Startseite Naturwissenschaften Crystal structure of (E)-3-((4-(tert-butyl)phenyl)thio)-4-hydroxypent-3-en-2-one, C15H20O2S
Artikel Open Access

Crystal structure of (E)-3-((4-(tert-butyl)phenyl)thio)-4-hydroxypent-3-en-2-one, C15H20O2S

  • Le Dong , Ya-Fei Guo ORCID logo EMAIL logo , Jun-Ying Ma EMAIL logo , Jun-Ling Wang ORCID logo , Shu-Xiao Feng und Hui-Kang Huo
Veröffentlicht/Copyright: 18. November 2021

Abstract

C15H20O2S, monoclinic, P21/c (No. 14), a = 12.8520(8) Å, b = 10.5864(8) Å, c = 11.2202(7) Å, β = 104.375(7)°, V = 1478.78(18) Å3, Z = 4, R gt (F) = 0.0655, wR ref (F 2) = 0.1781, T = 293 K.

CCDC no.: 2108461

The crystal structure is shown in the figure (for the disordered part only one component list shown). Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Block, colourless
Size: 0.27 × 0.25 × 0.24 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.21 mm−1
Diffractometer, scan mode: SuperNova, ω-scans
θ max, completeness: 28.4°, >99%
N(hkl)measuredN(hkl)uniqueR int: 11,385, 3265, 0.033
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 2549
N(param)refined: 181
Programs: CrysAlisPRO [1], OLEX2 [2], SHELX [3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
S1 0.63034 (5) 0.80321 (7) 0.49264 (6) 0.0609 (3)
O1 0.38156 (15) 0.8078 (2) 0.6385 (2) 0.0758 (6)
H1 0.4125 0.9026 0.6875 0.114*
O2 0.50260 (16) 0.97776 (19) 0.73228 (18) 0.0731 (6)
C1 0.4173 (3) 0.6610 (3) 0.4957 (3) 0.0778 (8)
H1A 0.4651 0.5925 0.5277 0.117*
H1B 0.4224 0.6808 0.4138 0.117*
H1C 0.3449 0.6369 0.4939 0.117*
C2 0.44780 (18) 0.7745 (2) 0.5763 (2) 0.0541 (6)
C3 0.54415 (17) 0.8414 (2) 0.5865 (2) 0.0462 (5)
C4 0.56855 (19) 0.9438 (2) 0.6692 (2) 0.0536 (6)
C5 0.6696 (2) 1.0182 (3) 0.6908 (3) 0.0818 (9)
H5A 0.6597 1.0980 0.7272 0.123*
H5B 0.6878 1.0322 0.6139 0.123*
H5C 0.7265 0.9724 0.7453 0.123*
C6 0.71536 (16) 0.6827 (2) 0.57366 (19) 0.0416 (5)
C7 0.70896 (17) 0.6326 (2) 0.68557 (19) 0.0457 (5)
H7 0.6580 0.6631 0.7245 0.055*
C8 0.77863 (17) 0.5368 (2) 0.73980 (19) 0.0452 (5)
H8 0.7739 0.5053 0.8156 0.054*
C9 0.85475 (15) 0.4867 (2) 0.68514 (19) 0.0415 (5)
C10 0.85970 (18) 0.5392 (2) 0.5729 (2) 0.0519 (6)
H10 0.9104 0.5087 0.5337 0.062*
C11 0.79198 (18) 0.6349 (2) 0.5182 (2) 0.0508 (6)
H11 0.7977 0.6677 0.4432 0.061*
C12 0.92933 (19) 0.3783 (2) 0.7442 (2) 0.0554 (6)
C13a 0.9882 (5) 0.4224 (6) 0.8811 (5) 0.0864 (13)
H13Aa 0.9353 0.4431 0.9251 0.130*
H13Ba 1.0317 0.4953 0.8773 0.130*
H13Ca 1.0329 0.3551 0.9227 0.130*
C14a 1.0205 (5) 0.3530 (6) 0.6856 (6) 0.0844 (13)
H14Aa 1.0590 0.4300 0.6820 0.127*
H14Ba 0.9925 0.3211 0.6038 0.127*
H14Ca 1.0681 0.2917 0.7335 0.127*
C15a 0.8667 (4) 0.2628 (5) 0.7556 (7) 0.0921 (19)
H15Aa 0.9145 0.1981 0.7971 0.138*
H15Ba 0.8299 0.2336 0.6751 0.138*
H15Ca 0.8151 0.2820 0.8019 0.138*
C15Ab 0.8965 (6) 0.3143 (7) 0.8474 (9) 0.0921 (19)
H15Db 0.8241 0.2842 0.8192 0.138*
H15Eb 0.9008 0.3731 0.9136 0.138*
H15Fb 0.9436 0.2443 0.8758 0.138*
C13Ab 1.0427 (5) 0.4211 (8) 0.7740 (8) 0.0864 (13)
H13Db 1.0543 0.4817 0.8395 0.130*
H13Eb 1.0579 0.4592 0.7026 0.130*
H13Fb 1.0893 0.3499 0.7991 0.130*
C14Ab 0.9188 (6) 0.2733 (7) 0.6380 (7) 0.0844 (13)
H14Db 0.9707 0.2077 0.6660 0.127*
H14Eb 0.9316 0.3118 0.5655 0.127*
H14Fb 0.8479 0.2378 0.6192 0.127*
  1. aOccupancy: 0.567(3), bOccupancy: 0.433(3).

Source of material

To a solution of acetylacetone (0.400 g, 4 mmol) and 4-tert-butylbenzenethiol (0.166 g, 1 mmol) in dimethyl sulfoxide (DMSO) (1 mL) was added Na2CO3 (130 mg, 1 mmol). The mixture was stirred at 40 °C under oxygen atmosphere for 17 h. The mixture was then added to water (5 mL). The resulting mixture was extracted with ethylether (10 mL) for three times. The combined organic layers were washed with water and brine, dried over anhydrous Na2SO4 and concentrated under reduced pressure. After removal of the solvent, the residue was then purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (45:1) to give the desired (238 mg, 90%) as a white solid. Crystals were obtained by crystallization of the title compound from ethyl acetate. Melting point: 104–106 °C. 1H NMR (400 MHz, CDCl3, 298 K) δ 17.26 (s, 1H), 7.31 (d, J = 8.4 Hz, 2H), 7.03 (d, J = 8.4 Hz, 2H), 2.35 (s, 6H), 1.30 (s, 9H). 13C{1H} NMR (101 MHz, CDCl3) δ 198.3, 148.4, 134.2, 126,2 124.6, 102.0, 34.4, 31.4, 24.5.

Experimental details

Hydrogen atoms were placed in their geometrically idealized positions and constrained to ride on their parent atoms.

Discussion

Acetylacetone derivatives are extensively employed in organic synthetic intermediates, analytical reagents, and other essential raw ingredients [4], [5], [6], which have been demonstrated to possess a wide range of biological and pharmaceutical activities such as sulfa-drugs [7], antipyretics [8], diabetes drugs [9], antiviral [10], pesticides [11], spectrofluorimetric method [12]. Besides, acetylacetone and its derivatives were frequently used as chelating ligands [13]. Examples for their coordination behavior were found for main group elements such as iron [14], aluminum [15], and palladium [16]. Up to date, a great number of acetylacetone derivatives have been reported. However, there are relatively few reports about a convenient and efficient protocol for the synthesis of α-sulfenylated carbonyl compounds based acetylacetone derivatives.

In this paper we report the synthesis and crystal structure of a novel sulfenylated carbonyl compound. The asymmetric unit contains one molecule of the title compound, which is constructed by the acetylacetone and the 4-tert-butylbenzenethiol moiety (see the Figure). The acetylacetone together with sulfur atom is almost in a strict plane, whereby the largest deviation for the S1 atom from the acetylacetone plane is 0.078 Å. The dihedral angle between the acetylacetone group and 4-tert-butylbenzenethiol were found to be 85°. The C(6)–S(1)–C(3)–C(2) and C(6)–S(1)–C(3)–C(4) torsion angles are −87.6(2)° and 95.2(2)°. The C(3)–S(1)–C(6) bond angle is 104.97(10)°. The thioether bond distances are 1.755(2) Å for C(3)–S(1) and 1.766(2) Å for C(6)–S(1), respectively, which are typical C–S bond distances. Within the acetylacetone unit, the dimensions and planarity are consistent with their adoption of a localized enol form. The bond lengths of C(3)–C(4), C(3)–C(2) are 1.410(3) and 1.407(3) Å respectively. The only intramolecular O(1)–H(1)⋯O(2) hydrogen bond is observed. The O(1)–H(1) and O(2)–H(1) bond lengths are 1.392 and 1.167 Å. The O(1)⋯O(2) separation is 2.440(3) Å. The structure of the molecule is similar to the stereo-configuration of the compound reported in the references. The bond lengths and angles are all in the expected ranges [17], [18], [19]. And no unusual intermolecular contacts, were observed in this crystal.


Corresponding authors: Ya-Fei Guo and Jun-Ying Ma, School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, Henan 471003, P. R. China, E-mail: (Y.-F. Guo), (J.-Y. Ma)

Funding source: Programs for Science and Technology Development of Henan Province

Award Identifier / Grant number: 212102210650

Funding source: Key Research Project for Colleges and Universities of Henan Province

Award Identifier / Grant number: 21B530002

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Programs for Science and Technology Development of Henan Province, China (No. 212102210650) and the Key Research Project for Colleges and Universities of Henan Province, China (No. 21B530002).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Oxford Diffraction, CrysAlisPRO (version 1.171.33.42); Oxford Diffraction Ltd.: Oxford, UK, 2009.Suche in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

3. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar

4. Al-Adiwish, W. M., Tahir, M. I., Siti-Noor-Adnalizawati, A., Hashi, S. F., Ibrahim, N., Yaacob, W. A. Synthesis, antibacterial activity and cytotoxicity of new fused pyrazolo[1,5-a]pyrimidine and pyrazolo[5,1-c][1,2,4]triazine derivatives from new 5-aminopyrazoles. Eur. J. Med. Chem. 2013, 64, 464–476; https://doi.org/10.1016/j.ejmech.2013.04.029.Suche in Google Scholar

5. Svistunova, I. V., Sharutin, V. V., Tretyakova, G. O., Puzyrkov, Z. N. Synthesis and structure of boron difluoride binuclear β-diketonates. Inorg. Chim. Acta. 2020, 501, 119230–119236; https://doi.org/10.1016/j.ica.2019.119230.Suche in Google Scholar

6. Gupta, V. K., Goyal, R. N., Bachheti, N., Singh, L. P., Agarwal, S. A copper-selective electrode based on bis(acetylacetone)propylenediimine. Talanta 2005, 68, 193–197; https://doi.org/10.1016/j.talanta.2005.06.050.Suche in Google Scholar

7. Darwish, E., Fattah, A., Attaby, F., Al-Shayea, O. Synthesis and antimicrobial evaluation of some novel thiazole, pyridone, pyrazole, chromene, hydrazone derivatives bearing a biologically active sulfonamide moiety. Int. J. Mol. Sci. 2014, 15, 1237–1254; https://doi.org/10.3390/ijms15011237.Suche in Google Scholar

8. Glukhachev, V. S., Il’yasov, S. G., Kazantsev, I. V., Shestakova, E. O., Il’yasov, D. S., Eltsov, I. V., Nefedov, A. A., Gatilov, Y. V. New reaction products of acetylacetone with semicarbazide derivatives. ACS Omega 2021, 6, 8637–8645; https://doi.org/10.1021/acsomega.1c00518.Suche in Google Scholar

9. Sanna, D., Ugone, V., Serra, M., Garribba, E. Speciation of potential anti-diabetic vanadium complexes in real serum samples. J. Inorg. Biochem. 2017, 173, 52–65; https://doi.org/10.1016/j.jinorgbio.2017.04.023.Suche in Google Scholar

10. Krohn, K., Vukics, K. First chemical synthesis of the antiviral agents S2502 and S2507. Synthesis 2007, 2007, 2894–2900; https://doi.org/10.1055/s-2007-983873.Suche in Google Scholar

11. Abunada, N. M., Hassaneen, H. M., Kandile, N. G., Miqdad, O. A. Synthesis and antimicrobial activity of some new pyrazole, fused pyrazolo[3,4-d]-pyrimidine and pyrazolo[4,3-e][1,2,4]-triazolo[1,5-c]pyrimidine derivatives. Med. Sci. 2008, 13, 1501–1517; https://doi.org/10.3390/molecules13071501.Suche in Google Scholar

12. Omar, M. A., Derayea, S. M., Mostafa, I. M. Development and validation of a stability-indicating spectrofluorimetric method for the determination of H1N1 antiviral drug (oseltamivir phosphate) in human plasma through the Hantzsch reaction. RSC Adv. 2015, 5, 27735–27742; https://doi.org/10.1039/c4ra16650g.Suche in Google Scholar

13. Kremer, M., Englert, U. N Donor substituted acetylacetones – versatile ditopic ligands. Z. Kristallogr. - Cryst. Mater. 2018, 233, 437–452; https://doi.org/10.1515/zkri-2017-2131.Suche in Google Scholar

14. Hu, X., Mao, J., Sun, Y., Chen, H., Li, H. Acetylacetone-Fe catalyst modified by imidazol ionic compound and its application in aerobic oxidation of β-isophorone. Catal. Commun. 2009, 10, 1908–1912; https://doi.org/10.1016/j.catcom.2009.06.024.Suche in Google Scholar

15. Pang, X., Chen, X., Du, H., Wang, X., Jing, X. Enolic Schiff-base aluminum complexes and their application in lactide polymerization. J. Organomet. Chem. 2007, 692, 5605–5613; https://doi.org/10.1016/j.jorganchem.2007.09.014.Suche in Google Scholar

16. Khranenko, S. P., Bykova, E. A., Gromilov, S. A., Gallyamov, M. R., Kozlova, S. G., Moroz, N. K., Korenev, S. V. Novel mixed-ligand palladium complexes [Pd2(acac)3NO3] and [Pd(acac)NO3]n involving O,O- and γ-C-bonded acetylacetonate linkers. Polyhedron 2012, 31, 272–277; https://doi.org/10.1016/j.poly.2011.09.026.Suche in Google Scholar

17. Olivier, J. H., Haefele, A., Retailleau, P., Ziessel, R. Borondipyrromethene dyes with pentane-2,4-dione anchors. Org. Lett. 2010, 12, 408–411; https://doi.org/10.1021/ol902386u.Suche in Google Scholar

18. Jing, N., Jian-Hua, W., Zhong-Hai, N. Synthesis, crystal structure and optical property of 1,6-bis(p-tolylthio)pyrene, C30H22S2. Z. Kristallogr. N. Cryst. Struct. 2021, 236, 21–23; https://doi.org/10.1515/ncrs-2020-0466.Suche in Google Scholar

19. Rashid, M. A., Rasool, N., Adeel, M., Reinke, H., Fischer, C., Langer, P. Synthesis of functionalized diaryl sulfides based on regioselective one-pot cyclizations of 1,3-bis(trimethylsilyloxy)-1,3-butadienes. Tetrahedron 2008, 64, 3782–3793; https://doi.org/10.1016/j.tet.2008.02.010.Suche in Google Scholar

Received: 2021-09-19
Accepted: 2021-10-29
Published Online: 2021-11-18
Published in Print: 2022-02-23

© 2021 Le Dong et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (E)-7-hydroxy-2-((6-methoxypyridin-3-yl)methylene)-3, 4-dihydronaphthalen-1(2H)-one, C17H15NO3
  4. Crystal structure of (E)-7-methoxy-2-((2-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1 (2H)-one, C18H17NO3
  5. The crystal structure of N 6,N 6′-di(pyridin-2-yl)-[2,2′-bipyridine]-6,6′-diamine, C20H16N6
  6. The crystal structure of {N 1,N 2-bis[2,4-dimethyl-6-(4-(tert-butyl)phenyl)(phenyl)methyl]acenaphthylene-1,2-diimino-κ2 N, N′}-dibromido-nickel(II) – dichloromethane(1/2), C64H64Br2Cl4N2Ni
  7. Synthesis and crystal structure of nonacarbonyltris[(2-thia-1,3,5-triaza-7-phosphatricylco[3.3.1.1]decane-κ1 P)-2,2-dioxide]triruthenium(0) – acetonitrile (7/6), C25.71H32.57N9.86O15P3S3Ru3
  8. A new polymorph of 1-(4-nitrophenyl)-1H-benzimidazole (C13H9N3O2)
  9. The crystal structure of 2,2′-((1E,1′E)-(naphthalene-2,3 diylbis(azanylylidene)) bis(methanylylidene))bis(4-methylphenol), C26H22N2O2
  10. The crystal structure of bis(μ2-iodido)-bis(η6-benzene)-bis(iodido)-diosmium(II), C12H12I4Os2
  11. Redetermination of the crystal structure of bis{hydridotris(3,5-dimethylpyrazol-1-yl-κN 3)borato}copper(II), C30H44B2CuN12
  12. Crystal structure of (E)-3-((4-(tert-butyl)phenyl)thio)-4-hydroxypent-3-en-2-one, C15H20O2S
  13. Crystal structure of 2,2′-(p-tolylazanediyl)bis(1-phenylethan-1-one), C23H21NO2
  14. Redetermination of the crystal structure of the crystal sponge the poly[tetrakis(μ3-2,4,6-tris(pyridin-4-yl)-1,3,5-triazine)-dodecaiodidohexazinc(II) nitrobenzene solvate], C72H48I12N24Zn6⋅10(C6H5NO2)
  15. Crystal structure of (4′E)-6′-(diethylamino)-2-[(E)-[(6-methylpyridin-2-yl)methylidene]amino]-4′-{2-[(2E)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]ethylidene}-1′,2,2′,3,3′,4′-hexahydrospiro[isoindole-1,9′-xanthene]-3-one, C44H45N5O2
  16. Crystal structure of (E)-7-fluoro-2-(3-fluorobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C17H12F2O1
  17. Crystal structure of tetrabutylammonium sulfanilate – 1-(diaminomethylene)thiourea (1/2)
  18. Crystal structure of [2,2′-{azanediyl)bis[(propane-3,1-diyl)(azanylylidene)methylylidene]} bis(3,5-dichlorophenolato)-κ2O,O′]-isothiocyanato-κN-iron(III), C21H19Cl4FeN4O2S
  19. Crystal structure of (4-chlorophenyl)(4-hydroxyphenyl)methanone, C13H9ClO2
  20. Crystal structure of 6,6′-((pentane-1,3-diylbis(azaneylylidene))bis(methaneylylidene))bis(2,4-dibromolphenolato-κ4 N,N′,O,O′)copper(II),) C19H16Br4CuN2O2
  21. Chlorido-(2,2′-(ethane-bis(5-methoxyphenolato))-κ4 N,N,O,O′)manganese(III) monohydrate, C19H18Cl2CuN2O2
  22. Crystal structure of 2,6-di-tert-butyl-4-(4-methoxybenzylidene)cyclohexa-2,5-dien-1-one, C22H28O2
  23. Crystal structure of [6,6′-(((2,2-dimethylpropane-1,3-diyl)bis(azanylylidene))bis(methanylylidene))bis(2-chlorophenolato)-κ4N,N′,O,O′]copper(II)
  24. Crystal structure of 2-chloro-3-((thiophen-2-ylmethyl)amino)naphthalene-1,4-dione, C30H20O4N2Cl2S2
  25. Crystal structure of bis{hydridotris(3-trifluoromethyl-5-methylpyrazolyl-1-yl)borato-κN 3}manganese(II), C30H26B2F18MnN12
  26. Crystal structure of 1-(2-methylphenyl)-2-(2-methylbenzo[b]thienyl)-3,3,4,4,5,5-hexafluorocyclopent-ene, C21H14F6S
  27. Crystal structure of 2-(3-((carbamimidoylthio)methyl)benzyl)isothiouronium hexafluorophosphate monohydrate, C10H17F6N4OPS2
  28. Crystal structure of 4,5-diiodo-1,3-dimesityl-1H-1,2,3-triazol-3-ium chloride – chloroform (1/1), C21H23Cl4I2N3
  29. Crystal structure of azido-k1 N-{6,6′-((((methylazanediyl)bis(propane-3,1-diyl))bis(azanylylidene))bis(methanylylidene))bis(2,4-dibromophenolato)k5 N,N′,N″,O,O′}cobalt(III)-methanol (1/1)), C21H23Br4CoN6O3
  30. The crystal structure of 2-(4-((carbamimidoylthio)methyl)benzyl)isothiouronium hexafluorophosphate monohydrate, C10H17F6N4OPS2
  31. Crystal structure of 1,1′-(methane-1,1-diyl)bis(3-methyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C9H14F12N4P2
  32. Crystal structure of (4′E)-6′-(diethylamino)-2-[(E)-[(pyren-1-yl)methylidene]amino]-4′-{2-[(2E)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]ethylidene}-1′,2,2′,3,3′,4′-hexahydrospiro[isoindole-1,9′-xanthene]-3-one, C54H48N4O2
  33. Crystal structure of poly[bis(μ2-2,6-bis(1-imidazoly)pyridine-κ2 N,N′)-bis(thiocyanato-κ1 N)copper(II)] dithiocyanate, C24H18CuN12S2
  34. Cones with a three-fold symmetry constructed from three hydrogen bonded theophyllinium cations that coat [FeCl4] anions in the crystal structure of tris(theophyllinium) bis(tetrachloridoferrate(III)) chloride trihydrate, C21H33Cl9Fe2N12O9
  35. Crystal structure of 14-O-[(4-(4-hydroxypiperidine-1-yl)-6-methylpyrimidine-2-yl)thioacetyl]-mutilin monohydrate, C32H49N3O6S
  36. The crystal structure of (E)-3-chloro-2-(2-(4-methylbenzylidene)hydrazinyl)pyridine, C13H12ClN3
  37. The crystal structure of 4-phenyl-4-[2-(pyridine-4-carbonyl)hydrazinylidene]butanoic acid, C16H15N3O3
  38. The crystal structure of 6-amino-5-carboxypyridin-1-ium pentaiodide monohydrate C6H9I5N2O3
  39. Crystal structure of bis(μ3-oxido)-bis(μ2-2-formylbenzoato-k2O:O′)-bis(2-(dimethoxymethyl)-benzoato-κO)-oktakismethyl-tetratin(IV)
  40. Crystal structure of 2-((E)-(((E)-2-hydroxy-4-methylbenzylidene) hydrazineylidene)methyl)-4-methylphenol, C16H16N2O2
  41. Crystal structure of (E)-amino(2-((5-methylfuran-2-yl)methylene)hydrazinyl) methaniminium nitrate monohydrate, C14H26N10O10
  42. The crystal structure of N′-(2-chloro-6-hydroxybenzylidene)thiophene-2-carbohydrazide monohydrate, C12H11ClN2O3S
  43. Crystal structure of catena-poly[(μ2-1,1′-(biphenyl-4,4-diyl)bis(1H-imidazol)-κ2N:N′)-bis(4-bromobenzoate-κ1O)zinc(II)], C64H44Br4N8O8Zn2
  44. The crystal structure of catena-poly[(1-(4-carboxybenzyl)pyridin-1-ium-4-carboxylato-κ1O)-(μ2-oxalato-κ4 O:O′:O″:O‴)dioxidouranium(VI)], C16H11NO10U
  45. Crystal structure of 3-allyl-4-(2-bromoethyl)-5-(4-methoxyphenyl)-2-phenylfuran, C22H21BrO2
  46. Halogen bonds in the crystal structure of 4,3′:5′,4″-terpyridine — 1,3-diiodotetrafluorobenzene (1/1), C21H11F4I2N3
  47. Crystal structure of 2-(1H-indol-3-yl)ethan-1-aminium 2-(4-acetylphenoxy)acetate, C20H22N2O4
  48. Chalcogen bonds in the crystal structure of 4,7-dibromo-2,1,3-benzoselenadiazole, C6H2Br2N2Se
  49. The crystal structure of 1,4-bis((1H-benzimidazol-2-yl)methyl)-piperazine-2,5-dione dihydrate, C20H22N6O4
  50. The crystal structure of C19H20O8
  51. The crystal structure of KNa3Te8O18·5H2O exhibiting a 2[Te4O9]2− layer
  52. Erratum
  53. Erratum to: Crystal structure of (Z)-3-(6-bromo-1H-indol-3-yl)-1,3-diphenylprop-2-en-1-one, C23H16BrNO
Heruntergeladen am 20.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0365/html
Button zum nach oben scrollen