Startseite Crystal structure of poly[bis(μ2-2,6-bis(1-imidazoly)pyridine-κ2 N,N′)-bis(thiocyanato-κ1 N)copper(II)] dithiocyanate, C24H18CuN12S2
Artikel Open Access

Crystal structure of poly[bis(μ2-2,6-bis(1-imidazoly)pyridine-κ2 N,N′)-bis(thiocyanato-κ1 N)copper(II)] dithiocyanate, C24H18CuN12S2

  • Lu Li , Huajian Duan und Jun Qian ORCID logo EMAIL logo
Veröffentlicht/Copyright: 1. Dezember 2021

Abstract

C24H18CuN12S2, monoclinic, P21/c (no. 4), a = 11.038(2) Å, b = 8.9312(18) Å, c = 16.083(5) Å, β = 125.66(2)°, V = 1288.2(6) Å3, Z = 2, R gt (F) = 0.0265, wR ref (F 2) = 0.0974, T = 293 K.

CCDC no.: 2022261

The crystal structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Block, red
Size: 0.18 × 0.15 × 0.12 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 1.05 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω-scans
θ max, completeness: 26°, >99%
N(hkl)measured, N(hkl)unique, R int: 6033, 2496, 0.027
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 2082
N(param)refined: 179
Programs: Bruker programs [1], OLEX2 [2], SHELX [3, 4], PLATON [5]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

x y z U iso*/U eq
Cu1 0.0000 0.0000 0.0000 0.03267 (18)
S1 −0.32137 (14) −0.04437 (13) −0.37442 (7) 0.0776 (4)
N1 0.2056 (2) 0.4126 (2) 0.12582 (16) 0.0324 (5)
N2 0.0776 (2) 0.2157 (2) 0.03442 (17) 0.0361 (5)
N3 0.2557 (2) 0.5153 (2) 0.27563 (17) 0.0311 (5)
N4 −0.1542 (3) 0.0728 (3) −0.1783 (2) 0.0544 (7)
N6 0.2931 (2) 0.6057 (2) 0.42386 (16) 0.0335 (5)
C1 0.1392 (3) 0.2831 (3) 0.1231 (2) 0.0329 (6)
H1 0.1375 0.2469 0.1766 0.039*
C2 0.1035 (3) 0.3070 (3) −0.0227 (2) 0.0416 (7)
H2 0.0709 0.2881 −0.0896 0.050*
C3 0.1829 (3) 0.4270 (3) 0.0325 (2) 0.0414 (7)
H3 0.2160 0.5045 0.0118 0.050*
C4 0.2990 (3) 0.5035 (3) 0.2145 (2) 0.0300 (6)
C5 0.4265 (3) 0.5661 (3) 0.2326 (2) 0.0378 (6)
H5 0.4539 0.5513 0.1884 0.045*
N5 0.1602 (2) 0.5600 (2) 0.48272 (17) 0.0341 (5)
C6 0.5110 (3) 0.6518 (3) 0.3199 (2) 0.0436 (7)
H6 0.5972 0.6978 0.3348 0.052*
C7 0.4700 (3) 0.6703 (3) 0.3851 (2) 0.0403 (7)
H7 0.5256 0.7288 0.4438 0.048*
C8 0.3416 (3) 0.5973 (3) 0.3591 (2) 0.0322 (6)
C12 −0.2225 (3) 0.0252 (3) −0.2593 (2) 0.0395 (7)
C11 0.1728 (3) 0.5339 (3) 0.4079 (2) 0.0363 (6)
H11 0.1080 0.4741 0.3514 0.044*
C9 0.3593 (3) 0.6829 (3) 0.5149 (2) 0.0432 (7)
H9 0.4438 0.7430 0.5459 0.052*
C10 0.2767 (3) 0.6533 (3) 0.5499 (2) 0.0416 (7)
H10 0.2956 0.6905 0.6104 0.050*

Source of materials

All the reagents were commercially available and used as received without further purification. About 13.5 mg CuSCN (0.1 mmol) and 10.3 mg NH4SCN (0.1 mmol) were dissolved in DMF (3 mL) with strong stirring to obtain a colorless solution. Then, 42.2 mg 2,6-bis(1-imidazoly)pyridine (2,6-BIP) (0.2 mmol) was added to the mixture, which turns into the blue-green solution immediately. After filtration, 1 mL DMF and 5 mL acetonitrile were added to the upper layer of the filtrate as buffer solution and diffusion solution, sequentially. Green crystals were obtained after a week at room temperature in the dark with a yield of 38 mg (64% based Cu). Anal. Calcd. for C24H18CuN12S2: C, 47.87%; H, 3.01%; N, 27.91%. Found C, 48.02%; H, 3.03%; N, 27.76%. IR (KBr, ν/cm−1): 2083(s), 2054(s), 1654(m), 1605(s), 1585(m), 1491(s), 1458(s), 1319(w), 1286(w), 1233(m), 1176(w), 1061(m), 1004(w) (pyridine: C=N), 849(w), 792(m), 743(w), 653(m).

Experimentaldetails

The structure was solved by direct methods and refined using the SHELX software [3]. All of the hydrogen atoms were added using a riding model [4].

Comment

Coordination polymers (CPs) have received enormous interests because of their intriguing skeletal structures, as well as the potential applications in gas absorption [6], catalysis [7], magnetism [8, 9], photoluminescence [10], [11], [12] and so on. Consequently, considerable efforts in this field have been devoted to the design and syntheses of various kinds of CPs to obtain desirable properties [13]. To extend the types of CPs, different rigid or flexible ligands have been extensively used in the preparation of CPs [14, 15]. In recent years, many CPs based on semi-rigid ligands such as bis(imidazole) derivatives have been reported [16, 17]. From the view of structural chemistry, the hinged 2,6-BIP molecule is a typical semi-rigid ligand, in which the C–N bonds between three rings can rotate to some extent. Therefore, the introduction of 2,6-BIP ligand can affect the spatial configuration of CPs and then modify the corresponding properties.

As shown in the upper part of the figure, the asymmetric unit of the title structure consists of a half Cu(II) cation (located on a center of symmetry), one 2,6-BIP molecule and one SCN ion. The Cu(II) center is six-coordinated by six N atoms, in which two N atoms from SCN ions and four from 2,6-BIP ligands, forming an octahedral configuration. The Cu–N bond lengths are in the range of 2.016(2)–2.419(3) Å, while the bond angles of N–Cu–N range from 87.80(9) to 180.0°. The connection between Cu(II) ions and 2,6-BIP ligands leads to a four-membered metal ring, and these rings are further extend to a two-dimensional network, exhibiting a four-connected sql topological structure (lower part of the figure). Due to the rotability of C–N bond in 2,6-BIP ligand, the dihedral angles between the pyridine ring and two imidazole rings are 3.4° and 35.6°, respectively, which resulting in the 2D structure of title CP to be helical.


Corresponding author: Jun Qian, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China, E-mail:

Award Identifier / Grant number: 51602130

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was funded by the National Natural Science Foundation of China (grant no. 51602130).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. BRUKER. SAINT, APEX2 and SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2009.Suche in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

3. Sheldrick, G. M. SHELXT – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

5. Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7–13; https://doi.org/10.1107/s0021889802022112.Suche in Google Scholar

6. Jiang, X., Li, Z., Zhai, Y., Yan, G., Xia, H., Li, Z. Porous coordination polymers based on azamacrocyclic complex: syntheses, solvent induced reversible crystal-to-crystal transformation and gas sorption properties. CrystEngComm 2014, 16, 805–813; https://doi.org/10.1039/c3ce42021c.Suche in Google Scholar

7. Paul, A., Karmakar, A., Guedes da Silva, M. F. C., Pombeiro, A. J. L. 1D Zn(II) coordination polymers as effective heterogeneous catalysts in microwave-assisted single-pot deacetalization-knoevenagel tandem reactions in solvent-free conditions. Catalysts 2021, 11, 90; https://doi.org/10.3390/catal11010090.Suche in Google Scholar

8. Wang, Y. F., Li, S. H., Ma, L. F., Geng, J. L., Wang, L. Y. Syntheses, crystal structures, and magnetic studies of two cobalt(II) coordination polymers based on concurrent ligand extension. Inorg. Chem. Commun. 2015, 62, 42–46; https://doi.org/10.1016/j.inoche.2015.10.023.Suche in Google Scholar

9. Qian, J., Yoshikawa, H., Humphrey, M. G., Zhang, J. F., Awaga, K., Zhang, C. In situ formed [M(CN)9] (M = W, Mo) as a building block for the construction of two nona-cyanometalate-bridged heterometallic coordination polymers. CrystEngComm 2019, 21, 4363–4372; https://doi.org/10.1039/c9ce00579j.Suche in Google Scholar

10. Zhang, J. F., Jia, D., Humphrey, M. G., Meng, S. C., Zaworotko, M. J., Cifuentes, M. P., Zhang, C. Ammonium-crown ether supramolecular cation-templated assembly of an unprecedented heterobicluster-metal coordination polymer with enhanced NLO properties. Chem. Commun. 2016, 52, 3797–3800; https://doi.org/10.1039/c5cc10076c.Suche in Google Scholar

11. Yang, J. X., Qin, Y. Y., Ye, R. P., Zhang, X., Yao, Y. G. Employing mixed-ligand strategy to construct a series of luminescent Cd(II) compounds with structural diversities. CrystEngComm 2016, 18, 8309–8320; https://doi.org/10.1039/c6ce01607c.Suche in Google Scholar

12. Heine, J., Müller-Buschbaum, K. Engineering metal-based luminescence in coordination polymers and metal-organic frameworks. Chem. Soc. Rev. 2013, 42, 9232–9242; https://doi.org/10.1039/c3cs60232j.Suche in Google Scholar

13. Leong, W. L., Vittal, J. J. One-dimensional coordination polymers: complexity and diversity in structures, properties, and applications. Chem. Rev. 2011, 111, 688–764; https://doi.org/10.1021/cr100160e.Suche in Google Scholar

14. Adeline, Y. R., Katharina, M. F. Coordination polymer networks with O- and N-donors: what they are, why and how they are made. Coord. Chem. Rev. 2006, 250, 2127–2157.10.1016/j.ccr.2006.02.013Suche in Google Scholar

15. Xin, L. Y., Liu, G. Z., Li, X. L., Wang, L. Y. Structural diversity for a series of metal(II) complexes based on flexible 1,2-phenylenediacetate and dipyridyl-type coligand. Cryst. Growth Des. 2012, 12, 147–157; https://doi.org/10.1021/cg200903k.Suche in Google Scholar

16. Han, M. L. Crystal structure of catena-poly[diaqua-bis (3-carboxy-5-methoxybenzoato-κO)-(1,2-bis(imidazol-1-yl)ethane-κ2N:N′)cobalt(II)], C26H28CoN4O12, [Co(C9H6O5)2(H2O)2(C8H10N4)]. Z. Kristallogr. NCS. 2019, 234, 617–618; https://doi.org/10.1515/ncrs-2018-0555.Suche in Google Scholar

17. Son, S. U., Park, K. H., Kim, B. Y., Chung, Y. K. Construction of cylindrical nanotubular materials by self-assembly of Co(NCS)2 with bent-building blocks having diimidazole rings. Cryst. Growth Des. 2003, 3, 507–512; https://doi.org/10.1021/cg034010y.Suche in Google Scholar

Received: 2021-09-21
Accepted: 2021-11-21
Published Online: 2021-12-01
Published in Print: 2022-02-23

© 2021 Lu Li et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (E)-7-hydroxy-2-((6-methoxypyridin-3-yl)methylene)-3, 4-dihydronaphthalen-1(2H)-one, C17H15NO3
  4. Crystal structure of (E)-7-methoxy-2-((2-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1 (2H)-one, C18H17NO3
  5. The crystal structure of N 6,N 6′-di(pyridin-2-yl)-[2,2′-bipyridine]-6,6′-diamine, C20H16N6
  6. The crystal structure of {N 1,N 2-bis[2,4-dimethyl-6-(4-(tert-butyl)phenyl)(phenyl)methyl]acenaphthylene-1,2-diimino-κ2 N, N′}-dibromido-nickel(II) – dichloromethane(1/2), C64H64Br2Cl4N2Ni
  7. Synthesis and crystal structure of nonacarbonyltris[(2-thia-1,3,5-triaza-7-phosphatricylco[3.3.1.1]decane-κ1 P)-2,2-dioxide]triruthenium(0) – acetonitrile (7/6), C25.71H32.57N9.86O15P3S3Ru3
  8. A new polymorph of 1-(4-nitrophenyl)-1H-benzimidazole (C13H9N3O2)
  9. The crystal structure of 2,2′-((1E,1′E)-(naphthalene-2,3 diylbis(azanylylidene)) bis(methanylylidene))bis(4-methylphenol), C26H22N2O2
  10. The crystal structure of bis(μ2-iodido)-bis(η6-benzene)-bis(iodido)-diosmium(II), C12H12I4Os2
  11. Redetermination of the crystal structure of bis{hydridotris(3,5-dimethylpyrazol-1-yl-κN 3)borato}copper(II), C30H44B2CuN12
  12. Crystal structure of (E)-3-((4-(tert-butyl)phenyl)thio)-4-hydroxypent-3-en-2-one, C15H20O2S
  13. Crystal structure of 2,2′-(p-tolylazanediyl)bis(1-phenylethan-1-one), C23H21NO2
  14. Redetermination of the crystal structure of the crystal sponge the poly[tetrakis(μ3-2,4,6-tris(pyridin-4-yl)-1,3,5-triazine)-dodecaiodidohexazinc(II) nitrobenzene solvate], C72H48I12N24Zn6⋅10(C6H5NO2)
  15. Crystal structure of (4′E)-6′-(diethylamino)-2-[(E)-[(6-methylpyridin-2-yl)methylidene]amino]-4′-{2-[(2E)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]ethylidene}-1′,2,2′,3,3′,4′-hexahydrospiro[isoindole-1,9′-xanthene]-3-one, C44H45N5O2
  16. Crystal structure of (E)-7-fluoro-2-(3-fluorobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C17H12F2O1
  17. Crystal structure of tetrabutylammonium sulfanilate – 1-(diaminomethylene)thiourea (1/2)
  18. Crystal structure of [2,2′-{azanediyl)bis[(propane-3,1-diyl)(azanylylidene)methylylidene]} bis(3,5-dichlorophenolato)-κ2O,O′]-isothiocyanato-κN-iron(III), C21H19Cl4FeN4O2S
  19. Crystal structure of (4-chlorophenyl)(4-hydroxyphenyl)methanone, C13H9ClO2
  20. Crystal structure of 6,6′-((pentane-1,3-diylbis(azaneylylidene))bis(methaneylylidene))bis(2,4-dibromolphenolato-κ4 N,N′,O,O′)copper(II),) C19H16Br4CuN2O2
  21. Chlorido-(2,2′-(ethane-bis(5-methoxyphenolato))-κ4 N,N,O,O′)manganese(III) monohydrate, C19H18Cl2CuN2O2
  22. Crystal structure of 2,6-di-tert-butyl-4-(4-methoxybenzylidene)cyclohexa-2,5-dien-1-one, C22H28O2
  23. Crystal structure of [6,6′-(((2,2-dimethylpropane-1,3-diyl)bis(azanylylidene))bis(methanylylidene))bis(2-chlorophenolato)-κ4N,N′,O,O′]copper(II)
  24. Crystal structure of 2-chloro-3-((thiophen-2-ylmethyl)amino)naphthalene-1,4-dione, C30H20O4N2Cl2S2
  25. Crystal structure of bis{hydridotris(3-trifluoromethyl-5-methylpyrazolyl-1-yl)borato-κN 3}manganese(II), C30H26B2F18MnN12
  26. Crystal structure of 1-(2-methylphenyl)-2-(2-methylbenzo[b]thienyl)-3,3,4,4,5,5-hexafluorocyclopent-ene, C21H14F6S
  27. Crystal structure of 2-(3-((carbamimidoylthio)methyl)benzyl)isothiouronium hexafluorophosphate monohydrate, C10H17F6N4OPS2
  28. Crystal structure of 4,5-diiodo-1,3-dimesityl-1H-1,2,3-triazol-3-ium chloride – chloroform (1/1), C21H23Cl4I2N3
  29. Crystal structure of azido-k1 N-{6,6′-((((methylazanediyl)bis(propane-3,1-diyl))bis(azanylylidene))bis(methanylylidene))bis(2,4-dibromophenolato)k5 N,N′,N″,O,O′}cobalt(III)-methanol (1/1)), C21H23Br4CoN6O3
  30. The crystal structure of 2-(4-((carbamimidoylthio)methyl)benzyl)isothiouronium hexafluorophosphate monohydrate, C10H17F6N4OPS2
  31. Crystal structure of 1,1′-(methane-1,1-diyl)bis(3-methyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C9H14F12N4P2
  32. Crystal structure of (4′E)-6′-(diethylamino)-2-[(E)-[(pyren-1-yl)methylidene]amino]-4′-{2-[(2E)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]ethylidene}-1′,2,2′,3,3′,4′-hexahydrospiro[isoindole-1,9′-xanthene]-3-one, C54H48N4O2
  33. Crystal structure of poly[bis(μ2-2,6-bis(1-imidazoly)pyridine-κ2 N,N′)-bis(thiocyanato-κ1 N)copper(II)] dithiocyanate, C24H18CuN12S2
  34. Cones with a three-fold symmetry constructed from three hydrogen bonded theophyllinium cations that coat [FeCl4] anions in the crystal structure of tris(theophyllinium) bis(tetrachloridoferrate(III)) chloride trihydrate, C21H33Cl9Fe2N12O9
  35. Crystal structure of 14-O-[(4-(4-hydroxypiperidine-1-yl)-6-methylpyrimidine-2-yl)thioacetyl]-mutilin monohydrate, C32H49N3O6S
  36. The crystal structure of (E)-3-chloro-2-(2-(4-methylbenzylidene)hydrazinyl)pyridine, C13H12ClN3
  37. The crystal structure of 4-phenyl-4-[2-(pyridine-4-carbonyl)hydrazinylidene]butanoic acid, C16H15N3O3
  38. The crystal structure of 6-amino-5-carboxypyridin-1-ium pentaiodide monohydrate C6H9I5N2O3
  39. Crystal structure of bis(μ3-oxido)-bis(μ2-2-formylbenzoato-k2O:O′)-bis(2-(dimethoxymethyl)-benzoato-κO)-oktakismethyl-tetratin(IV)
  40. Crystal structure of 2-((E)-(((E)-2-hydroxy-4-methylbenzylidene) hydrazineylidene)methyl)-4-methylphenol, C16H16N2O2
  41. Crystal structure of (E)-amino(2-((5-methylfuran-2-yl)methylene)hydrazinyl) methaniminium nitrate monohydrate, C14H26N10O10
  42. The crystal structure of N′-(2-chloro-6-hydroxybenzylidene)thiophene-2-carbohydrazide monohydrate, C12H11ClN2O3S
  43. Crystal structure of catena-poly[(μ2-1,1′-(biphenyl-4,4-diyl)bis(1H-imidazol)-κ2N:N′)-bis(4-bromobenzoate-κ1O)zinc(II)], C64H44Br4N8O8Zn2
  44. The crystal structure of catena-poly[(1-(4-carboxybenzyl)pyridin-1-ium-4-carboxylato-κ1O)-(μ2-oxalato-κ4 O:O′:O″:O‴)dioxidouranium(VI)], C16H11NO10U
  45. Crystal structure of 3-allyl-4-(2-bromoethyl)-5-(4-methoxyphenyl)-2-phenylfuran, C22H21BrO2
  46. Halogen bonds in the crystal structure of 4,3′:5′,4″-terpyridine — 1,3-diiodotetrafluorobenzene (1/1), C21H11F4I2N3
  47. Crystal structure of 2-(1H-indol-3-yl)ethan-1-aminium 2-(4-acetylphenoxy)acetate, C20H22N2O4
  48. Chalcogen bonds in the crystal structure of 4,7-dibromo-2,1,3-benzoselenadiazole, C6H2Br2N2Se
  49. The crystal structure of 1,4-bis((1H-benzimidazol-2-yl)methyl)-piperazine-2,5-dione dihydrate, C20H22N6O4
  50. The crystal structure of C19H20O8
  51. The crystal structure of KNa3Te8O18·5H2O exhibiting a 2[Te4O9]2− layer
  52. Erratum
  53. Erratum to: Crystal structure of (Z)-3-(6-bromo-1H-indol-3-yl)-1,3-diphenylprop-2-en-1-one, C23H16BrNO
Heruntergeladen am 9.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0369/html
Button zum nach oben scrollen