Startseite Naturwissenschaften The crystal structure of 4-chloro-thiophenol, C6H5ClS
Artikel Open Access

The crystal structure of 4-chloro-thiophenol, C6H5ClS

  • Pholani Manana , Eric C. Hosten ORCID logo und Richard Betz ORCID logo EMAIL logo
Veröffentlicht/Copyright: 14. Juli 2021

Abstract

C6H5ClS, monoclinic, P21/n (no. 14), a = 5.7461(2) Å, b = 9.7601(4) Å, c = 5.7466(3) Å, β = 95.869(2)°, V = 320.59(2) Å3, Z = 2, R gt (F) = 0.0216, wRref(F2) = 0.0545, T = 200 K.

CCDC no.: 2093011

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.55 × 0.33 × 0.16 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.80 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θmax, completeness: 28.3°, 99%
N(hkl)measured, N(hkl)unique, Rint: 2752, 795, 0.012
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 740
N(param)refined: 54
Programs: Bruker [1, 2], SHELX [3], WinGX/ORTEP [4], Mercury [5], PLATON [6]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
C1 0.37593 (19) 0.59088 (10) 0.62410 (19) 0.0267 (2)
C2 0.28114 (19) 0.54565 (11) 0.40579 (19) 0.0292 (3)
H2 0.134751 0.576427 0.343306 0.035*
C3 0.40571 (19) 0.45433 (11) 0.28115 (19) 0.0291 (3)
H3 0.343171 0.423547 0.134799 0.035*
Cl1a 0.2180 (4) 0.7058 (2) 0.7821 (3) 0.0273 (5)
S1a 0.2173 (7) 0.7058 (4) 0.7826 (6) 0.0556 (13)
H1Ab 0.354 (12) 0.724 (6) 0.942 (12) 0.037 (15)*
H1Bb 0.044 (11) 0.716 (6) 0.661 (11) 0.030 (14)*
  1. aOccupancy: 0.5, bOccupancy: 0.25.

Source of material

The compound was obtained commercially (Fluka). Crystals suitable for the diffraction study were obtained upon repeated slow sublimation and resublimation of the compound in a closed vessel kept at room temperature.

Experimental details

Carbon-bound H atoms were placed in calculated positions (C–H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

The sulfur-bound H atom was located on a difference Fourier map and refined freely. It shows orientational disorder over two positions.

The molecule shows pseudo-centrosymmetry due to the almost identical number of electrons for sulfur and chlorine.

Comment

While phenol and its core-substituted derivatives as well as the pertaining deprotonated species have received considerable attention as ligands in main group and transition metal chemistry and found to exhibit a variety of coordination modes (e.g., monodentate towards tin [7], bidentate towards tantalum [8], bridging tridentate towards zinc [9, 10] and bridging tetradentate towards sodium [11]) considerable less information is at hand for comparable thiophenols. It is especially surprising to find that structural information about the simplest thiophenol derivatives is scant and limited to, e.g., thiophenol as such [12] as well as the 4-methyl-substituted [13] and perchlorinated derivatives [14]. In continuation of our interest in halogenated derivatives of phenols and thiophenols [15, 16] we determined the molecular and crystal structure of the title compound.

The title compound is the para-chlorinated derivative of thiophenol. Due to the similarity in the number of electrons for the two heteroatoms, the molecule shows pseudo-centrosymmetry with the chlorine and sulfur atom sites being superimposed. The C–S bond length of 1.758(4) Å as well as the C–Cl bond length of 1.753(2) Å are in very good agreement with the values reported for the corresponding bonds in the Cambridge Structural Database [17] for two other thiophenol derivatives featuring this bonding pattern [18, 19]. The C–C–C angles cover a narrow range of 119.69(10)–120.61(10)° only. The hydrogen atom of the thiol group shows orientational disorder over two positions.

In the crystal, hydrogen bonds supported by the thiol group can be observed. The superposition of the two heteratoms on grounds of the pseudo-centrosymmetric nature of the title compound as well as the orientational disorder of the sulfur-bound hydrogen atom allows for the interpretation of these hydrogen bonds of being either of the S–H···Cl type or the cooperative S–H···S type. While both interpretations see the molecules connected to infinite chains along [1 0 1], a graph-set analysis [20, 21] would require a C11(2) descriptor at the unitary level in case of the cooperative interpretation and a C11(7) descriptor at the unitary level in case of the chlorine atom acting as acceptor.

While one could discuss the presence of dispersive interactions between the halogen atom and the aromatic system, π-stacking is not a prominent feature in the crystal structure of the title compound.


Corresponding author: Richard Betz, Department of Chemistry, Nelson Mandela University, Summerstrand Campus (South), University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa, E-mail:

Funding source: National Research Foundation

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was funded by the National Research Foundation.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. BRUKER. APEX2 and SAINT; Bruker AXS Inc.: Madison, Wisconsin, USA, 2012.Suche in Google Scholar

2. Bruker. SADABS; Bruker AXS Inc.; Madison, Wisconsin, USA, 2008.Suche in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2008, C71, 3–8; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar PubMed

4. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Suche in Google Scholar

5. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Platings, G. P., Stevens, J. S., Towler, M., Wood, P. A. Mercury 4.0: from visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 63, 226–235; https://doi.org/10.1107/s0021889807067908.Suche in Google Scholar

6. Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. 2009, D65, 148–155; https://doi.org/10.1107/s090744490804362x.Suche in Google Scholar

7. Chernov, O. V., Smirnov, A. Y., Portnyagin, I. A., Khrustalev, V. N., Nechaev, M. S. Heteroleptic tin (II) dialkoxides stabilized by intramolecular coordination Sn(OCH2CH2NMe2)(OR) (R = Me, Et, iPr, tBu, Ph). Synthesis, structure and catalytic activity in polyurethane synthesis. J. Organomet. Chem. 2009, 694, 3184–3189; https://doi.org/10.1016/j.jorganchem.2009.05.014.Suche in Google Scholar

8. Bortoluzzi, M., Guazzelli, N., Marchetti, F., Pampaloni, G., Zacchini, S. Convenient synthesis of fluoride-alkoxides of Nb(V) and Ta(V): a spectroscopic, crystallographic and computational study. Dalton Trans. 2012, 41, 12898–12906; https://doi.org/10.1039/c2dt31453c.Suche in Google Scholar PubMed

9. Boersma, J., Spek, A. L., Noltes, J. G. Coordination complexes of bis(2,2-dimethyl-3,5-hexanedionato) zinc with organozinc-oxygen and -nitrogen compounds. crystal structure of the complex formed with phenylzinc phenoxide. J. Organomet. Chem. 1974, 81, 7–15; https://doi.org/10.1016/s0022-328x(00)87880-8.Suche in Google Scholar

10. Enthaler, S., Eckhardt, B., Inoue, S., Irran, E., Driess, M. Facile and efficient reduction of ketones in the presence of zinc catalysts modified by phenol ligands. Chem. Asian J. 2010, 5, 2027–2035; https://doi.org/10.1002/asia.201000317.Suche in Google Scholar PubMed

11. Kunert, M., Dinjus, E., Nauck, M., Sieler, J. Structure and reactivity of sodium phenoxide - following the course of the Kolbe–Schmitt reaction. Chem. Ber. 1997, 130, 1461–1465; https://doi.org/10.1002/cber.19971301017.Suche in Google Scholar

12. Thomas, S. P., Sathishkumar, R., Guru Row, T. N. Organic alloys of room temperature liquids thiophenol and selenophenol. Chem. Commun. 2015, 51, 14255–14258; https://doi.org/10.1039/c5cc03322e.Suche in Google Scholar PubMed

13. Forbes, C. R., Sinha, S. K., Ganguly, H. K., Bai, S., Yap, G. P. A., Patel, S., Zondlo, N. J. Insights into thiol–aromatic interactions: a stereoelectronic basis for S–H/π interactions. J. Am. Chem. Soc. 2017, 139, 1842–1855; https://doi.org/10.1021/jacs.6b08415.Suche in Google Scholar PubMed PubMed Central

14. Wojcik, G., Charbonneau, G. P., Delugeard, Y., Toupet, L. The disordered crystal structure of pentachlorothiophenol. Acta Crystallogr. 1980, B36, 506–507; https://doi.org/10.1107/s0567740880003706.Suche in Google Scholar

15. Betz, R., Klüfers, P., Mayer, P. 2,3,4,5,6-Pentabromophenol. Acta Crystallogr. 2008, E64, o1921; https://doi.org/10.1107/s1600536808028602.Suche in Google Scholar PubMed PubMed Central

16. Hosten, E., Betz, R. Redetermination of the crystal structure of 5,7-dibromoquinolin-8-ol, at K – analysis of intermolecular forces, C9H5Br2NO. Z. Kristallogr. NCS. 2014, 229, 285–286; https://doi.org/10.1515/ncrs-2014-0140.Suche in Google Scholar

17. Groom, C. R., Allen, F. H. The Cambridge Structural Database in retrospect and prospect. Angew. Chem. Int. Ed. 2014, 53, 663–671; https://doi.org/10.1515/ncrs-2014-0140.Suche in Google Scholar

18. Ballmann, J., Fuchs, M. G. G., Dechert, S., John, M., Meyer, F. Synthesis and coordination properties of chelating dithiophenolate ligands. Inorg. Chem. 2009, 48, 90–99; https://doi.org/10.1021/ic801285u.Suche in Google Scholar PubMed

19. Trifonov, A. L., Panferova, L. I., Levin, V. V., Volodin, A. D., Korlyukov, A. A., Dilman, A. D. Interaction of difluoromethylene phosphobetaine with heteroatom-centered electrophiles. J. Fluor. Chem. 2019, 220, 78–82; https://doi.org/10.1016/j.jfluchem.2019.02.008.Suche in Google Scholar

20. Bernstein, J., Davis, R. E., Shimoni, L., Chang, N.-L. Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angew Chem. Int. Ed. Engl. 1995, 34, 1555–1573; https://doi.org/10.1002/anie.199515551.Suche in Google Scholar

21. Etter, M. C., MacDonald, J. C., Bernstein, J. Graph-set analysis of hydrogen-bond patterns in organic crystals. Acta Crystallogr. 1990, B46, 256–262; https://doi.org/10.1107/s0108768189012929.Suche in Google Scholar PubMed

Received: 2021-06-03
Accepted: 2021-06-29
Published Online: 2021-07-14
Published in Print: 2021-09-27

© 2021 Pholani Manana et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of [aqua-(4-iodopyridine-2,6-dicarboxylato-κ3 O,N,O′)-(1,10-phenanothroline-κ2 N,N′)copper(II)] dihydrate, C19H16O7N3CuI
  4. The crystal structure of tetrakis(1-isopropyl-1H-imidazolium) octamolybdate, C24H44Mo8N8O26
  5. Crystal structure of catena-poly[bis(µ2-3,5-bis(1-imidazolyl)pyridine-κ2 N:N′)-(µ2-3-nitrophthalato-k3 O,O′:O″)cadmium(II)] dihydrate, C30H25N11O8Cd
  6. The crystal structure of diaqua-bis(2-(3-(1H-pyrazol-4-yl)-1H-1,2,4-triazol-5-yl)pyridine-κ2 N:N′)-bis(3,5-dicarboxybenzoato-κ1 O)cobalt(II), C38H30CoN12O14
  7. Crystal structure of the nickel(II) complex aqua-(2,6-di(pyrazin-2-yl)-4,4′-bipyridine-κ3 N,N′,N′′)-(phthalato-κ2 O,O′)nickel(II) tetrahydrate, C26H26N6O9Ni
  8. The crystal structure of 1-[5-(2-fluorophenyl)-1-(pyridine-3-sulfonyl)-1H-pyrrol-3-yl]-N-methylmethanaminium 3-carboxyprop-2-enoate, C21H20FN3O6S
  9. The crystal structure of 1,2-bis(4-pyridyl)ethane - 4,4-dihydroxydiphenylmethane (1/1), C25H21N2O2
  10. Crystal structure of bis(2-((E)-5-chloro-2-hydroxybenzylidene)hydrazineyl)methaniminium trifluoroacetate dihydrate, C34H36Cl4N10O12
  11. Crystal structure of 1-cyclopropyl-7-ethoxy-6,8-difluoro-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid, C15H13F2NO4
  12. Crystal structure of methyl 3-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)benzoate, C18H15BN2O2
  13. Crystal structure of (E)-N′-(2-chloro-6-hydroxybenzylidene)-2-hydroxybenzohydrazide, C14H11ClN2O3
  14. Crystal structure of Al-rich fluorophlogopite, K1.0(Mg2.8Al0.2)(Si2.8Al1.2)O10F2
  15. The crystal structure of 4,5-diiodo-1,3-dimesityl-1H-1,2,3-triazol-3-ium hexafluoridoantimonate(V), C20H22F6I2N3Sb
  16. Crystal structure of tris(3-iodopyridin-1-ium) catena-poly[(hexachlorido-κ1 Cl)-(μ2-trichlorido-κ2 Cl:Cl)diantimony(III)], C15H15Cl9I3N3Sb2
  17. Crystal structure of methyl 2-(1H-naphtho[1,8-de][1.3.2]diazaborinin-2(3H-yl)benzoate C18H15BN2O2
  18. The crystal structure of 1,8-bis(4-methoxybenzoyl)naphthalene-2,7-diyl dibenzoate, C40H28O8
  19. Crystal structure of 2-bromo-1,3,6,8-tetramethylBOPHY (BOPHY = bis(difluoroboron)-1,2-bis((1H-pyrrol-2-yl)methylene)hydrazine), C14H15B2BrF4N4
  20. The crystal structure of (E)-3-chloro-2-(2-(2-fluorobenzylidene)hydrazinyl)pyridine, C12H9ClFN3
  21. Crystal structure of bis(µ2- 4-iodopyridine-2,6-dicarboxylato-κ3O:N:O′)-bis(4-iodopyridine-2,6-dicarboxylato-κ3O:N:O′)-bis(µ2-1-(4-pyridyl)piperazine-κ2N:N′)-hexa-aqua-tetra-copper(II), C46H46Cu4I4N10O22
  22. Crystal structure of poly[diaqua-(μ2-2,5-dihydroxyterephthalato-κ2O:O′)(μ2-bis(4-pyridylformyl)piperazine-κ2N:N′)cadmium(II)] dihydrate, C24H28CdN4O12
  23. Crystal structure of poly[aqua-(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2N:N′)-(μ3-2,3,5,6-tetrafluoroterephthalato-κ3O:O′:O′′)cadmium(II)], C17H14N4O5F4Cd
  24. Crystal structure of 6-(quinolin-8-yl)benzo[a]phenanthridin-5(6H)-one, C26H16N2O
  25. The crystal structure of aqua-bis(6-chloropicolinato-κ2N,O)copper(II), C12H8Cl2N2O5Cu
  26. Crystal structure of catena-poly[diaqua-bis(μ2-4,4′-bipyridyl-κ2N:N′) disilver(I)] 4-oxidopyridine-3-sulfonate trihydrate, C25H29Ag2N5O9S
  27. The crystal structure of 4-(3-bromophenyl)pyrimidin-2-amine, C10H8BrN3
  28. Crystal structure of 6-oxo-4-phenyl-1-propyl-1,6-dihydropyridine-3-carbonitrile, C15H14N2O
  29. Crystal structure of 4-(2,2-difluoroethyl)-2,4-dimethyl-6-(trifluoromethyl)isoquinoline-1,3(2H,4H)-dione, C14H12F5NO2
  30. Crystal structure of dibromido-(1-methyl-1H-imidazole-κ1N)-(3-(3-methyl-1H-imidazol-3-ium-1-yl)propanoato-κ1O)zinc(II), C11H16Br2N4O2Zn
  31. The crystal structure of 1,1′-(((2 (dimethylamino)ethyl)azanediyl)bis(methylene)) bis(naphthalen-2-olato-κ4 N,N′,O,O′)-(pyridine-2,6-dicarboxylato-N,O,O′)- titanium(IV) ─ dichloromethane (2/1), C33H29N3O6Ti
  32. The layered crystal structure of bis(theophyllinium) hexachloridostannate (IV), C14H18N8O8SnCl6
  33. The crystal structre of 3-(1-ethenyl-1H-imidazol-3-ium-3-yl)propane-1-sulfonate, C8H12N2O3S
  34. Synthesis and crystal structure of di-tert-butyl 1″-acetyl-2,2″,9′-trioxo-4a′,9a′-dihydro-1′H,3′H,9′H-dispiro[indoline-3,2′-xanthene-4′,3″-indoline]-1,3′-dicarboxylate, C39H38N2O9
  35. The crystal structure of 4-chloro-2-(quinolin-8-yl)isoindoline-1,3-dione, C17H9ClN2O2
  36. The crystal structure of 1-fluoro-4-(p-tolylethynyl)benzene, C15H11F
  37. The crystal structure of bis[4-bromo-2-(1H-pyrazol-3-yl) phenolato-κ2N,O] copper(II), C18H12Br2CuN4O2
  38. The crystal structure of poly[(μ 3-imidazolato-κ 3 N:N:N′)(tetrahydrofuran- κ 1 O)lithium(I)], C7H11LiN2O
  39. Crystal structure of N′,N′′′-((1E,1′E)-(propane-2,2-diylbis(1H-pyrrole-5,2diyl))bis(methaneylylidene))di(nicotinohydrazide) pentahydrate, C25H24N8O2·5H2O
  40. Crystal structure of 3-(2-ethoxy-2-oxoethyl)-1-ethyl-1H-imidazol-3-ium hexafluoridophos-phate(V), C9H15F6N2O2P
  41. Crystal structure of (1,10-phenanthroline-κ2N,N′)-bis(3-thiophenecarboxylato-κ2O,O′)copper(II), C22H14N2O4S2Cu
  42. The crystal structure of 2-amino-3-carboxypyridin-1-ium iodide hemihydrate, C6H8IN2O2.5
  43. Crystal structure of (E)-7-methoxy-2-((6-methoxypyridin-2-yl)methylene)-tetralone, C18H17NO3
  44. The crystal structure of [μ-hydroxido-bis[(5,5′-dimethyl-2,2′-bipyridine-κ2N,N′)-tricarbonylrhenium(I)] bromide hemihydrate, C30H26N4O9Re2Br
  45. The crystal structure of 2,5-bis(3,5-dimethylphenyl)thiazolo[5,4-d]thiazole, C20H18N2S2
  46. The crystal structure of 5-benzoyl-1-[(E)-(4-fluorobenzylidene)amino]-4-phenylpyrimidin-2(1H)-one, C24H16FN3O2
  47. Crystal structure of monocarbonyl(N-nitroso-N-oxido-phenylamine-κ 2 O,O′)(tricyclohexylphosphine-κP)rhodium(I), C25H39N2O3PRh
  48. Crystal structure of poly[bis[μ3-1,3,5-tris[(1H-imidazol-1-yl)methyl]benzene-κ3N:N′:N″]nickel(II)] hexafluorosilicate, C36H36N12NiSiF6
  49. The crystal structure of 13-(pyrazole-1-yl-4-carbonitrile)-matrine, C19H25N5O
  50. Crystal structure of 3,5-bis((E)-4-methoxy-2-(trifluoromethyl)benzylidene)-1-methylpiperidin-4-one, C24H21F6NO3
  51. The crystal structure of N,N′-(Disulfanediyldi-2,1-phenylene)di(6′-methylpyridine)-2-carboxamide, C26H22N4O2S2
  52. Crystal structure of (E)-7-fluoro-2-(4-methoxy-2-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2
  53. Crystal structure of ethyl 1-(4-fluorophenyl)-4-phenyl-1H-pyrrole-3-carboxylate, C19H16FNO2
  54. The crystal structure of cis-diaqua-bis (N-butyl-N-(pyridin-2-yl)pyridin-2-amine-κ2N,N′)cobalt(II)] dichloride trihydrate, C28H44Cl2N6O5Co
  55. Crystal structure of (E)-7-methoxy-2-((6-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C18H17NO3
  56. Crystal structure of (E)-2-((3-fluoropyridin-4-yl)methylene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  57. The crystal structure of 6-bromohexanoic acid, C6H11BrO2
  58. The crystal structure of 4-chloro-thiophenol, C6H5ClS
  59. The crystal structure of 4-bromobenzyl chloride, C7H6BrCl
  60. The crystal structure of di-tert-butyl dicarbonate, C10H18O5
  61. The crystal structure of (2-(4-chlorophenyl)-5-methyl-1,3-dioxan-5-yl)methanol, C12H15ClO3
  62. The crystal structure of the co-crystal: 2-hydroxybenzoic acid – N′-(butan-2-ylidene)pyridine-4-carbohydrazide, C10H13N3O·C7H6O3
  63. Crystal structure and anti-inflammatory activity of (E)-7-fluoro-2-((5-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  64. Crystal structure of (E)-7-fluoro-2-((6-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  65. Crystal structure of 1,1′-(butane-1,4-diyl)bis(3-propyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C32H56F24N8P4
  66. The crystal structure of dichlorido-bis(3-methyl-3-imidazolium-1-ylpropionato-κ2)-cadmium(II), C14H20CdCl2N4O4
  67. Crystal structure of 1-(2-cyanobenzyl)-3-cyano-4-phenyl-4-(2-cyanobenzyl)-1,4-dihydropyridine monohydrate, C56H42N8O
  68. The crystal structure of 3-(carboxymethyl)-1-ethenyl-1H-imidazol-3-ium chloride, C7H9N2O2Cl
  69. The crystal structure of adamantylmethoxydiphenylsilane, C23H28OSi
  70. Redetermination of the crystal structure of (2E,4Z,13E,15Z)-3,5,14,16-tetramethyl-2,6,13,17-tetraazatricyclo[16.4.0.07,12]docosa-1(22),2,4,7,9,11,13,15,18,20-decaene, C22H24N4
  71. Crystal structure of (E)-7-hydroxy-2-((6-methoxypyridin-2-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H15NO3
  72. Crystal structure of catena-poly[diaqua-bis(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2 N:N′)cobalt(II)] dinitrate, C18H28N10O8Co
Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0225/html
Button zum nach oben scrollen