Startseite Rejection and symmetric difference of bipolar picture fuzzy graph
Artikel Open Access

Rejection and symmetric difference of bipolar picture fuzzy graph

  • Maha Mohammed Almousa und Fairouz Tchier EMAIL logo
Veröffentlicht/Copyright: 13. Dezember 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Due to the absence of a negative of three membership functions, there are drawbacks to the existing definition of a picture fuzzy graph (PFG). In that definition of bipolar picture fuzzy graph (BPFG), membership function, neutral membership function, nonmembership function, negative of membership function, negative of neutral membership function, and negative of nonmembership function are involved. A BPFG is the extension of PFG. In this manuscript, we present some properties of symmetric difference, and rejection of BPFG.

MSC 2010: 05Cxx; 05C72

1 Introduction

Graph theory, a fascinating branch of applied mathematics, has a rich history characterized by multiple independent discoveries. Notably, Euler, a prominent mathematician from 1707 to 1782, made a significant breakthrough in 1736 by solving the famous Konigsberg bridge problem. Around a century later, in 1847, Kirchhoff introduced the theory of trees, aiming to address the complex set of simultaneous linear equations governing the flow of electric current within intricate networks of circuits and branches. Graphs, as fundamental components of graph theory, have proven to be an exceptionally versatile tool for modeling a wide array of real-world processes. They are instrumental in representing the intricate relationships between various entities within complex systems, ranging from ecosystems to electrical and computer networks, and beyond. Euler’s groundbreaking solution to the Konigsberg bridges puzzle in 1735 laid the foundation for the development of graph theory and led to some fundamental insights about graphs as mathematical structures. Notably, the pursuit of solving diagram tracing puzzles also contributed to the discovery of concepts that would later be recognized as defining features of specific types of graphs. It was not until the late nineteenth century that Rouse Ball made the pivotal connection between diagram tracing puzzles and the Konigsberg bridges problem, as documented in his work “Mathematical Recreations and Problems.” This historical narrative underscores the iterative and collaborative nature of mathematical discovery, where ideas and concepts are gradually linked, refined, and consolidated over time.

Graph theory has applications in social science, data analysis, topological space, video recognition, cluster analysis, algebra, laser scanners, and communication. The majority of classical set for formal modelling and reasoning are straightforward and predictable. Crisp is a yes or no person who cannot accept less or more. A statement in classical dual logic is either true or false, with no in-between. In set theory, an element is either in or out of the set. Zadeh [1] introduced fuzzy set (FS) as an effective and acceptable extension of crisp set for dealing with ambiguous and obscure data in unpredictable circumstances. It is defined as a true membership function with ranges in [0,1]. These concepts play a key role in understanding situations involving approximation reasoning as well as illustrating complex occurrences that conventional mathematics finds difficult to completely explain. Traditional FSs are expanded upon or extended by image FSs and bipolar picture FSs. Atanassov [2] established intuitionistic FS involving two degrees.

Fuzzy graphs (FGs) have a wide range of applications due to their ability to deal with uncertainty and imprecision in a structured mathematical framework. They are critical tools for simulating real-world systems in which relationships are not strictly binary but exhibit degrees of ambiguity. FGs can be used to factor in multiple criteria and preferences in fields such as decision-making, allowing for more informed decisions. They play an important role in pattern recognition by accommodating fuzzy patterns that do not neatly fit into predefined categories, thereby improving applications such as image processing and machine learning. Furthermore, in complex systems modelling, they are critical for capturing the intricate, ever-changing relationships within transportation networks, social networks, and biological systems.

Unipolar intelligence is less fundamental than bipolar intelligence based on truth, and calmness is a constraint for truth-based environments. When reality disappears in a black hole owing to Hawking radiation or specified/anti-particular emissions, the most powerful phenomenon that endures is bipolarity. A bipolar fuzzy graph (FG) is a mathematical model that extends the traditional FG concept by introducing bipolar membership values. Unlike standard FGs, which typically represent the strength of connections between nodes using positive values between 0 and 1, bipolar FGs allow for the inclusion of both positive and negative membership values. This additional dimension of information allows for a more nuanced representation of relationships, with positive values indicating positive influence or affinity and negative values indicating repulsion or opposition. Bipolar FGs are used in decision-making, sentiment analysis, and modelling complex systems where the direction and polarity of connections between elements are critical to understanding the network’s dynamics. A bipolar picture FS is more fundamental than picture FS.

On the other hand, Rosenfeld [3] presented a new idea of one degree FG. After that, some researchers studied about FG [46], bipolar FG [79], and fuzzy analysis or fuzzy algebra [1018]. The concept Bondage number in intuitionistic FG is discussed by Shao et al. [19]. Zuo et al. [20] initiated the concept of picture fuzzy graph (PFG). Coung [21] worked on PFG. Shoaib et al. [2225] worked on different classes of FGs. Shoaib et al. [26] discussed the concept of upper and lower truncation of PFGs. Khan et al. [27] introduced a BPFG. We present some properties, namely symmetric difference and rejection of bipolar picture fuzzy graph (BPFG).

Research objectives

  1. Develop a generalized model called the bipolar picture fuzzy model, which extends the existing picture fuzzy model.

  2. Define the membership grades within the bipolar picture fuzzy model, which consist of six functions: the membership function, the neutral function, the non-membership function, negative of the membership function, negative of the neutral function, and negative of the non-membership function.

  3. Investigate the operations, namely rejection and symmetric difference, of BPFG with the help of examples and theorems.

Some abbreviations in word form are shown in Table 1. PFG and BPFG are both important extensions of FG that allow for the representation of uncertainty. PFGs represent relationships in three dimensions, whereas BPFGs add another dimension by including positive and negative influences, resulting in a richer model for certain applications.

Table 1

Abbreviations

Abbreviation Word
BPFG Bipolar picture fuzzy graph
PFG Picture fuzzy graph
FS Fuzzy set
FG Fuzzy graph

2 Preliminaries

In this section, we lay the foundation with fundamental definitions, revisiting key concepts to pave the way for a thorough exploration of vertex degree. Our objective is to foster a keen interest in understanding this notion more deeply. We use the symbols to denote maximum values and to represent minimum values.

Definition 2.1

[27] The functions χ W , ϕ W , ψ W , α W , β W , and γ W are defined on the set E, which is a subset of V × V, and they map to particular intervals: [ 0 , 1 ] for χ W , ϕ W , and ψ W , and [ 1 , 0 ] for α W , β W , and γ W . These operations meet the following conditions:

χ W ( p q ) { χ U ( p ) , χ U ( q ) } ,

ϕ W ( p q ) { ϕ U ( p ) , ϕ U ( q ) } ,

ψ W ( p q ) { ψ U ( p ) , ψ U ( q ) } ,

α W ( p q ) { α U ( p ) , α U ( q ) } ,

β W ( p q ) { β U ( p ) , β U ( q ) } ,

γ W ( p q ) { γ U ( p ) , γ U ( q ) } .

The sum of χ U ( p ) , ϕ U ( p ) , and ψ U ( p ) lies between 0 and 1, expressed as 0 χ U ( p ) + ϕ U ( p ) + ψ U ( p ) 1 , for all p in V . The sum of α U ( p ) , β U ( p ) , and γ U ( p ) is within the range of 1 to 0, denoted as 1 α U ( p ) + β U ( p ) + γ U ( p ) 0 for all p in V . Similarly, the sum of χ W ( p q ) , ϕ W ( p q ) , and ψ W ( p q ) is bounded between 0 and 1, expressed as 0 χ W ( p q ) + ϕ W ( p q ) + ψ W ( p q ) 1 for all p q in E . The sum of α W ( p q ) , β W ( p q ) , and γ W ( p q ) falls within the interval [−1,0], represented as 1 α W ( p q ) + β W ( p q ) + γ W ( p q ) 0 , for all p q in E .

Example 2.2

Consider a graph comprising three vertices, denoted as p , q , and r , along with three edges: p q , q r , and r p , configured in the following manner (Figure 1):

Figure 1 
               BPFG.
Figure 1

BPFG.

3 BPFG

Definition 3.1

[22] Consider a crisp graph denoted as G * = ( V , E ) . When we have a non-empty universal set X , we introduce the concept of a picture FS, which can be denoted as U = < p : χ U ( p ) , ϕ U ( p ) , ψ U ( p ) > , p X . The constraint applies within this context: 0 χ U ( p ) + ϕ U ( p ) + ψ U ( p ) 1 . Specifically, χ U : V [ 0 , 1 ] signifies the degree of the true membership function, ϕ U : V [ 0 , 1 ] represents the degree of the neutral membership function, and ψ U : V [ 0 , 1 ] characterizes the degree of the falsity membership function. In addition, we establish the concept of the refusal membership degree as π U ( p ) = 1 χ U ( p ) + ϕ U ( p ) + ψ U ( p ) .

Definition 3.2

A BPFG G = ( U , W ) on a graph G * = ( V , E ) is said to be strong if

χ W ( p q ) = { χ U ( p ) , χ U ( q ) } ,

ϕ W ( p q ) = { ϕ U ( p ) , ϕ U ( q ) } ,

ψ W ( p q ) = { ψ U ( p ) , ψ U ( q ) } ,

α W ( p q ) = { α U ( p ) , α U ( q ) } ,

β W ( p q ) = { β U ( p ) , β U ( q ) } ,

γ W ( p q ) = { γ U ( p ) , γ U ( q ) }

p q in E .

Definition 3.3

A BPFG G is said to be complete if

χ W ( p q ) = { χ U ( p ) , χ U ( q ) } ,

ϕ W ( p q ) = { ϕ U ( p ) , ϕ U ( q ) } ,

ψ W ( p q ) = { ψ U ( p ) , ψ U ( q ) } ,

α W ( p q ) = { α U ( p ) , α U ( q ) } ,

β W ( p q ) = { β U ( p ) , β U ( q ) } ,

γ W ( p q ) = { γ U ( p ) , γ U ( q ) }

p , q in V .

4 Operations on BPFG

Definition 4.1

The rejection G 1 G 2 = ( U 1 U 2 , W 1 W 2 ) of two BPFGs G 1 = ( U 1 , W 1 ) and G 2 = ( U 2 , W 2 ) on crisp graphs G 1 ( V 1 , E 1 ) and G 2 ( V 2 , E 2 ) is defined as follows:

(i)

( χ U 1 χ U 2 ) ( ( k 1 , k 2 ) ) = { χ U 1 ( k 1 ) , χ U 2 ( k 2 ) }

( ϕ U 1 ϕ U 2 ) ( ( k 1 , k 2 ) ) = { ϕ U 1 ( k 1 ) , ϕ U 2 ( k 2 ) }

( ψ U 1 ψ U 2 ) ( ( k 1 , k 2 ) ) = { ψ U 1 ( k 1 ) , ψ U 2 ( k 2 ) }

( α U 1 α U 2 ) ( ( k 1 , k 2 ) ) = { α U 1 ( k 1 ) , α U 2 ( k 2 ) }

( β U 1 β U 2 ) ( ( k 1 , k 2 ) ) = { β U 1 ( k 1 ) , β U 2 ( k 2 ) }

( γ U 1 γ U 2 ) ( ( k 1 , k 2 ) ) = { γ U 1 ( k 1 ) , γ U 2 ( k 2 ) }

( k 1 , k 2 ) ( V 1 × V 2 ) ,

(ii)

( χ W 1 χ W 2 ) ( ( m , k 2 ) ( m , n 2 ) ) = { χ U 1 ( m ) , χ U 2 ( k 2 ) , χ U 2 ( n 2 ) }

( ϕ W 1 ϕ W 2 ) ( ( m , k 2 ) ( m , n 2 ) ) = { ϕ U 1 ( m ) , ϕ U 2 ( k 2 ) , ϕ U 2 ( n 2 ) }

( ψ W 1 ψ W 2 ) ( ( m , k 2 ) ( m , n 2 ) ) = { ψ U 1 ( m ) , ψ U 2 ( k 2 ) , ψ U 2 ( n 2 ) }

( α W 1 α W 2 ) ( ( m , k 2 ) ( m , n 2 ) ) = { α U 1 ( m ) , α U 2 ( k 2 ) , α U 2 ( n 2 ) }

( β W 1 β W 2 ) ( ( m , k 2 ) ( m , n 2 ) ) = { β U 1 ( m ) , β U 2 ( k 2 ) , β U 2 ( n 2 ) }

( γ W 1 γ W 2 ) ( ( m , k 2 ) ( m , n 2 ) ) = { γ U 1 ( m ) , γ U 2 ( k 2 ) , γ U 2 ( n 2 ) }

m V 1 and k 2 n 2 E 2 ,

(iii)

( χ W 1 χ W 2 ) ( ( k 1 , z ) ( n 1 , z ) ) = { χ U 1 ( k 1 ) , χ U 1 ( n 1 ) , χ U 2 ( z ) }

( ϕ W 1 ϕ W 2 ) ( ( k 1 , z ) ( n 1 , z ) ) = { ϕ U 1 ( k 1 ) , ϕ U 1 ( n 1 ) , ϕ U 2 ( z ) }

( ψ W 1 ψ W 2 ) ( ( k 1 , z ) ( n 1 , z ) ) = { ψ U 1 ( k 1 ) , ψ U 1 ( n 1 ) , ψ U 2 ( z ) }

( α W 1 α W 2 ) ( ( k 1 , z ) ( n 1 , z ) ) = { α U 1 ( k 1 ) , α U 1 ( n 1 ) , α U 2 ( z ) }

( β W 1 β W 2 ) ( ( k 1 , z ) ( n 1 , z ) ) = { β U 1 ( k 1 ) , β U 1 ( n 1 ) , β U 2 ( z ) }

( γ W 1 γ W 2 ) ( ( k 1 , z ) ( n 1 , z ) ) = { γ U 1 ( k 1 ) , γ U 1 ( n 1 ) , γ U 2 ( z ) }

z V 2 and k 1 n 1 E 1 ,

(iv)

( χ W 1 χ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { χ U 1 ( k 1 ) , χ U 1 ( n 1 ) , χ U 2 ( k 2 ) , χ U 2 ( n 2 ) }

( ϕ W 1 ϕ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { ϕ U 1 ( k 1 ) , ϕ U 1 ( n 1 ) , ϕ U 2 ( k 2 ) , ϕ W 2 ( n 2 ) }

( ψ W 1 ψ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { ψ U 1 ( k 1 ) , ψ U 1 ( n 1 ) , ψ U 2 ( k 2 ) , ψ U 2 ( n 2 ) }

( α W 1 α W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { α U 1 ( k 1 ) , α U 1 ( n 1 ) , α U 2 ( k 2 ) , α U 2 ( n 2 ) }

( β W 1 β W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { β U 1 ( k 1 ) , β U 1 ( n 1 ) , β U 2 ( k 2 ) , β U 2 ( n 2 ) }

( γ W 1 γ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { γ U 1 ( k 1 ) , γ U 1 ( n 1 ) , γ U 2 ( k 2 ) , γ U 2 ( n 2 ) }

k 1 n 1 E 1 and k 2 n 2 E 2 .

Example 4.2

Suppose G 1 and G 2 are two BPFGs as in Figures 2 and 3. Figure 4 presents the rejection of two BPFGs G 1 and G 2 , that is G 1 G 2 in Figure 4.

Figure 2 
               
                  
                     
                        
                        
                           
                              
                                 G
                              
                              
                                 1
                              
                           
                        
                        {{\mathbb{G}}}_{1}
                     
                  .
Figure 2

G 1 .

Figure 3 
               
                  
                     
                        
                        
                           
                              
                                 G
                              
                              
                                 2
                              
                           
                        
                        {{\mathbb{G}}}_{2}
                     
                  .
Figure 3

G 2 .

Figure 4 
               
                  
                     
                        
                        
                           
                              
                                 G
                              
                              
                                 1
                              
                           
                           ∣
                           
                              
                                 G
                              
                              
                                 2
                              
                           
                        
                        {{\mathbb{G}}}_{1}| {{\mathbb{G}}}_{2}
                     
                  .
Figure 4

G 1 G 2 .

For node ( e , a ) ,

( χ U 1 χ U 2 ) ( ( a , e ) ) = { χ U 1 ( a ) , χ U 2 ( e ) } = { 0.1 , 0.1 } = 0.1 , ( ϕ U 1 ϕ U 2 ) ( ( a , e ) ) = { ϕ U 1 ( a ) , ϕ U 2 ( e ) } = { 0.3 , 0.2 } = 0.2 , ( ψ U 1 ψ U 2 ) ( ( a , e ) ) = { ψ U 1 ( a ) , ψ U 2 ( e ) } = { 0.2 , 0.3 } = 0.3 , ( α U 1 α U 2 ) ( ( a , e ) ) = { α U 1 ( a ) , α U 2 ( e ) } = { 0.1 , 0.1 } = 0.1 , ( β U 1 β U 2 ) ( ( a , e ) ) = { β U 1 ( a ) , β U 2 ( e ) } = { 0.2 , 0.3 } = 0.2 , ( γ U 1 γ U 2 ) ( ( a , e ) ) = { γ U 1 ( a ) , γ U 2 ( e ) } = { 0.3 , 0.2 } = 0.3

for a V 1 and e V 2 .

Proposition 4.3

The rejection of two BPFGs G 1 and G 2 is a BPFG.

Proof

Suppose G 1 = ( U 1 , W 1 ) and G 2 = ( U 2 , W 2 ) are two BPFGs on crisp graphs G 1 = ( V 1 , E 1 ) and G 2 = ( V 2 , E 2 ) , respectively, and ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) E 1 × E 2 .

(i) If k 1 = n 1 , k 2 n 2 E 2 ,

( χ W 1 χ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { χ U 1 ( k 1 ) , χ U 2 ( k 2 ) , χ U 2 ( n 2 ) } { { χ U 1 ( k 1 ) , χ U 2 ( k 2 ) } , { χ U 1 ( n 1 ) , χ U 2 ( n 2 ) } } = { ( χ U 1 χ U 2 ) ( k 1 , k 2 ) , ( χ U 1 χ U 2 ) ( n 1 , n 2 ) } ,

( ϕ W 1 ϕ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { ϕ U 1 ( k 1 ) , ϕ U 2 ( k 2 ) , ϕ U 2 ( n 2 ) } { { ϕ U 1 ( k 1 ) , ϕ U 2 ( k 2 ) } , { ϕ U 1 ( n 1 ) , ϕ U 2 ( n 2 ) } } = { ( ϕ U 1 ϕ U 2 ) ( k 1 , k 2 ) , ( ϕ U 1 ϕ U 2 ) ( n 1 , n 2 ) } ,

( ψ W 1 ψ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { ψ U 1 ( k 1 ) , ψ U 2 ( k 2 ) , ψ U 2 ( n 2 ) } { { ψ U 1 ( k 1 ) , ψ U 2 ( k 2 ) } , { ψ U 1 ( n 1 ) , ψ U 2 ( n 2 ) } } = { ( ψ U 1 ψ U 2 ) ( k 1 , k 2 ) , ( ψ U 1 ψ U 2 ) ( n 1 , n 2 ) } ,

( α W 1 α W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { α U 1 ( k 1 ) , α U 2 ( k 2 ) , α U 2 ( n 2 ) } { { α U 1 ( k 1 ) , α U 2 ( k 2 ) } , { α U 1 ( n 1 ) , α U 2 ( n 2 ) } } = { ( α U 1 α U 2 ) ( k 1 , k 2 ) , ( α U 1 α U 2 ) ( n 1 , n 2 ) } ,

( β W 1 β W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { β U 1 ( k 1 ) , β U 2 ( k 2 ) , β U 2 ( n 2 ) } { { β U 1 ( k 1 ) , β U 2 ( k 2 ) } , { β U 1 ( n 1 ) , β U 2 ( n 2 ) } } = { ( β U 1 β U 2 ) ( k 1 , k 2 ) , ( β U 1 β U 2 ) ( n 1 , n 2 ) } ,

( γ W 1 γ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { γ U 1 ( k 1 ) , γ U 2 ( k 2 ) , γ U 2 ( n 2 ) } { { γ U 1 ( k 1 ) , γ U 2 ( k 2 ) } , { γ U 1 ( n 1 ) , γ U 2 ( n 2 ) } } = { ( γ U 1 γ U 2 ) ( k 1 , k 2 ) , ( γ U 1 γ U 2 ) ( n 1 , n 2 ) } .

(ii) If k 2 = n 2 , k 1 n 1 E 1 ,

( χ W 1 χ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { χ U 1 ( k 1 ) , χ U 1 ( n 1 ) , χ U 2 ( k 2 ) } { { χ U 1 ( k 1 ) , χ U 2 ( k 2 ) } , { χ U 1 ( n 1 ) , χ U 2 ( n 2 ) } } = { ( χ U 1 χ U 2 ) ( k 1 , k 2 ) , ( χ U 1 χ U 2 ) ( n 1 , n 2 ) } ,

( ϕ W 1 ϕ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { ϕ U 1 ( k 1 ) , ϕ U 1 ( n 1 ) , ϕ U 2 ( k 2 ) } { { ϕ U 1 ( k 1 ) , ϕ U 2 ( k 2 ) } , { ϕ U 1 ( n 1 ) , ϕ U 2 ( n 2 ) } } = { ( ϕ U 1 ϕ U 2 ) ( k 1 , k 2 ) , ( ϕ U 1 ϕ U 2 ) ( n 1 , n 2 ) } ,

( ψ W 1 ψ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { ψ U 1 ( k 1 ) , ψ U 1 ( n 1 ) , ψ U 2 ( k 2 ) } { { ψ U 1 ( k 1 ) , ψ U 2 ( k 2 ) } , { ψ U 1 ( n 1 ) , ψ U 2 ( n 2 ) } } = { ( ψ U 1 ψ U 2 ) ( k 1 , k 2 ) , ( ψ U 1 ψ U 2 ) ( n 1 , n 2 ) } ,

( α W 1 α W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { α U 1 ( k 1 ) , α U 1 ( n 1 ) , α U 2 ( k 2 ) } { { α U 1 ( k 1 ) , α U 2 ( k 2 ) } , { α U 1 ( n 1 ) , α U 2 ( n 2 ) } } = { ( α U 1 α U 2 ) ( k 1 , k 2 ) , ( α U 1 α U 2 ) ( n 1 , n 2 ) } ,

( β W 1 β W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { β U 1 ( k 1 ) , β U 1 ( n 1 ) , β U 2 ( k 2 ) } { { β U 1 ( k 1 ) , β U 2 ( k 2 ) } , { β U 1 ( n 1 ) , β U 2 ( n 2 ) } } = { ( β U 1 β U 2 ) ( k 1 , k 2 ) , ( β U 1 β U 2 ) ( n 1 , n 2 ) } ,

( γ W 1 γ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { γ U 1 ( k 1 ) , γ U 1 ( n 1 ) , γ U 2 ( k 2 ) } { { γ U 1 ( k 1 ) , γ U 2 ( k 2 ) } , { γ U 1 ( n 1 ) , γ U 2 ( n 2 ) } } = { ( γ U 1 γ U 2 ) ( k 1 , k 2 ) , ( γ U 1 γ U 2 ) ( n 1 , n 2 ) } .

(iii) If k 1 n 1 E 1 and k 2 n 2 E 2 ,

( χ W 1 χ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { χ U 1 ( k 1 ) , χ U 1 ( n 1 ) , χ U 2 ( k 2 ) , χ U 2 ( n 2 ) } { { χ U 1 ( k 1 ) , χ U 2 ( k 2 ) } , { χ U 1 ( n 1 ) , χ U 2 ( n 2 ) } } = { ( χ U 1 χ U 2 ) ( k 1 , k 2 ) , ( χ U 1 χ U 2 ) ( n 1 , n 2 ) } ,

( ϕ W 1 ϕ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { ϕ U 1 ( k 1 ) , ϕ U 1 ( n 1 ) , ϕ U 2 ( k 2 ) , χ U 2 ( n 2 ) } { { ϕ U 1 ( k 1 ) , ϕ U 2 ( k 2 ) } , { ϕ U 1 ( n 1 ) , ϕ U 2 ( n 2 ) } } = { ( ϕ U 1 ϕ U 2 ) ( k 1 , k 2 ) , ( ϕ U 1 ϕ U 2 ) ( n 1 , n 2 ) } ,

( ψ W 1 ψ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { ψ U 1 ( k 1 ) , ψ U 1 ( n 1 ) , ψ U 2 ( k 2 ) , ψ U 2 ( n 2 ) } { { ψ U 1 ( k 1 ) , ψ U 2 ( k 2 ) } , { ψ U 1 ( n 1 ) , ψ U 2 ( n 2 ) } } = { ( ψ U 1 ψ U 2 ) ( k 1 , k 2 ) , ( ψ U 1 ψ U 2 ) ( n 1 , n 2 ) } ,

( α W 1 α W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { α U 1 ( k 1 ) , α U 1 ( n 1 ) , α U 2 ( k 2 ) , α U 2 ( n 2 ) } { { α U 1 ( k 1 ) , α U 2 ( k 2 ) } , { α U 1 ( n 1 ) , α U 2 ( n 2 ) } } = { ( α U 1 α U 2 ) ( k 1 , k 2 ) , ( α U 1 α U 2 ) ( n 1 , n 2 ) } ,

( β W 1 β W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { β U 1 ( k 1 ) , β U 1 ( n 1 ) , β U 2 ( k 2 ) , β U 2 ( n 2 ) } { { β U 1 ( k 1 ) , β U 2 ( k 2 ) } , { β U 1 ( n 1 ) , β U 2 ( n 2 ) } } = { ( β U 1 β U 2 ) ( k 1 , k 2 ) , ( β U 1 β U 2 ) ( n 1 , n 2 ) } ,

( γ W 1 γ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { γ U 1 ( k 1 ) , γ U 1 ( n 1 ) , γ U 2 ( k 2 ) , γ U 2 ( n 2 ) } { { γ U 1 ( k 1 ) , γ U 2 ( k 2 ) } , { γ U 1 ( n 1 ) , γ U 2 ( n 2 ) } } = { ( γ U 1 γ U 2 ) ( k 1 , k 2 ) , ( γ U 1 γ U 2 ) ( n 1 , n 2 ) } .

Therefore, G 1 G 2 = ( U 1 U 2 , W 1 W 2 ) is a BPFG.□

Remark 4.4

The rejection of two complete BPFGs G 1 = ( U 1 , W 1 ) and G 2 = ( U 2 , W 2 ) is a complete BPFG.

Definition 4.5

Suppose G 1 = ( U 1 , W 1 ) and G 2 = ( U 2 , W 2 ) are two BPFGs on crisp graphs. For any node ( k 1 , k 2 ) V 1 × V 2 , we have

( d χ ) G 1 G 2 ( k 1 , k 2 ) = ( k 1 , k 2 ) ( n 1 , n 2 ) E 1 × E 2 . ( χ W 1 χ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = k 1 = n 1 , k 2 n 2 E 2 { χ U 1 ( k 1 ) , χ U 2 ( k 2 ) , χ U 2 ( n 2 ) } + k 2 = n 2 , k 1 n 1 E 1 { χ U 1 ( k 1 ) , χ U 1 ( n 1 ) , χ U 2 ( k 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { χ U 1 ( k 1 ) , χ U 1 ( n 1 ) , χ U 2 ( k 2 ) , χ U 2 ( n 2 ) } ,

( d ϕ ) G 1 G 2 ( k 1 , k 2 ) = ( k 1 , k 2 ) ( n 1 , n 2 ) E 1 × E 2 . ( ϕ W 1 ϕ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = k 1 = n 1 , k 2 n 2 E 2 { ϕ U 1 ( k 1 ) , ϕ U 2 ( k 2 ) , ϕ U 2 ( n 2 ) } + k 2 = n 2 , k 1 n 1 E 1 { ϕ U 1 ( k 1 ) , ϕ U 1 ( n 1 ) , ϕ U 2 ( k 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { ϕ U 1 ( k 1 ) , ϕ U 1 ( n 1 ) , ϕ U 2 ( k 2 ) , ϕ U 2 ( n 2 ) } ,

( d ψ ) G 1 G 2 ( k 1 , k 2 ) = ( k 1 , k 2 ) ( n 1 , n 2 ) E 1 × E 2 . ( ψ W 1 ψ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = k 1 = n 1 , k 2 n 2 E 2 { ψ U 1 ( k 1 ) , ψ U 2 ( k 2 ) , ψ U 2 ( n 2 ) } + k 2 = n 2 , k 1 n 1 E 1 { ψ U 1 ( k 1 ) , ψ U 1 ( n 1 ) , ψ U 2 ( k 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { ψ U 1 ( k 1 ) , ψ U 1 ( n 1 ) , ψ U 2 ( k 2 ) , ψ U 2 ( n 2 ) } ,

( d α ) G 1 G 2 ( k 1 , k 2 ) = ( k 1 , k 2 ) ( n 1 , n 2 ) E 1 × E 2 . ( α W 1 α W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = k 1 = n 1 , k 2 n 2 E 2 { α U 1 ( k 1 ) , α U 2 ( k 2 ) , α U 2 ( n 2 ) } + k 2 = n 2 , k 1 n 1 E 1 { α U 1 ( k 1 ) , α U 1 ( n 1 ) , α U 2 ( k 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { α U 1 ( k 1 ) , α U 1 ( n 1 ) , α U 2 ( k 2 ) , α U 2 ( n 2 ) } ,

( d β ) G 1 G 2 ( k 1 , k 2 ) = ( k 1 , k 2 ) ( n 1 , n 2 ) E 1 × E 2 . ( β W 1 β W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = k 1 = n 1 , k 2 n 2 E 2 { β U 1 ( k 1 ) , β U 2 ( k 2 ) , β U 2 ( n 2 ) } + k 2 = n 2 , k 1 n 1 E 1 { β U 1 ( k 1 ) , β U 1 ( n 1 ) , β U 2 ( k 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { β U 1 ( k 1 ) , β U 1 ( n 1 ) , β U 2 ( k 2 ) , β U 2 ( n 2 ) } ,

( d γ ) G 1 G 2 ( k 1 , k 2 ) = ( k 1 , k 2 ) ( n 1 , n 2 ) E 1 × E 2 . ( γ W 1 γ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = k 1 = n 1 , k 2 n 2 E 2 { γ U 1 ( k 1 ) , γ U 2 ( k 2 ) , γ U 2 ( n 2 ) } + k 2 = n 2 , k 1 n 1 E 1 { γ U 1 ( k 1 ) , γ U 1 ( n 1 ) , γ U 2 ( k 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { γ U 1 ( k 1 ) , γ U 1 ( n 1 ) , γ U 2 ( k 2 ) , γ U 2 ( n 2 ) } .

Definition 4.6

Suppose G 1 = ( U 1 , W 1 ) and G 2 = ( U 2 , W 2 ) are two BPFGs on crisp graphs. Then ( k 1 , k 2 ) V 1 × V 2 .

( t d χ ) G 1 G 2 ( k 1 , k 2 ) = ( k 1 , k 2 ) ( n 1 , n 2 ) E 1 × E 2 . ( χ W 1 χ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) + ( χ U 1 χ U 2 ) ( k 1 , k 2 ) = k 1 = n 1 , k 2 n 2 E 2 { χ U 1 ( k 1 ) , χ U 2 ( k 2 ) , χ U 2 ( n 2 ) } + k 2 = n 2 , k 1 n 1 E 1 { χ U 1 ( k 1 ) , χ U 1 ( n 1 ) , χ U 2 ( k 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { χ U 1 ( k 1 ) , χ U 1 ( n 1 ) , χ U 2 ( k 2 ) , χ U 2 ( n 2 ) } + { χ U 1 ( k 1 ) , χ U 2 ( k 2 ) } ,

( t d ϕ ) G 1 G 2 ( k 1 , k 2 ) = ( k 1 , k 2 ) ( n 1 , n 2 ) E 1 × E 2 . ( ϕ W 1 ϕ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) + ( ϕ U 1 ϕ U 2 ) ( k 1 , k 2 ) = k 1 = n 1 , k 2 n 2 E 2 { ϕ U 1 ( k 1 ) , ϕ U 2 ( k 2 ) , ϕ U 2 ( n 2 ) } + k 2 = n 2 , k 1 n 1 E 1 { ϕ U 1 ( k 1 ) , ϕ U 1 ( n 1 ) , ϕ U 2 ( k 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { ϕ U 1 ( k 1 ) , ϕ U 1 ( n 1 ) , ϕ U 2 ( k 2 ) , ϕ U 2 ( n 2 ) } + { ϕ U 1 ( k 1 ) , ϕ U 2 ( k 2 ) } ,

( t d ψ ) G 1 G 2 ( k 1 , k 2 ) = ( k 1 , k 2 ) ( n 1 , n 2 ) E 1 × E 2 . ( ψ W 1 ψ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) + ( ψ U 1 ψ U 2 ) ( k 1 , k 2 ) = k 1 = n 1 , k 2 n 2 E 2 { ψ U 1 ( k 1 ) , ψ U 2 ( k 2 ) , ψ U 2 ( n 2 ) } + k 2 = n 2 , k 1 n 1 E 1 { ψ U 1 ( k 1 ) , ψ U 1 ( n 1 ) , ψ U 2 ( k 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { ψ U 1 ( k 1 ) , ψ U 1 ( n 1 ) , ψ U 2 ( k 2 ) , ψ U 2 ( n 2 ) } + { ψ U 1 ( k 1 ) , ψ U 2 ( k 2 ) } ,

( t d α ) G 1 G 2 ( k 1 , k 2 ) = ( k 1 , k 2 ) ( n 1 , n 2 ) E 1 × E 2 . ( α W 1 α W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) + ( α U 1 α U 2 ) ( k 1 , k 2 ) = k 1 = n 1 , k 2 n 2 E 2 { α U 1 ( k 1 ) , α U 2 ( k 2 ) , α U 2 ( n 2 ) } + k 2 = n 2 , k 1 n 1 E 1 { α U 1 ( k 1 ) , α U 1 ( n 1 ) , α U 2 ( k 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { α U 1 ( k 1 ) , α U 1 ( n 1 ) , α U 2 ( k 2 ) , α U 2 ( n 2 ) } + { α U 1 ( k 1 ) , α U 2 ( k 2 ) } ,

( t d β ) G 1 G 2 ( k 1 , k 2 ) = ( k 1 , k 2 ) ( n 1 , n 2 ) E 1 × E 2 . ( β W 1 β W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) + ( β U 1 β U 2 ) ( k 1 , k 2 ) = k 1 = n 1 , k 2 n 2 E 2 { β U 1 ( k 1 ) , β U 2 ( k 2 ) , β U 2 ( n 2 ) } + k 2 = n 2 , k 1 n 1 E 1 { β U 1 ( k 1 ) , β U 1 ( n 1 ) , β U 2 ( k 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { β U 1 ( k 1 ) , β U 1 ( n 1 ) , β U 2 ( k 2 ) , β U 2 ( n 2 ) } + { β U 1 ( k 1 ) , β U 2 ( k 2 ) } ,

( t d γ ) G 1 G 2 ( k 1 , k 2 ) = ( k 1 , k 2 ) ( n 1 , n 2 ) E 1 × E 2 . ( γ W 1 γ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) + ( γ U 1 γ U 2 ) ( k 1 , k 2 ) = k 1 = n 1 , k 2 n 2 E 2 { γ U 1 ( k 1 ) , γ U 2 ( k 2 ) , γ U 2 ( n 2 ) } + k 2 = n 2 , k 1 n 1 E 1 { γ U 1 ( k 1 ) , γ U 1 ( n 1 ) , γ U 2 ( k 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { γ U 1 ( k 1 ) , γ U 1 ( n 1 ) , γ U 2 ( k 2 ) , γ U 2 ( n 2 ) } + { γ U 1 ( k 1 ) , γ U 2 ( k 2 ) } .

Example 4.7

We calculate the degree and the total degree of node ( a , d ) , for two functions.

( d χ ) G 1 G 2 ( a , d ) = { χ U 2 ( d ) , χ U 1 ( a ) , χ U 1 ( c ) } + { χ U 2 ( d ) , χ U 1 ( a ) , χ U 2 ( f ) , χ U 1 ( c ) } + { χ U 2 ( d ) , χ U 1 ( a ) , χ U 2 ( g ) , χ U 1 ( c ) } = { 0.1 , 0.1 , 0.1 } + { 0.1 , 0.1 , 0.2 , 0.1 } + { 0.1 , 0.1 , 0.1 , 0.1 } = 0.1 + 0.1 + 0.1 = 0.3 ,

( d α ) G 1 G 2 ( a , d ) = { α U 2 ( d ) , α U 1 ( a ) , α U 1 ( c ) } + { α U 2 ( d ) , α U 1 ( a ) , α U 2 ( f ) , α U 1 ( c ) } + { α U 2 ( d ) , α U 1 ( a ) , α U 2 ( g ) , α U 1 ( c ) } = { 0.1 , 0.1 , 0.1 } + { 0.1 , 0.1 , 0.1 , 0.1 } + { 0.1 , 0.1 , 0.2 , 0.1 } = 0.1 0.1 0.1 = 0.3 .

For total vertex degree,

( t d χ ) G 1 G 2 ( a , d ) = { χ U 2 ( d ) , χ U 1 ( a ) , χ U 1 ( c ) } + { χ U 2 ( d ) , χ U 1 ( a ) , χ U 2 ( f ) , χ U 1 ( c ) } + { χ U 2 ( d ) , χ U 1 ( a ) , χ U 2 ( g ) , χ U 1 ( c ) } + { χ U 2 ( d ) , χ U 1 ( a ) } = { 0.1 , 0.1 , 0.1 } + { 0.1 , 0.1 , 0.2 , 0.1 } + { 0.1 , 0.1 , 0.1 , 0.1 } + { 0.1 , 0.1 } = 0.1 + 0.1 + 0.1 + 0.1 = 0.4 ,

( t d α ) G 1 G 2 ( a , d ) = { α U 2 ( d ) , α U 1 ( a ) , α U 1 ( c ) } + { γ U 2 ( d ) , γ U 1 ( a ) , α U 2 ( f ) , α U 1 ( c ) } + { α U 2 ( d ) , α U 1 ( a ) , α U 2 ( g ) , α U 1 ( c ) } + { α U 2 ( d ) , α U 1 ( a ) } = { 0.1 , 0.1 , 0.1 } + { 0.1 , 0.1 , 0.2 , 0.1 } + { 0.1 , 0.1 , 0.1 , 0.1 } + { 0.1 , 0.1 } = 0.1 0.2 0.1 0.1 = 0.5 .

Definition 4.8

The symmetric difference G 1 G 2 = ( U 1 U 2 , W 1 W 2 ) of two BPFGs G 1 = ( U 1 , W 1 ) and G 2 = ( U 2 , W 2 ) on crisp graphs is defined as follows:

(i)

( χ U 1 χ U 2 ) ( ( k 1 , k 2 ) ) = { χ U 1 ( k 1 ) , χ U 2 ( k 2 ) }

( ϕ U 1 ϕ U 2 ) ( ( k 1 , k 2 ) ) = { ϕ U 1 ( k 1 ) , ϕ U 2 ( k 2 ) }

( ψ U 1 ψ U 2 ) ( ( k 1 , k 2 ) ) = { ψ U 1 ( k 1 ) , ψ U 2 ( k 2 ) }

( α U 1 α U 2 ) ( ( k 1 , k 2 ) ) = { α U 1 ( k 1 ) , α U 2 ( k 2 ) }

( β U 1 β U 2 ) ( ( k 1 , k 2 ) ) = { β U 1 ( k 1 ) , β U 2 ( k 2 ) }

( γ U 1 γ U 2 ) ( ( k 1 , k 2 ) ) = { γ U 1 ( k 1 ) , γ U 2 ( k 2 ) }

( k 1 , k 2 ) ( V 1 × V 2 ) .

(ii)

( χ W 1 χ W 2 ) ( ( m , k 2 ) ( m , n 2 ) ) = { χ U 1 ( m ) , χ W 2 ( k 2 n 2 ) }

( ϕ W 1 ϕ W 2 ) ( ( m , k 2 ) ( m , n 2 ) ) = { ϕ U 1 ( m ) , ϕ W 2 ( k 2 n 2 ) }

( ψ W 1 ψ W 2 ) ( ( m , k 2 ) ( m , n 2 ) ) = { ψ U 1 ( m ) , ψ W 2 ( k 2 n 2 ) }

( α W 1 α W 2 ) ( ( m , k 2 ) ( m , n 2 ) ) = { α U 1 ( m ) , α W 2 ( k 2 n 2 ) }

( β W 1 β W 2 ) ( ( m , k 2 ) ( m , n 2 ) ) = { β U 1 ( m ) , β W 2 ( k 2 n 2 ) }

( γ W 1 γ W 2 ) ( ( m , k 2 ) ( m , n 2 ) ) = { γ U 1 ( m ) , γ W 2 ( k 2 n 2 ) }

m V 1 and k 2 n 2 E 2 .

(iii)

( χ W 1 χ W 2 ) ( ( k 1 , z ) ( n 1 , z ) ) = { χ W 1 ( k 1 n 1 ) , χ U 2 ( z ) }

( ϕ W 1 ϕ W 2 ) ( ( k 1 , z ) ( n 1 , z ) ) = { ϕ W 1 ( k 1 n 1 ) , ϕ U 2 ( z ) }

( ψ W 1 ψ W 2 ) ( ( k 1 , z ) ( n 1 , z ) ) = { ψ W 1 ( k 1 n 1 ) , ψ U 2 ( z ) }

( α W 1 α W 2 ) ( ( k 1 , z ) ( n 1 , z ) ) = { α W 1 ( k 1 n 1 ) , α U 2 ( z ) }

( β W 1 β W 2 ) ( ( k 1 , z ) ( n 1 , z ) ) = { β W 1 ( k 1 n 1 ) , β U 2 ( z ) }

( γ W 1 γ W 2 ) ( ( k 1 , z ) ( n 1 , z ) ) = { γ W 1 ( k 1 n 1 ) , γ U 2 ( z ) }

z V 2 and k 1 n 1 E 1 .

(iv)

( χ W 1 χ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { χ U 1 ( k 1 ) , χ U 1 ( n 1 ) , χ W 2 ( k 2 n 2 ) } for all k 1 n 1 E 1 and k 2 n 2 E 2 or = { χ U 2 ( k 2 ) , χ U 2 ( n 2 ) , χ W 1 ( k 1 n 1 ) } for all k 1 n 1 E 1 and k 2 n 2 E 2

( ϕ W 1 ϕ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { ϕ U 1 ( k 1 ) , ϕ U 1 ( n 1 ) , ϕ W 2 ( k 2 n 2 ) } for all k 1 n 1 E 1 and k 2 n 2 E 2 or = { ϕ U 2 ( k 2 ) , ϕ U 2 ( n 2 ) , ϕ W 1 ( k 1 n 1 ) } for all k 1 n 1 E 1 and k 2 n 2 E 2

( ψ W 1 ψ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { ψ U 1 ( k 1 ) , ψ U 1 ( n 1 ) , ψ W 2 ( k 2 n 2 ) } for all k 1 n 1 E 1 and k 2 n 2 E 2 or = { ψ U 2 ( k 2 ) , ψ U 2 ( n 2 ) , ψ W 2 ( k 1 n 1 ) } for all k 1 n 1 E 1 and k 2 n 2 E 2 .

( α W 1 α W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { α U 1 ( k 1 ) , α U 1 ( n 1 ) , α W 2 ( k 2 n 2 ) } for all k 1 n 1 E 1 and k 2 n 2 E 2 or = { α U 2 ( k 2 ) , α U 2 ( n 2 ) , α W 2 ( k 1 n 1 ) } for all k 1 n 1 E 1 and k 2 n 2 E 2 .

( β W 1 β W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { β U 1 ( k 1 ) , β U 1 ( n 1 ) , β W 2 ( k 2 n 2 ) } for all k 1 n 1 E 1 and k 2 n 2 E 2 or = { β U 2 ( k 2 ) , β U 2 ( n 2 ) , β W 2 ( k 1 n 1 ) } for all k 1 n 1 E 1 and k 2 n 2 E 2 .

( γ W 1 γ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { γ U 1 ( k 1 ) , γ U 1 ( n 1 ) , γ W 2 ( k 2 n 2 ) } for all k 1 n 1 E 1 and k 2 n 2 E 2 or = { γ U 2 ( k 2 ) , γ U 2 ( n 2 ) , γ W 1 ( k 1 n 1 ) } for all k 1 n 1 E 1 and k 2 n 2 E 2 .

Example 4.9

Suppose G 1 and G 2 are two BPFGs as in Figures 5 and 6. Figure 7 shows the symmetric difference of two BPFGs G 1 and G 2 , that is G 1 G 2 in Figure 7.

Figure 5 
               
                  
                     
                        
                        
                           
                              
                                 G
                              
                              
                                 1
                              
                           
                        
                        {{\mathbb{G}}}_{1}
                     
                  .
Figure 5

G 1 .

Figure 6 
               
                  
                     
                        
                        
                           
                              
                                 G
                              
                              
                                 2
                              
                           
                        
                        {{\mathbb{G}}}_{2}
                     
                  .
Figure 6

G 2 .

Figure 7 
               
                  
                     
                        
                        
                           
                              
                                 G
                              
                              
                                 1
                              
                           
                           
                              ⊕
                           
                           
                              
                                 G
                              
                              
                                 2
                              
                           
                        
                        {{\mathbb{G}}}_{1}\oplus {{\mathbb{G}}}_{2}
                     
                  .
Figure 7

G 1 G 2 .

Proposition 4.10

The symmetric difference of two BPFGs G 1 and G 2 , is a BPFG.

Proof

Suppose G 1 = ( U 1 , W 1 ) and G 2 = ( U 2 , W 2 ) are two BPFGs on two crisp graphs and ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) E 1 × E 2 .

(i)

If k 1 = n 1 = m

( χ W 1 χ W 2 ) ( ( m , k 2 ) ( m , n 2 ) ) = { χ U 1 ( m ) , χ W 2 ( k 2 n 2 ) } { χ U 1 ( m ) , { χ U 2 ( k 2 ) , χ U 2 ( n 2 ) } } = { { { χ U 1 ( m ) , χ U 2 ( k 2 ) } , { { χ U 1 ( m ) , χ U 2 ( n 2 ) } } } } = { ( χ U 1 χ U 2 ) ( m , k 2 ) , ( χ U 1 χ U 2 ) ( m , n 2 ) } ,

( ϕ W 1 ϕ W 2 ) ( ( m , k 2 ) ( m , n 2 ) ) = { ϕ U 1 ( m ) , ϕ W 2 ( k 2 n 2 ) } { ϕ U 1 ( m ) , { ϕ U 2 ( k 2 ) , ϕ U 2 ( n 2 ) } } = { { { ϕ U 1 ( m ) , ϕ U 2 ( k 2 ) } , { { ϕ U 1 ( m ) , ϕ U 2 ( n 2 ) } } = { ( ϕ U 1 ϕ U 2 ) ( m , k 2 ) , ( ϕ U 1 ϕ U 2 ) ( m , n 2 ) } ,

( ψ W 1 ψ W 2 ) ( ( m , k 2 ) ( m , n 2 ) ) = { ψ U 1 ( m ) , ψ W 2 ( k 2 n 2 ) } { ψ U 1 ( m ) , { ψ U 2 ( k 2 ) , ψ U 2 ( n 2 ) } } = { { { ψ U 1 ( m ) , ψ U 2 ( k 2 ) } , { { ψ U 1 ( m ) , ψ U 2 ( n 2 ) } } = { ( ψ U 1 ψ U 2 ) ( m , k 2 ) , ( ψ U 1 ψ U 2 ) ( m , n 2 ) } ,

( α W 1 α W 2 ) ( ( m , k 2 ) ( m , n 2 ) ) = { α U 1 ( m ) , α W 2 ( k 2 n 2 ) } { α U 1 ( m ) , { α U 2 ( k 2 ) , α U 2 ( n 2 ) } } = { { { α U 1 ( m ) , α U 2 ( k 2 ) } , { { α U 1 ( m ) , α U 2 ( n 2 ) } } = { ( α U 1 α U 2 ) ( m , k 2 ) , ( α U 1 α U 2 ) ( m , n 2 ) } ,

( β W 1 β W 2 ) ( ( m , k 2 ) ( m , n 2 ) ) = { β U 1 ( m ) , β W 2 ( k 2 n 2 ) } { β U 1 ( m ) , { β U 2 ( k 2 ) , β U 2 ( n 2 ) } } = { { { β U 1 ( m ) , β U 2 ( k 2 ) } , { { β U 1 ( m ) , β U 2 ( n 2 ) } } = { ( β U 1 β U 2 ) ( m , k 2 ) , ( β U 1 β U 2 ) ( m , n 2 ) } ,

( γ W 1 γ W 2 ) ( ( m , k 2 ) ( m , n 2 ) ) = { γ U 1 ( m ) , γ W 2 ( k 2 n 2 ) } { γ U 1 ( m ) , { γ U 2 ( k 2 ) , γ U 2 ( n 2 ) } } = { { { γ U 1 ( m ) , γ U 2 ( k 2 ) } , { { γ U 1 ( m ) , γ U 2 ( n 2 ) } } = { ( γ U 1 γ U 2 ) ( m , k 2 ) , ( γ U 1 γ U 2 ) ( m , n 2 ) } .

(ii) If k 2 = n 2 = z ,

( χ W 1 χ W 2 ) ( ( k 1 , z ) ( n 1 , z ) ) = { χ W 1 ( k 1 n 1 ) , χ U 2 ( z ) } { { χ U 1 ( k 1 ) , χ U 1 ( n 1 ) } , χ U 2 ( z ) } = { { { χ U 1 ( k 1 ) , χ U 2 ( z ) } , { { χ U 1 ( n 1 ) , χ U 2 ( z ) } } = { ( χ U 1 χ U 2 ) ( k 1 , z ) , ( χ U 1 χ U 2 ) ( n 1 , z ) } ,

( ϕ W 1 ϕ W 2 ) ( ( k 1 , z ) ( n 1 , z ) ) = { ϕ W 1 ( k 1 n 1 ) , ϕ U 2 ( z ) } { { ϕ U 1 ( k 1 ) , ϕ U 1 ( n 1 ) } , ϕ U 2 ( z ) } = { { { ϕ U 1 ( k 1 ) , ϕ U 2 ( z ) } , { { ϕ U 1 ( n 1 ) , ϕ U 2 ( z ) } } = { ( ϕ U 1 ϕ U 2 ) ( k 1 , z ) , ( ϕ U 1 ϕ U 2 ) ( n 1 , z ) } ,

( ψ W 1 ψ W 2 ) ( ( k 1 , z ) ( n 1 , z ) ) = { ψ W 1 ( k 1 n 1 ) , ψ U 2 ( z ) } { { ψ U 1 ( k 1 ) , ψ U 1 ( n 1 ) } , χ U 2 ( z ) } = { { { ψ U 1 ( k 1 ) , ψ U 2 ( z ) } , { { ψ U 1 ( n 1 ) , ψ U 2 ( z ) } } = { ( ψ U 1 ψ U 2 ) ( k 1 , z ) , ( ψ U 1 ψ U 2 ) ( n 1 , z ) } ,

( α W 1 α W 2 ) ( ( k 1 , z ) ( n 1 , z ) ) = { α W 1 ( k 1 n 1 ) , α U 2 ( z ) } { { α U 1 ( k 1 ) , α U 1 ( n 1 ) } , χ U 2 ( z ) } = { { { α U 1 ( k 1 ) , α U 2 ( z ) } , { { α U 1 ( n 1 ) , α U 2 ( z ) } } = { ( α U 1 α U 2 ) ( k 1 , z ) , ( α U 1 α U 2 ) ( n 1 , z ) } ,

( β W 1 β W 2 ) ( ( k 1 , z ) ( n 1 , z ) ) = { β W 1 ( k 1 n 1 ) , β U 2 ( z ) } { { β U 1 ( k 1 ) , β U 1 ( n 1 ) } , χ U 2 ( z ) } = { { { β U 1 ( k 1 ) , β U 2 ( z ) } , { { β U 1 ( n 1 ) , β U 2 ( z ) } } = { ( β U 1 β U 2 ) ( k 1 , z ) , ( β U 1 β U 2 ) ( n 1 , z ) } ,

( γ W 1 γ W 2 ) ( ( k 1 , z ) ( n 1 , z ) ) = { U 1 ( k 1 ) , U e 1 ( n 1 ) } , γ U 2 ( z ) } { { γ W 1 ( k 1 ) , γ U 1 ( n 1 ) } , γ U 2 ( z ) } = { { { γ U 1 ( k 1 ) , γ U 2 ( z ) } , { { γ U 1 ( n 1 ) , γ U 2 ( z ) } } = { ( γ U 1 γ U 2 ) ( k 1 , z ) , ( γ U 1 γ U 2 ) ( n 1 , z ) } ,

(iii) If k 1 n 1 E 1 and k 2 n 2 E 2 ,

( χ W 1 χ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { χ U 1 ( k 1 ) , χ U 1 ( n 1 ) , χ W 2 ( k 2 n 2 ) } { χ U 1 ( k 1 ) , χ U 1 ( n 1 ) , { χ U 2 ( k 2 ) χ U 2 ( n 2 ) } } = { { χ U 1 ( k 1 ) , χ U 2 ( k 2 ) } , { χ U 1 ( n 1 ) , χ U 2 ( n 2 ) } = { ( χ U 1 χ U 2 ) ( k 1 , k 2 ) , ( χ U 1 χ U 2 ) ( n 1 , n 2 ) } ,

( ϕ W 1 ϕ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { ϕ U 1 ( k 1 ) , ϕ U 1 ( n 1 ) , ϕ W 2 ( k 2 n 2 ) } { ϕ U 1 ( k 1 ) , ϕ U 1 ( n 1 ) , { ϕ U 2 ( k 2 ) ϕ U 2 ( n 2 ) } } = { { ϕ U 1 ( k 1 ) , ϕ U 2 ( k 2 ) } , { ϕ U 1 ( n 1 ) , ϕ U 2 ( n 2 ) } = { ( ϕ U 1 ϕ U 2 ) ( k 1 , k 2 ) , ( ϕ U 1 ϕ U 2 ) ( n 1 , n 2 ) } ,

( ψ W 1 ψ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { ψ U 1 ( k 1 ) , ψ U 1 ( n 1 ) , ψ W 2 ( k 2 n 2 ) } { ψ U 1 ( k 1 ) , ψ U 1 ( n 1 ) , { ψ U 2 ( k 2 ) ψ U 2 ( n 2 ) } } = { { ψ U 1 ( k 1 ) , ψ U 2 ( k 2 ) } , { ψ U 1 ( n 1 ) , ψ U 2 ( n 2 ) } = { ( ψ U 1 ψ U 2 ) ( k 1 , k 2 ) , ( ψ U 1 ψ U 2 ) ( n 1 , n 2 ) } ,

( α W 1 α W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { α U 1 ( k 1 ) , α U 1 ( n 1 ) , α W 2 ( k 2 n 2 ) } { α U 1 ( k 1 ) , α U 1 ( n 1 ) , { α U 2 ( k 2 ) α U 2 ( n 2 ) } } = { { α U 1 ( k 1 ) , α U 2 ( k 2 ) } , { α U 1 ( n 1 ) , α U 2 ( n 2 ) } = { ( α U 1 α U 2 ) ( k 1 , k 2 ) , ( α U 1 α U 2 ) ( n 1 , n 2 ) } ,

( β W 1 β W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { β U 1 ( k 1 ) , β U 1 ( n 1 ) , β W 2 ( k 2 n 2 ) } { β U 1 ( k 1 ) , β U 1 ( n 1 ) , { β U 2 ( k 2 ) β U 2 ( n 2 ) } } = { { β U 1 ( k 1 ) , β U 2 ( k 2 ) } , { β U 1 ( n 1 ) , β U 2 ( n 2 ) } = { ( β U 1 β U 2 ) ( k 1 , k 2 ) , ( β U 1 β U 2 ) ( n 1 , n 2 ) } ,

( γ W 1 γ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { γ U 1 ( k 1 ) , γ U 1 ( n 1 ) , γ W 2 ( k 2 n 2 ) } { γ U 1 ( k 1 ) , γ U 1 ( n 1 ) , { γ U 2 ( k 2 ) γ U 2 ( n 2 ) } } = { { γ U 1 ( k 1 ) , γ U 2 ( k 2 ) } , { γ U 1 ( n 1 ) , γ U 2 ( n 2 ) } = { ( γ U 1 γ U 2 ) ( k 1 , k 2 ) , ( γ U 1 γ U 2 ) ( n 1 , n 2 ) } .

(iv) If k 1 n 1 E 1 and k 2 n 2 E 2 ,

( χ W 1 χ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { χ U 2 ( k 2 ) , χ U 2 ( n 2 ) , χ W 1 ( k 1 n 1 ) } { χ U 2 ( k 2 ) , χ U 2 ( n 2 ) , { χ U 1 ( k 1 ) χ U 1 ( n 1 ) } } = { { χ U 1 ( k 1 ) , χ U 2 ( k 2 ) } , { χ U 1 ( n 1 ) , χ U 2 ( n 2 ) } = { ( χ U 1 χ U 2 ) ( k 1 , k 2 ) , ( χ U 1 χ U 2 ) ( n 1 , n 2 ) } ,

( ϕ W 1 ϕ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { ϕ U 2 ( k 2 ) , ϕ U 2 ( n 2 ) , ϕ W 1 ( k 1 n 1 ) } { ϕ U 2 ( k 2 ) , ϕ U 2 ( n 2 ) , { ϕ U 1 ( k 1 ) ϕ U 1 ( n 1 ) } } = { { ϕ U 2 ( k 2 ) , ϕ U 1 ( k 1 ) } , { ϕ U 2 ( n 2 ) , ϕ U 1 ( n 1 ) } = { ( ϕ U 1 ϕ U 2 ) ( k 1 , k 2 ) , ( ϕ U 1 ϕ U 2 ) ( n 1 , n 2 ) } ,

( ψ W 1 ψ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { ψ U 2 ( k 2 ) , ψ U 2 ( n 2 ) , ψ W 1 ( k 1 n 1 ) } { ψ U 2 ( k 2 ) , ψ U 2 ( n 2 ) , { ψ U 1 ( k 1 ) ψ U 1 ( n 1 ) } } = { { ψ U 2 ( k 2 ) , ψ U 1 ( k 1 ) } , { ψ U 2 ( n 2 ) , ψ U 1 ( n 1 ) } = { ( ψ U 1 ψ U 2 ) ( k 1 , k 2 ) , ( ψ U 1 ψ U 2 ) ( n 1 , n 2 ) } ,

( α W 1 α W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { α U 2 ( k 2 ) , α U 2 ( n 2 ) , α W 1 ( k 1 n 1 ) } { α U 2 ( k 2 ) , α U 2 ( n 2 ) , { α U 1 ( k 1 ) α U 1 ( n 1 ) } } = { { α U 2 ( k 2 ) , α U 1 ( k 1 ) } , { α U 2 ( n 2 ) , α U 1 ( n 1 ) } = { ( α U 1 α U 2 ) ( k 1 , k 2 ) , ( α U 1 α U 2 ) ( n 1 , n 2 ) } ,

( β W 1 β W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { β U 2 ( k 2 ) , β U 2 ( n 2 ) , β W 1 ( k 1 n 1 ) } { β U 2 ( k 2 ) , β U 2 ( n 2 ) , { β U 1 ( k 1 ) β U 1 ( n 1 ) } } = { { β U 2 ( k 2 ) , β U 1 ( k 1 ) } , { β U 2 ( n 2 ) , β U 1 ( n 1 ) } = { ( β U 1 β U 2 ) ( k 1 , k 2 ) , ( β U 1 β U 2 ) ( n 1 , n 2 ) } ,

( γ W 1 γ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) = { γ U 2 ( k 2 ) , γ U 2 ( n 2 ) , γ W 1 ( k 1 n 1 ) } { γ U 2 ( k 2 ) , γ U 2 ( n 2 ) , { γ U 1 ( k 1 ) γ U 1 ( n 1 ) } } = { { γ U 1 ( k 1 ) , γ U 2 ( k 2 ) } , { γ U 1 ( n 1 ) , γ U 2 ( n 2 ) } = { ( γ U 1 γ U 2 ) ( k 1 , k 2 ) , ( γ U 1 γ U 2 ) ( n 1 , n 2 ) } .

Hence, G 1 G 2 is a BPFG.□

Definition 4.11

Let G 1 = ( U 1 , W 1 ) and G 2 = ( U 2 , W 2 ) be two BPFGs on crisp graphs. For any vertex ( k 1 , k 2 ) V 1 × V 2 , we have

( t d χ ) G 1 G 2 ( k 1 , k 2 ) = ( k 1 , k 2 ) ( n 1 , n 2 ) E 1 × E 2 . ( χ W 1 χ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) + ( χ U 1 χ U 2 ) ( k 1 , k 2 ) = k 1 = n 1 , k 2 n 2 E 2 { χ U 1 ( k 1 ) , χ W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 , k 2 = n 2 { χ W 1 ( k 1 n 1 ) , χ U 2 ( k 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { χ U 1 ( k 1 ) , χ U 1 ( n 1 ) , χ W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { χ W 1 ( k 1 n 1 ) , χ U 2 ( k 2 ) , χ U 2 ( n 2 ) } + { χ U 1 ( k 1 ) , χ U 2 ( k 2 ) } ,

( t d ϕ ) G 1 G 2 ( k 1 , k 2 ) = ( k 1 , k 2 ) ( n 1 , n 2 ) E 1 × E 2 . ( ϕ W 1 ϕ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) + ( ϕ U 1 ϕ U 2 ) ( k 1 , k 2 ) = k 1 = n 1 , k 2 n 2 E 2 { ϕ U 1 ( k 1 ) , ϕ W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 , k 2 = n 2 { ϕ W 1 ( k 1 n 1 ) , ϕ U 2 ( k 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { ϕ U 1 ( k 1 ) , ϕ U 1 ( n 1 ) , ϕ W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { ϕ W 1 ( k 1 n 1 ) , ϕ U 2 ( k 2 ) , ϕ U 2 ( n 2 ) } + { ϕ U 1 ( k 1 ) , ϕ U 2 ( k 2 ) } ,

( t d ψ ) G 1 G 2 ( k 1 , k 2 ) = ( k 1 , k 2 ) ( n 1 , n 2 ) E 1 × E 2 . ( ψ W 1 ψ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) + ( ψ U 1 ψ U 2 ) ( k 1 , k 2 ) = k 1 = n 1 , k 2 n 2 E 2 { ψ U 1 ( k 1 ) , ψ W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 , k 2 = n 2 { ψ W 1 ( k 1 n 1 ) , ψ U 2 ( k 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { ψ U 1 ( k 1 ) , ψ U 1 ( n 1 ) , ψ W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { ψ W 1 ( k 1 n 1 ) , ψ U 2 ( k 2 ) , ψ U 2 ( n 2 ) } + { ψ U 1 ( k 1 ) , ψ U 2 ( k 2 ) } ,

( t d α ) G 1 G 2 ( k 1 , k 2 ) = ( k 1 , k 2 ) ( n 1 , n 2 ) E 1 × E 2 . ( α W 1 α W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) + ( α U 1 α U 2 ) ( k 1 , k 2 ) = k 1 = n 1 , k 2 n 2 E 2 { α U 1 ( k 1 ) , α W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 , k 2 = n 2 { α W 1 ( k 1 n 1 ) , α U 2 ( k 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { α U 1 ( k 1 ) , α U 1 ( n 1 ) , α W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { α W 1 ( k 1 n 1 ) , α U 2 ( k 2 ) , α U 2 ( n 2 ) } + { α U 1 ( k 1 ) , α U 2 ( k 2 ) } ,

( t d β ) G 1 G 2 ( k 1 , k 2 ) = ( k 1 , k 2 ) ( n 1 , n 2 ) E 1 × E 2 . ( β W 1 β W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) + ( β U 1 β U 2 ) ( k 1 , k 2 ) = k 1 = n 1 , k 2 n 2 E 2 { β U 1 ( k 1 ) , β W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 , k 2 = n 2 { β W 1 ( k 1 n 1 ) , β U 2 ( k 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { β U 1 ( k 1 ) , β U 1 ( n 1 ) , β W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { β W 1 ( k 1 n 1 ) , β U 2 ( k 2 ) , β U 2 ( n 2 ) } + { β U 1 ( k 1 ) , β U 2 ( k 2 ) } ,

( t d γ ) G 1 G 2 ( k 1 , k 2 ) = ( k 1 , k 2 ) ( n 1 , n 2 ) E 1 × E 2 . ( γ W 1 γ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) + ( γ U 1 γ U 2 ) ( k 1 , k 2 ) = k 1 = n 1 , k 2 n 2 E 2 { γ U 1 ( k 1 ) , γ W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 , k 2 = n 2 { γ W 1 ( k 1 n 1 ) , γ U 2 ( k 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { γ U 1 ( k 1 ) , γ U 1 ( n 1 ) , γ W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { γ W 1 ( k 1 n 1 ) , γ U 2 ( k 2 ) , γ U 2 ( n 2 ) } + { γ U 1 ( k 1 ) , γ U 2 ( k 2 ) } .

Theorem 4.12

Suppose G 1 = ( U 1 , W 1 ) and G 2 = ( U 2 , Y 2 ) are two BPFGs on crisp graphs. If χ U 1 χ W 2 and χ U 2 χ W 1 , then ( k 1 , k 2 ) V 1 × V 2 ,

( t d χ ) G 1 G 2 ( k 1 , k 2 ) = q ( t d χ ) G 1 ( k 1 ) + s ( t d χ ) G 2 ( k 2 ) ( q 1 ) χ G 1 ( k 1 ) { χ G 1 ( k 1 ) , χ G 1 ( k 1 ) } ;

if ϕ U 1 ϕ W 2 and ϕ U 2 ϕ W 1 , then ( k 1 , k 2 ) V 1 × V 2 ,

( t d ϕ ) G 1 G 2 ( k 1 , k 2 ) = q ( t d ϕ ) G 1 ( k 1 ) + s ( t d ϕ ) G 2 ( k 2 ) ( q 1 ) ϕ G 1 ( k 1 ) { ϕ G 1 ( k 1 ) , ϕ G 1 ( k 1 ) } ;

if ψ U 1 ψ W 2 and ψ U 2 ψ W 1 , then ( k 1 , k 2 ) V 1 × V 2 ,

( t d ψ ) G 1 G 2 ( k 1 , k 2 ) = q ( t d ψ ) G 1 ( k 1 ) + s ( t d ψ ) G 2 ( k 2 ) ( q 1 ) ψ G 1 ( k 1 ) { ψ G 1 ( k 1 ) , ψ G 1 ( k 1 ) } ;

if α U 1 α W 2 and α U 2 α W 1 , then ( k 1 , k 2 ) V 1 × V 2 ,

( t d α ) G 1 G 2 ( k 1 , k 2 ) = q ( t d α ) G 1 ( k 1 ) + s ( t d α ) G 2 ( k 2 ) ( q 1 ) α G 1 ( k 1 ) { α G 1 ( k 1 ) , α G 1 ( k 1 ) } ;

if β U 1 β W 2 and β U 2 β W 1 , then ( k 1 , k 2 ) V 1 × V 2 ,

( t d β ) G 1 G 2 ( k 1 , k 2 ) = q ( t d β ) G 1 ( k 1 ) + s ( t d β ) G 2 ( k 2 ) ( q 1 ) β G 1 ( k 1 ) { β G 1 ( k 1 ) , β G 1 ( k 1 ) } ;

if γ U 1 γ W 2 and γ U 2 γ W 1 , then ( k 1 , k 2 ) V 1 × V 2 ,

( t d γ ) G 1 G 2 ( k 1 , k 2 ) = q ( t d γ ) G 1 ( k 1 ) + s ( t d γ ) G 2 ( k 2 ) ( q 1 ) γ G 1 ( k 1 ) { γ G 1 ( k 1 ) , γ G 1 ( k 1 ) } ;

where s = V 1 ( d ) G 1 ( k 1 ) and q = V 2 ( d ) G 2 ( k 2 ) .

Proof

( k 1 , k 2 ) V 1 × V 2 , we have

( t d χ ) G 1 G 2 ( k 1 , k 2 ) = ( k 1 , k 2 ) ( n 1 , n 2 ) E 1 × E 2 . ( χ W 1 χ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) + ( χ U 1 χ U 2 ) ( k 1 , k 2 ) = k 1 = n 1 , k 2 n 2 E 2 { χ U 1 ( k 1 ) , χ W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 , k 2 = n 2 { χ W 1 ( k 1 n 1 ) , χ U 2 ( k 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { χ U 1 ( k 1 ) , χ U 1 ( n 1 ) , χ W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { χ W 1 ( k 1 n 1 ) , χ U 2 ( k 2 ) , χ U 2 ( n 2 ) } + { χ U 1 ( k 1 ) , χ U 2 ( k 2 ) } = k 2 n 2 E 2 χ W 2 ( k 2 n 2 ) + k 1 n 1 E 1 χ W 1 ( k 1 n 1 ) + k 1 n 1 E 1 and k 2 n 2 E 2 χ W 2 ( k 2 n 2 ) + k 1 n 1 E 1 and k 2 n 2 E 2 χ W 1 ( k 1 n 1 ) + { χ U 1 ( k 1 ) , χ U 2 ( k 2 ) } = k 2 n 2 E 2 χ W 2 ( k 2 n 2 ) + k 1 n 1 E 1 χ W 1 ( k 1 n 1 ) + k 1 n 1 E 1 and k 2 n 2 E 2 χ W 2 ( k 2 n 2 ) + k 1 n 1 E 1 and k 2 n 2 E 2 χ W 1 ( k 1 n 1 ) + χ U 1 ( k 1 ) + χ U 2 ( k 2 ) { χ U 1 ( k 1 ) , χ U 2 ( k 2 ) } = q ( t d χ ) G 1 ( k 1 ) + s ( t d χ ) G 2 ( k 2 ) ( q 1 ) χ G 1 ( k 1 ) { χ G 1 ( k 1 ) , χ G 1 ( k 1 ) } ,

( t d ϕ ) G 1 G 2 ( k 1 , k 2 ) = ( k 1 , k 2 ) ( n 1 , n 2 ) E 1 × E 2 ( ϕ W 1 ϕ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) + ( ϕ U 1 ϕ U 2 ) ( k 1 , k 2 ) = k 1 = n 1 , k 2 n 2 E 2 { ϕ U 1 ( k 1 ) , ϕ W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 , k 2 = n 2 { ϕ W 1 ( k 1 n 1 ) , ϕ U 2 ( k 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { ϕ U 1 ( k 1 ) , ϕ U 1 ( n 1 ) , ϕ W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { ϕ W 1 ( k 1 n 1 ) , ϕ U 2 ( k 2 ) , ϕ U 2 ( n 2 ) } + { ϕ U 1 ( k 1 ) , ϕ U 2 ( k 2 ) } = k 2 n 2 E 2 ϕ W 2 ( k 2 n 2 ) + k 1 n 1 E 1 ϕ W 1 ( k 1 n 1 ) + k 1 n 1 E 1 and k 2 n 2 E 2 ϕ W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 ϕ W 1 ( k 1 n 1 ) + { ϕ U 1 ( k 1 ) , ϕ U 2 ( k 2 ) } = k 2 n 2 E 2 ϕ W 2 ( k 2 n 2 ) + k 1 n 1 E 1 ϕ W 1 ( k 1 n 1 ) + k 1 n 1 E 1 and k 2 n 2 E 2 ϕ W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 ϕ W 1 ( k 1 n 1 ) + ϕ U 1 ( k 1 ) + ϕ U 2 ( k 2 ) { ϕ U 1 ( k 1 ) , ϕ U 2 ( k 2 ) } = q ( t d ϕ ) G 1 ( k 1 ) + s ( t d ϕ ) G 2 ( k 2 ) ( q 1 ) ϕ G 1 ( k 1 ) { ϕ G 1 ( k 1 ) , ϕ G 1 ( k 1 ) } ,

( t d ψ ) G 1 G 2 ( k 1 , k 2 ) = ( k 1 , k 2 ) ( n 1 , n 2 ) E 1 × E 2 . ( ψ W 1 ψ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) + ( ψ U 1 ψ U 2 ) ( k 1 , k 2 ) = k 1 = n 1 , k 2 n 2 E 2 { ψ U 1 ( k 1 ) , ψ W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 , k 2 = n 2 { ψ W 1 ( k 1 n 1 ) , ψ U 2 ( k 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { ψ U 1 ( k 1 ) , ψ U 1 ( n 1 ) , ψ W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { ψ W 1 ( k 1 n 1 ) , ψ U 2 ( k 2 ) , ψ U 2 ( n 2 ) } + { ψ U 1 ( k 1 ) , ψ U 2 ( k 2 ) } = k 2 n 2 E 2 ψ W 2 ( k 2 n 2 ) + k 1 n 1 E 1 ψ W 1 ( k 1 n 1 ) + k 1 n 1 E 1 and k 2 n 2 E 2 ψ W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 ψ W 1 ( k 1 n 1 ) + { ψ U 1 ( k 1 ) , ψ U 2 ( k 2 ) } = k 2 n 2 E 2 ψ W 2 ( k 2 n 2 ) + k 1 n 1 E 1 ψ W 1 ( k 1 n 1 ) + k 1 n 1 E 1 and k 2 n 2 E 2 ψ W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 ψ W 1 ( k 1 n 1 ) + ψ U 1 ( k 1 ) + ψ U 2 ( k 2 ) { ψ U 1 ( k 1 ) , ψ U 2 ( k 2 ) } = q ( t d ψ ) G 1 ( k 1 ) + s ( t d ψ ) G 2 ( k 2 ) ( q 1 ) ψ G 1 ( k 1 ) { ψ G 1 ( k 1 ) , ψ G 1 ( k 1 ) } ,

( t d α ) G 1 G 2 ( k 1 , k 2 ) = ( k 1 , k 2 ) ( n 1 , n 2 ) E 1 × E 2 ( α W 1 α W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) + ( α U 1 α U 2 ) ( k 1 , k 2 ) = k 1 = n 1 , k 2 n 2 E 2 { α U 1 ( k 1 ) , α W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 , k 2 = n 2 { α W 1 ( k 1 n 1 ) , α U 2 ( k 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { α U 1 ( k 1 ) , α U 1 ( n 1 ) , α W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { α W 1 ( k 1 n 1 ) , α U 2 ( k 2 ) , α U 2 ( n 2 ) } + { α U 1 ( k 1 ) , α U 2 ( k 2 ) } = k 2 n 2 E 2 α W 2 ( k 2 n 2 ) + k 1 n 1 E 1 α W 1 ( k 1 n 1 ) + k 1 n 1 E 1 and k 2 n 2 E 2 α W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 α W 1 ( k 1 n 1 ) + { α U 1 ( k 1 ) , α U 2 ( k 2 ) } = k 2 n 2 E 2 α W 2 ( k 2 n 2 ) + k 1 n 1 E 1 α W 1 ( k 1 n 1 ) + k 1 n 1 E 1 and k 2 n 2 E 2 α W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 α W 1 ( k 1 n 1 ) + α U 1 ( k 1 ) + α U 2 ( k 2 ) { α U 1 ( k 1 ) , α U 2 ( k 2 ) } = q ( t d α ) G 1 ( k 1 ) + s ( t d α ) G 2 ( k 2 ) ( q 1 ) α G 1 ( k 1 ) { α G 1 ( k 1 ) , α G 1 ( k 1 ) } ,

( t d β ) G 1 G 2 ( k 1 , k 2 ) = ( k 1 , k 2 ) ( n 1 , n 2 ) E 1 × E 2 ( β W 1 β W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) + ( β U 1 β U 2 ) ( k 1 , k 2 ) = k 1 = n 1 , k 2 n 2 E 2 { β U 1 ( k 1 ) , β W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 , k 2 = n 2 { β W 1 ( k 1 n 1 ) , β U 2 ( k 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { β U 1 ( k 1 ) , β U 1 ( n 1 ) , β W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { β W 1 ( k 1 n 1 ) , β U 2 ( k 2 ) , β U 2 ( n 2 ) } + { β U 1 ( k 1 ) , β U 2 ( k 2 ) } = k 2 n 2 E 2 β W 2 ( k 2 n 2 ) + k 1 n 1 E 1 β W 1 ( k 1 n 1 ) + k 1 n 1 E 1 and k 2 n 2 E 2 β W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 β W 1 ( k 1 n 1 ) + { β U 1 ( k 1 ) , β U 2 ( k 2 ) } = k 2 n 2 E 2 β W 2 ( k 2 n 2 ) + k 1 n 1 E 1 β W 1 ( k 1 n 1 ) + k 1 n 1 E 1 and k 2 n 2 E 2 β W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 β W 1 ( k 1 n 1 ) + β U 1 ( k 1 ) + β U 2 ( k 2 ) { β U 1 ( k 1 ) , β U 2 ( k 2 ) } = q ( t d β ) G 1 ( k 1 ) + s ( t d β ) G 2 ( k 2 ) ( q 1 ) β G 1 ( k 1 ) { β G 1 ( k 1 ) , β G 1 ( k 1 ) } ,

( t d γ ) G 1 G 2 ( k 1 , k 2 ) = ( k 1 , k 2 ) ( n 1 , n 2 ) E 1 × E 2 . ( γ W 1 γ W 2 ) ( ( k 1 , k 2 ) ( n 1 , n 2 ) ) + ( γ U 1 γ U 2 ) ( k 1 , k 2 ) = k 1 = n 1 , k 2 n 2 E 2 { γ U 1 ( k 1 ) , γ W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 , k 2 = n 2 { γ W 1 ( k 1 n 1 ) , γ U 2 ( k 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { γ U 1 ( k 1 ) , γ U 1 ( n 1 ) , γ W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 { γ W 1 ( k 1 n 1 ) , γ U 2 ( k 2 ) , γ U 2 ( n 2 ) } + { γ U 1 ( k 1 ) , γ U 2 ( k 2 ) } = k 2 n 2 E 2 γ W 2 ( k 2 n 2 ) + k 1 n 1 E 1 γ W 1 ( k 1 n 1 ) + k 1 n 1 E 1 and k 2 n 2 E 2 γ W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 γ W 1 ( k 1 n 1 ) + { γ U 1 ( k 1 ) , γ U 2 ( k 2 ) } = k 2 n 2 E 2 γ W 2 ( k 2 n 2 ) + k 1 n 1 E 1 γ W 1 ( k 1 n 1 ) + k 1 n 1 E 1 a n d k 2 n 2 E 2 γ W 2 ( k 2 n 2 ) } + k 1 n 1 E 1 and k 2 n 2 E 2 γ W 1 ( k 1 n 1 ) + γ U 1 ( k 1 ) + γ U 2 ( k 2 ) { γ U 1 ( k 1 ) , γ U 2 ( k 2 ) } = q ( t d γ ) G 1 ( k 1 ) + s ( t d γ ) G 2 ( k 2 ) ( q 1 ) γ G 1 ( k 1 ) { γ G 1 ( k 1 ) , γ G 1 ( k 1 ) } .

So, s = V 1 ( d ) G 1 ( k 1 ) and q = V 2 ( d ) G 2 ( k 2 ) .□

Example 4.13

We calculate the total degree of nodes as follows:

( d χ ) G 1 G 2 ( a , e ) = q ( d χ ) G 1 ( a ) + s ( d χ ) G 2 ( e )

s = V 1 ( d ) G 1 ( a ) = 2 1 = 1 .

Now,

q = V 2 ( d ) G 2 ( e ) = 4 2 = 2

( t d γ ) G 1 G 2 ( a , e ) = q ( t d γ ) G 1 ( a ) + s ( t d γ ) G 2 ( e ) ( s 1 ) γ G 2 ( e ) ( q 1 ) γ G 1 ( a ) { γ G 1 ( a ) , γ G 2 ( e ) } = 1.1

( t d χ ) G 1 G 2 ( a , e ) = q ( t d χ ) G 1 ( a ) + s ( t d χ ) G 2 ( e ) ( s 1 ) χ G 2 ( e ) ( q 1 ) χ G 1 ( a ) { χ G 1 ( a ) , χ G 2 ( e ) } = 1.1 .

5 Conclusion

BPFG represents a broader conceptual framework that encompasses both FG and PFG. Within this context, BPFG exhibits significantly greater levels of flexibility and comparability when compared to intuitionistic fuzzy graph and PFG. In this research article, we delve into the intricate aspects of BPFG, particularly focusing on its symmetric differences and the concept of rejection. In addition, we engage in a comprehensive discussion surrounding the degree and total degree of nodes within the BPFG structure. This exploration aims to shed light on the enhanced capabilities and analytical potential by using BPFG as opposed to its counterparts, FG and PFG. In future work, we will apply different results on BPFG.

Acknowledgments

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia, for funding this research work through the project no. IFKSUOR3-060-1.

  1. Funding information: The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia, for funding this research work through the project no. IFKSUOR3-060-1.

  2. Conflict of interest: The authors state that there is no conflict of interest.

References

[1] L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338–353. 10.1016/S0019-9958(65)90241-XSuche in Google Scholar

[2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst 20 (1986), 87–96. 10.1016/S0165-0114(86)80034-3Suche in Google Scholar

[3] A. Rosenfeld, Fuzzy graphs, in: L. A. Zadeh, K.S. Fu, M. Shimura, (Eds.), In Fuzzy Sets and Their Applications to Cognitive and Decision Processes, Academic Press, New York, NY, USA, 1975, pp. 77–95. Suche in Google Scholar

[4] J. N. Mordeson, and C. S. Peng, Operations on fuzzy graphs, Inform. Sci. 79 (1994), 159–170. 10.1016/0020-0255(94)90116-3Suche in Google Scholar

[5] P. Bhattacharya, Some remarks on fuzzy graphs, Pattern Recognition Letters 6 (1987), 297–302. 10.1016/0167-8655(87)90012-2Suche in Google Scholar

[6] K. R. Bhutani, On automorphisms of fuzzy graphs, Pattern Recognition Letters 9 (1989), 159–162. 10.1016/0167-8655(89)90049-4Suche in Google Scholar

[7] H. Rashmanlou, S. Samanta, M. Pal, and R. A. Borzooei, Bipolar fuzzy graphs with categorical properties, Int. J. Comput. Intell. Syst. 8 (2015), no. 5, 808–818. 10.1080/18756891.2015.1063243Suche in Google Scholar

[8] H. Rashmanlou, S. Samanta, M. Pal, and R. A. Borzooei, A study on bipolar fuzzy graphs, J. Intell. Fuzzy Syst. 28 (2015), 571–580. 10.3233/IFS-141333Suche in Google Scholar

[9] H. Rashmanlou, M. Pal, S. Samanta, and R. A. Borzooei, Product of bipolar fuzzy graphs and their degree, Int. J. General Syst. 45 (2016), no. 1, 1–14. 10.1080/03081079.2015.1072521Suche in Google Scholar

[10] M. Gulzar, M. H. Mateen, D. Alghazzawi, and N. Kausar A novel application of complex intuitionistic fuzzy sets in group theory, IEEE Access 8 (2020), 196075–196085. 10.1109/ACCESS.2020.3034626Suche in Google Scholar

[11] M. Gulzar, D. Alghazzawi, M. H. Mateen, and N. Kausar, A Certain class of t-intuitionistic fuzzy subgroup, IEEE Access 8 (2020), 163260–163268, DOI: https://doi.org/10.1109/ACCESS.2020.3020366. 10.1109/ACCESS.2020.3020366Suche in Google Scholar

[12] M. Gulzar, G. Abbas, and F. Dilawar, Algebraic properties of n-Q-fuzzy subgroup, Int. J. Math. Comput. Sci. 15 (2020), no. 1, 265–274. Suche in Google Scholar

[13] M. Gulzar, M. H. Mateen, Y. M. Chu, D. Alghazzawi, and G. Abbas, Generalized direct product of complex intuitionistic fuzzy subrings, Int. J. Comput. Intell. Syst. 14 (2021), no. 1, 582–593. 10.2991/ijcis.d.210106.001Suche in Google Scholar

[14] N. Kausar, M. Munir, M. Gulzar, G. M. Addis, and R. Anjum, Anti fuzzy bi-ideals on ordered AG-groupoids, J. Indonesian Math. Soc. 26 (2020), no. 3, 299–318. 10.22342/jims.26.3.862.299-318Suche in Google Scholar

[15] M. Riaz, and H. M. A. Farid, Enhancing green supply chain efficiency through linear Diophantine fuzzy soft-max aggregation operators, J. Industr. Intell. 1 (2023), no. 1, 8–29. 10.56578/jii010102Suche in Google Scholar

[16] R. Kausar, H. M. A. Farid, and M. Riaz, A numerically validated approach to modeling water hammer phenomena using partial differential equations and switched differential-algebraic equations, J. Industr. Intell. 1 (2023), no. 2, 75–86. 10.56578/jii010201Suche in Google Scholar

[17] H. M. A. Farid and M. Riaz, q-rung orthopair fuzzy Aczel-Alsina aggregation operators with multi-criteria decision-making, Eng. Appl. Artif. Intell. 122 (2023), 106105. 10.1016/j.engappai.2023.106105Suche in Google Scholar

[18] M. Riaz, H. M. A. Farid, S. Ashraf, and H. Kamaci, Single-valued neutrosophic fairly aggregation operators with multi-criteria decision-making, Comput. Appl. Math. 42 (2023), 104, DOI: https://doi.org/10.1007/s40314-023-02233-w. 10.1007/s40314-023-02233-wSuche in Google Scholar

[19] Z. Shao, S. Kosari, H. Rashmanlou, and M. Shoaib, New concepts in intuitionistic fuzzy graph with application in water supplier systems, Mathematics 8 (2020), 12–41. 10.3390/math8081241Suche in Google Scholar

[20] C. Zuo, M. Pal, and A. Dey, New concepts of picture fuzzy graphs with application, Mathematics 7 (2019), no. 5, 470, DOI: https://doi.org/10.3390/math7050470. 10.3390/math7050470Suche in Google Scholar

[21] B. C. Cuong, Picture fuzzy sets, J. Comput. Sci. Cybern. 30 (2014), no. 4, 409–409. Suche in Google Scholar

[22] M. Shoaib, W. Mahmood, Q. Xin, and F. Tchier, Certain operations on picture fuzzy graph with application, Symmetry 13 (2021), 2400, DOI: https://doi.org/10.3390/sym13122400. 10.3390/sym13122400Suche in Google Scholar

[23] M. Shoaib, S. Kosari, H. Rashmanlou, M. A. Malik, Y. Rao, Y. Talebi, et al., Notion of complex pythagorean fuzzy graph with properties and application, J. Multi-Valued Logic and Soft Comput. 34 (2020), 553–586. Suche in Google Scholar

[24] M. Shoaib, W. Mahmood, Q. Xin, and F. Tchier, Maximal product and symmetric difference of complex fuzzy graph with application, Symmetry 14 (2022), no. 6, 1126, DOI: https://doi.org/10.3390/sym14061126. 10.3390/sym14061126Suche in Google Scholar

[25] M. Shoaib, W. Mahmood, W. Albalawi, and F. A. Shami, Notion of complex spherical fuzzy graph with application, J. Funct. Spaces 3 (2022), 1–27. 10.1155/2022/1795860Suche in Google Scholar

[26] M. Shoaib, W. Mahmood, A. N. Al-Kenani, and S. Islam, Notes on upper and lower truncation of picture fuzzy graphs, Discrete Dyn. Nature Soc. 2022 2022, 7646828, DOI: https://doi.org/10.1155/2022/7646828. 10.1155/2022/7646828Suche in Google Scholar

[27] W. A. Khan, B. Ali, and A. Taouti, Bipolar picture fuzzy graphs with application, Symmetry 13 (2021), 14–27. 10.3390/sym13081427Suche in Google Scholar

Received: 2023-05-02
Revised: 2023-07-27
Accepted: 2023-08-12
Published Online: 2023-12-13

© 2023 the author(s), published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Regular Articles
  2. A novel class of bipolar soft separation axioms concerning crisp points
  3. Duality for convolution on subclasses of analytic functions and weighted integral operators
  4. Existence of a solution to an infinite system of weighted fractional integral equations of a function with respect to another function via a measure of noncompactness
  5. On the existence of nonnegative radial solutions for Dirichlet exterior problems on the Heisenberg group
  6. Hyers-Ulam stability of isometries on bounded domains-II
  7. Asymptotic study of Leray solution of 3D-Navier-Stokes equations with exponential damping
  8. Semi-Hyers-Ulam-Rassias stability for an integro-differential equation of order 𝓃
  9. Jordan triple (α,β)-higher ∗-derivations on semiprime rings
  10. The asymptotic behaviors of solutions for higher-order (m1, m2)-coupled Kirchhoff models with nonlinear strong damping
  11. Approximation of the image of the Lp ball under Hilbert-Schmidt integral operator
  12. Best proximity points in -metric spaces with applications
  13. Approximation spaces inspired by subset rough neighborhoods with applications
  14. A numerical Haar wavelet-finite difference hybrid method and its convergence for nonlinear hyperbolic partial differential equation
  15. A novel conservative numerical approximation scheme for the Rosenau-Kawahara equation
  16. Fekete-Szegö functional for a class of non-Bazilevic functions related to quasi-subordination
  17. On local fractional integral inequalities via generalized ( h ˜ 1 , h ˜ 2 ) -preinvexity involving local fractional integral operators with Mittag-Leffler kernel
  18. On some geometric results for generalized k-Bessel functions
  19. Convergence analysis of M-iteration for 𝒢-nonexpansive mappings with directed graphs applicable in image deblurring and signal recovering problems
  20. Some results of homogeneous expansions for a class of biholomorphic mappings defined on a Reinhardt domain in ℂn
  21. Graded weakly 1-absorbing primary ideals
  22. The existence and uniqueness of solutions to a functional equation arising in psychological learning theory
  23. Some aspects of the n-ary orthogonal and b(αn,βn)-best approximations of b(αn,βn)-hypermetric spaces over Banach algebras
  24. Numerical solution of a malignant invasion model using some finite difference methods
  25. Increasing property and logarithmic convexity of functions involving Dirichlet lambda function
  26. Feature fusion-based text information mining method for natural scenes
  27. Global optimum solutions for a system of (k, ψ)-Hilfer fractional differential equations: Best proximity point approach
  28. The study of solutions for several systems of PDDEs with two complex variables
  29. Regularity criteria via horizontal component of velocity for the Boussinesq equations in anisotropic Lorentz spaces
  30. Generalized Stević-Sharma operators from the minimal Möbius invariant space into Bloch-type spaces
  31. On initial value problem for elliptic equation on the plane under Caputo derivative
  32. A dimension expanded preconditioning technique for block two-by-two linear equations
  33. Asymptotic behavior of Fréchet functional equation and some characterizations of inner product spaces
  34. Small perturbations of critical nonlocal equations with variable exponents
  35. Dynamical property of hyperspace on uniform space
  36. Some notes on graded weakly 1-absorbing primary ideals
  37. On the problem of detecting source points acting on a fluid
  38. Integral transforms involving a generalized k-Bessel function
  39. Ruled real hypersurfaces in the complex hyperbolic quadric
  40. On the monotonic properties and oscillatory behavior of solutions of neutral differential equations
  41. Approximate multi-variable bi-Jensen-type mappings
  42. Mixed-type SP-iteration for asymptotically nonexpansive mappings in hyperbolic spaces
  43. On the equation fn + (f″)m ≡ 1
  44. Results on the modified degenerate Laplace-type integral associated with applications involving fractional kinetic equations
  45. Characterizations of entire solutions for the system of Fermat-type binomial and trinomial shift equations in ℂn#
  46. Commentary
  47. On I. Meghea and C. S. Stamin review article “Remarks on some variants of minimal point theorem and Ekeland variational principle with applications,” Demonstratio Mathematica 2022; 55: 354–379
  48. Special Issue on Fixed Point Theory and Applications to Various Differential/Integral Equations - Part II
  49. On Cauchy problem for pseudo-parabolic equation with Caputo-Fabrizio operator
  50. Fixed-point results for convex orbital operators
  51. Asymptotic stability of equilibria for difference equations via fixed points of enriched Prešić operators
  52. Asymptotic behavior of resolvents of equilibrium problems on complete geodesic spaces
  53. A system of additive functional equations in complex Banach algebras
  54. New inertial forward–backward algorithm for convex minimization with applications
  55. Uniqueness of solutions for a ψ-Hilfer fractional integral boundary value problem with the p-Laplacian operator
  56. Analysis of Cauchy problem with fractal-fractional differential operators
  57. Common best proximity points for a pair of mappings with certain dominating property
  58. Investigation of hybrid fractional q-integro-difference equations supplemented with nonlocal q-integral boundary conditions
  59. The structure of fuzzy fractals generated by an orbital fuzzy iterated function system
  60. On the structure of self-affine Jordan arcs in ℝ2
  61. Solvability for a system of Hadamard-type hybrid fractional differential inclusions
  62. Three solutions for discrete anisotropic Kirchhoff-type problems
  63. On split generalized equilibrium problem with multiple output sets and common fixed points problem
  64. Special Issue on Computational and Numerical Methods for Special Functions - Part II
  65. Sandwich-type results regarding Riemann-Liouville fractional integral of q-hypergeometric function
  66. Certain aspects of Nörlund -statistical convergence of sequences in neutrosophic normed spaces
  67. On completeness of weak eigenfunctions for multi-interval Sturm-Liouville equations with boundary-interface conditions
  68. Some identities on generalized harmonic numbers and generalized harmonic functions
  69. Study of degenerate derangement polynomials by λ-umbral calculus
  70. Normal ordering associated with λ-Stirling numbers in λ-shift algebra
  71. Analytical and numerical analysis of damped harmonic oscillator model with nonlocal operators
  72. Compositions of positive integers with 2s and 3s
  73. Kinematic-geometry of a line trajectory and the invariants of the axodes
  74. Hahn Laplace transform and its applications
  75. Discrete complementary exponential and sine integral functions
  76. Special Issue on Recent Methods in Approximation Theory - Part II
  77. On the order of approximation by modified summation-integral-type operators based on two parameters
  78. Bernstein-type operators on elliptic domain and their interpolation properties
  79. A class of strongly convergent subgradient extragradient methods for solving quasimonotone variational inequalities
  80. Special Issue on Recent Advances in Fractional Calculus and Nonlinear Fractional Evaluation Equations - Part II
  81. Application of fractional quantum calculus on coupled hybrid differential systems within the sequential Caputo fractional q-derivatives
  82. On some conformable boundary value problems in the setting of a new generalized conformable fractional derivative
  83. A certain class of fractional difference equations with damping: Oscillatory properties
  84. Weighted Hermite-Hadamard inequalities for r-times differentiable preinvex functions for k-fractional integrals
  85. Special Issue on Recent Advances for Computational and Mathematical Methods in Scientific Problems - Part II
  86. The behavior of hidden bifurcation in 2D scroll via saturated function series controlled by a coefficient harmonic linearization method
  87. Phase portraits of two classes of quadratic differential systems exhibiting as solutions two cubic algebraic curves
  88. Petri net analysis of a queueing inventory system with orbital search by the server
  89. Asymptotic stability of an epidemiological fractional reaction-diffusion model
  90. On the stability of a strongly stabilizing control for degenerate systems in Hilbert spaces
  91. Special Issue on Application of Fractional Calculus: Mathematical Modeling and Control - Part I
  92. New conticrete inequalities of the Hermite-Hadamard-Jensen-Mercer type in terms of generalized conformable fractional operators via majorization
  93. Pell-Lucas polynomials for numerical treatment of the nonlinear fractional-order Duffing equation
  94. Impacts of Brownian motion and fractional derivative on the solutions of the stochastic fractional Davey-Stewartson equations
  95. Some results on fractional Hahn difference boundary value problems
  96. Properties of a subclass of analytic functions defined by Riemann-Liouville fractional integral applied to convolution product of multiplier transformation and Ruscheweyh derivative
  97. Special Issue on Development of Fuzzy Sets and Their Extensions - Part I
  98. The cross-border e-commerce platform selection based on the probabilistic dual hesitant fuzzy generalized dice similarity measures
  99. Comparison of fuzzy and crisp decision matrices: An evaluation on PROBID and sPROBID multi-criteria decision-making methods
  100. Rejection and symmetric difference of bipolar picture fuzzy graph
Heruntergeladen am 8.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dema-2023-0107/html
Button zum nach oben scrollen