu, and H. M. Sedighi, A novel bond stress-slip model for 3-D printed concretes, Discrete Contin. Dyn. Syst. 15 (2022), no. 7, 1669–1683, DOI: https://doi.org/10.3934/dcdss.2021161. 10.3934/dcdss.2021161Search in Google Scholar

[3] L. Fejér, Uber die Fourierreihen, II. Math. Naturwiss Anz. Ungar. Akad. Wiss. 24 (1906), 369–390. Search in Google Scholar

[4] R. S. Ali, A. Mukheimer, T. Abdeljawad, S. Mubeen, S. Ali, G. Rahman, et al., Some new harmonically convex function type generalized fractional integral inequalities, Fractal Fract. 54 (2021), no. 5, 1–12, DOI: https://doi.org/10.3390/fractalfract5020054. 10.3390/fractalfract5020054Search in Google Scholar

[5] S. Mehmood, F. Zafar, and N. Yasmin, Hermite-Hadamard-Fejér type inequalities for preinvex functions using fractional integrals, Mathematics 7 (2019), no. 5, 467, DOI: https://doi.org/10.3390/math7050467. 10.3390/math7050467Search in Google Scholar

[6] G. Rahman, A. Khan, and T. Abdeljawad, The Minkowski inequalities via generalized proportional fractional integral operators, Adv. Differential Equations 2019 (2019), 287, DOI: https://doi.org/10.1186/s13662-019-2229-7. 10.1186/s13662-019-2229-7Search in Google Scholar

[7] G. Rahman, K. S. Nisar, and F. Qi, Some new inequalities of the Grüss type for conformable fractional integrals, AIMS Math. 3 (2018), no. 4, 575–583, DOI: https://doi.org/10.3934/Math.2018.4.575. 10.3934/Math.2018.4.575Search in Google Scholar

[8] P. O. Mohammed, T. Abdeljawad, S. Zeng, and A. Kashuri, Fractional Hermite-Hadamard integral inequalities for a new class of convex functions, Symmetry 12 (2020), no. 9, 1485, DOI: https://doi.org/10.3390/sym12091485. 10.3390/sym12091485Search in Google Scholar

[9] K. S. Nisar, A. Tassaddiq, and G. Rahman, Some inequalities via fractional conformable integral operators, J. Inequal. Appl. 217 (2019), 1–8, DOI: https://doi.org/10.1186/s13660-019-2170-z. 10.1186/s13660-019-2170-zSearch in Google Scholar

[10] M. Z. Sarikaya, E. Set, H. Yaldiz, and N. Basak, Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model. 57 (2013), no. 9, 2403–2407, DOI: https://doi.org/10.1016/j.mcm.2011.12.048. 10.1016/j.mcm.2011.12.048Search in Google Scholar

[11] A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier B.V., Amsterdam, Netherlands, 2006. Search in Google Scholar

[12] S. Mubeen and G. M. Habibullah, k-fractional integrals and applications, Int. J. Contemp. Math. Sci. 7 (2012), 89–94. Search in Google Scholar

[13] T. Antczak, Mean value in invexity analysis, Nonlinear Anal. 60 (2005), 1471–1484. 10.1016/j.na.2004.11.005Search in Google Scholar

[14] T. Weir and B. Mond, Preinvex functions in multiple objective optimization, J. Math. Anal. Appl. 136 (1998), no. 1, 29–38, DOI: https://doi.org/10.1016/0022-247X(88)90113-8. 10.1016/0022-247X(88)90113-8Search in Google Scholar

[15] H. Kadakal, H. Maden, M. Kadakal, and I. İşcan, Some new integral inequalities for n-times differentiable r-convex and r-concave functions, Miskolc Math. Notes. 20 (2019), no. 2, 997–1011, DOI: https://doi.org/10.18514/MMN.2019.2489. 10.18514/MMN.2019.2489Search in Google Scholar

[16] M. A. Latif and S. S. Dragomir, On Hermite-Hadamard-type integral inequalities for n-times differentiable log-preinvex functions, Filomat. 29 (2015), no. 7, 1651–1661, DOI: https://doi.org/10.2298/FIL1507651L. 10.2298/FIL1507651LSearch in Google Scholar

[17] M. A. Latif and S. S. Dragomir, Generalization of Hermite-Hadamard-type inequalities for n-times differentiable functions which are s-preinvex in the second sense with applications, Hacettepe J. Math. Stat. 44 (2015), no. 4, 839–853, DOI: https://doi.org/10.15672/HJMS.2015449438. 10.15672/HJMS.2015449438Search in Google Scholar

[18] S. Mehmood, F. Zafar, and N. Yasmin, Hermite-Hadamard-type inequalities for n-times differentiable (s,m)- preinvex functions using fractional integrals, J. Math. Anal. 11 (2020), no. 4, 31–44. 10.1002/mma.6978Search in Google Scholar

[19] T. Sercan, I. İşcan, and K. Mehmet, Hermite-Hadamard type inequalities for n-times differentiable convex functions via Riemann-Liouville fractional integrals, Filomat 32 (2018), no. 16, 5611–5622, DOI: https://doi.org/10.2298/FIL1816611T. 10.2298/FIL1816611TSearch in Google Scholar

[20] S. Wang and F. Qi, Hermite-Hadamard-type inequalities for n-times differentiable and preinvex functions, J. Inequal. Appl. 2014 (2014), 49, DOI: https://doi.org/10.1186/1029-242X-2014-49. 10.1186/1029-242X-2014-49Search in Google Scholar

[21] J. Zhang, F. Qi, G. Xu, and Z. Pei, Hermite-Hadamard-type inequalities for n-times differentiable and geometrically quasi-convex functions, SpringerPlus. 5 (2016), 524, DOI: https://doi.org/10.1186/s40064-016-2083-y. 10.1186/s40064-016-2083-ySearch in Google Scholar PubMed PubMed Central

[22] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1944. Search in Google Scholar

Received: 2022-08-23
Revised: 2023-04-24
Accepted: 2023-05-18
Published Online: 2023-08-10

© 2023 the author(s), published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Regular Articles
  2. A novel class of bipolar soft separation axioms concerning crisp points
  3. Duality for convolution on subclasses of analytic functions and weighted integral operators
  4. Existence of a solution to an infinite system of weighted fractional integral equations of a function with respect to another function via a measure of noncompactness
  5. On the existence of nonnegative radial solutions for Dirichlet exterior problems on the Heisenberg group
  6. Hyers-Ulam stability of isometries on bounded domains-II
  7. Asymptotic study of Leray solution of 3D-Navier-Stokes equations with exponential damping
  8. Semi-Hyers-Ulam-Rassias stability for an integro-differential equation of order 𝓃
  9. Jordan triple (α,β)-higher ∗-derivations on semiprime rings
  10. The asymptotic behaviors of solutions for higher-order (m1, m2)-coupled Kirchhoff models with nonlinear strong damping
  11. Approximation of the image of the Lp ball under Hilbert-Schmidt integral operator
  12. Best proximity points in -metric spaces with applications
  13. Approximation spaces inspired by subset rough neighborhoods with applications
  14. A numerical Haar wavelet-finite difference hybrid method and its convergence for nonlinear hyperbolic partial differential equation
  15. A novel conservative numerical approximation scheme for the Rosenau-Kawahara equation
  16. Fekete-Szegö functional for a class of non-Bazilevic functions related to quasi-subordination
  17. On local fractional integral inequalities via generalized ( h ˜ 1 , h ˜ 2 ) -preinvexity involving local fractional integral operators with Mittag-Leffler kernel
  18. On some geometric results for generalized k-Bessel functions
  19. Convergence analysis of M-iteration for 𝒢-nonexpansive mappings with directed graphs applicable in image deblurring and signal recovering problems
  20. Some results of homogeneous expansions for a class of biholomorphic mappings defined on a Reinhardt domain in ℂn
  21. Graded weakly 1-absorbing primary ideals
  22. The existence and uniqueness of solutions to a functional equation arising in psychological learning theory
  23. Some aspects of the n-ary orthogonal and b(αn,βn)-best approximations of b(αn,βn)-hypermetric spaces over Banach algebras
  24. Numerical solution of a malignant invasion model using some finite difference methods
  25. Increasing property and logarithmic convexity of functions involving Dirichlet lambda function
  26. Feature fusion-based text information mining method for natural scenes
  27. Global optimum solutions for a system of (k, ψ)-Hilfer fractional differential equations: Best proximity point approach
  28. The study of solutions for several systems of PDDEs with two complex variables
  29. Regularity criteria via horizontal component of velocity for the Boussinesq equations in anisotropic Lorentz spaces
  30. Generalized Stević-Sharma operators from the minimal Möbius invariant space into Bloch-type spaces
  31. On initial value problem for elliptic equation on the plane under Caputo derivative
  32. A dimension expanded preconditioning technique for block two-by-two linear equations
  33. Asymptotic behavior of Fréchet functional equation and some characterizations of inner product spaces
  34. Small perturbations of critical nonlocal equations with variable exponents
  35. Dynamical property of hyperspace on uniform space
  36. Some notes on graded weakly 1-absorbing primary ideals
  37. On the problem of detecting source points acting on a fluid
  38. Integral transforms involving a generalized k-Bessel function
  39. Ruled real hypersurfaces in the complex hyperbolic quadric
  40. On the monotonic properties and oscillatory behavior of solutions of neutral differential equations
  41. Approximate multi-variable bi-Jensen-type mappings
  42. Mixed-type SP-iteration for asymptotically nonexpansive mappings in hyperbolic spaces
  43. On the equation fn + (f″)m ≡ 1
  44. Results on the modified degenerate Laplace-type integral associated with applications involving fractional kinetic equations
  45. Characterizations of entire solutions for the system of Fermat-type binomial and trinomial shift equations in ℂn#
  46. Commentary
  47. On I. Meghea and C. S. Stamin review article “Remarks on some variants of minimal point theorem and Ekeland variational principle with applications,” Demonstratio Mathematica 2022; 55: 354–379
  48. Special Issue on Fixed Point Theory and Applications to Various Differential/Integral Equations - Part II
  49. On Cauchy problem for pseudo-parabolic equation with Caputo-Fabrizio operator
  50. Fixed-point results for convex orbital operators
  51. Asymptotic stability of equilibria for difference equations via fixed points of enriched Prešić operators
  52. Asymptotic behavior of resolvents of equilibrium problems on complete geodesic spaces
  53. A system of additive functional equations in complex Banach algebras
  54. New inertial forward–backward algorithm for convex minimization with applications
  55. Uniqueness of solutions for a ψ-Hilfer fractional integral boundary value problem with the p-Laplacian operator
  56. Analysis of Cauchy problem with fractal-fractional differential operators
  57. Common best proximity points for a pair of mappings with certain dominating property
  58. Investigation of hybrid fractional q-integro-difference equations supplemented with nonlocal q-integral boundary conditions
  59. The structure of fuzzy fractals generated by an orbital fuzzy iterated function system
  60. On the structure of self-affine Jordan arcs in ℝ2
  61. Solvability for a system of Hadamard-type hybrid fractional differential inclusions
  62. Three solutions for discrete anisotropic Kirchhoff-type problems
  63. On split generalized equilibrium problem with multiple output sets and common fixed points problem
  64. Special Issue on Computational and Numerical Methods for Special Functions - Part II
  65. Sandwich-type results regarding Riemann-Liouville fractional integral of q-hypergeometric function
  66. Certain aspects of Nörlund -statistical convergence of sequences in neutrosophic normed spaces
  67. On completeness of weak eigenfunctions for multi-interval Sturm-Liouville equations with boundary-interface conditions
  68. Some identities on generalized harmonic numbers and generalized harmonic functions
  69. Study of degenerate derangement polynomials by λ-umbral calculus
  70. Normal ordering associated with λ-Stirling numbers in λ-shift algebra
  71. Analytical and numerical analysis of damped harmonic oscillator model with nonlocal operators
  72. Compositions of positive integers with 2s and 3s
  73. Kinematic-geometry of a line trajectory and the invariants of the axodes
  74. Hahn Laplace transform and its applications
  75. Discrete complementary exponential and sine integral functions
  76. Special Issue on Recent Methods in Approximation Theory - Part II
  77. On the order of approximation by modified summation-integral-type operators based on two parameters
  78. Bernstein-type operators on elliptic domain and their interpolation properties
  79. A class of strongly convergent subgradient extragradient methods for solving quasimonotone variational inequalities
  80. Special Issue on Recent Advances in Fractional Calculus and Nonlinear Fractional Evaluation Equations - Part II
  81. Application of fractional quantum calculus on coupled hybrid differential systems within the sequential Caputo fractional q-derivatives
  82. On some conformable boundary value problems in the setting of a new generalized conformable fractional derivative
  83. A certain class of fractional difference equations with damping: Oscillatory properties
  84. Weighted Hermite-Hadamard inequalities for r-times differentiable preinvex functions for k-fractional integrals
  85. Special Issue on Recent Advances for Computational and Mathematical Methods in Scientific Problems - Part II
  86. The behavior of hidden bifurcation in 2D scroll via saturated function series controlled by a coefficient harmonic linearization method
  87. Phase portraits of two classes of quadratic differential systems exhibiting as solutions two cubic algebraic curves
  88. Petri net analysis of a queueing inventory system with orbital search by the server
  89. Asymptotic stability of an epidemiological fractional reaction-diffusion model
  90. On the stability of a strongly stabilizing control for degenerate systems in Hilbert spaces
  91. Special Issue on Application of Fractional Calculus: Mathematical Modeling and Control - Part I
  92. New conticrete inequalities of the Hermite-Hadamard-Jensen-Mercer type in terms of generalized conformable fractional operators via majorization
  93. Pell-Lucas polynomials for numerical treatment of the nonlinear fractional-order Duffing equation
  94. Impacts of Brownian motion and fractional derivative on the solutions of the stochastic fractional Davey-Stewartson equations
  95. Some results on fractional Hahn difference boundary value problems
  96. Properties of a subclass of analytic functions defined by Riemann-Liouville fractional integral applied to convolution product of multiplier transformation and Ruscheweyh derivative
  97. Special Issue on Development of Fuzzy Sets and Their Extensions - Part I
  98. The cross-border e-commerce platform selection based on the probabilistic dual hesitant fuzzy generalized dice similarity measures
  99. Comparison of fuzzy and crisp decision matrices: An evaluation on PROBID and sPROBID multi-criteria decision-making methods
  100. Rejection and symmetric difference of bipolar picture fuzzy graph
Downloaded on 25.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/dema-2022-0254/html
Scroll to top button