Startseite The crystal structure of 2,5-bis(3,5-dimethylphenyl)thiazolo[5,4-d]thiazole, C20H18N2S2
Artikel Open Access

The crystal structure of 2,5-bis(3,5-dimethylphenyl)thiazolo[5,4-d]thiazole, C20H18N2S2

  • Zhi-Wei Zhai ORCID logo und Shuang-Hua Yang ORCID logo EMAIL logo
Veröffentlicht/Copyright: 12. Juli 2021

Abstract

C20H18N2S2, monoclinic, P21/n (no. 14), a = 7.92140(10) Å, b = 6.08080(10) Å, c = 17.8091(3) Å, β = 90.592(2)°, V = 857.79(2) Å3, Z = 4, Rgt(F) = 0.0382, wRref(F2) = 0.1051, T = 149.99(10) K.

CCDC no.: 2085420

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Yellowish green block
Size: 0.10 × 0.05 × 0.03 mm
Wavelength: Cu Kα radiation (1.54184 Å)
μ: 2.82 mm−1
Diffractometer, scan mode: XtaLAB AFC12 (RINC), ω
θmax, completeness: 73.2°, >99%
N(hkl)measured, N(hkl)unique, Rint: 3637, 1658, 0.021
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 1583
N(param)refined: 111
Programs: CrysAlisPRO [1], Olex2 [2], SHELX [3], [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
S1 0.63907 (5) 0.81753 (7) 0.57515 (2) 0.02482 (18)
N1 0.3325 (2) 0.8064 (2) 0.51701 (9) 0.0238 (3)
C1 0.4359 (2) 0.7038 (3) 0.56499 (10) 0.0208 (4)
C2 0.4183 (2) 0.9822 (3) 0.48821 (9) 0.0218 (4)
C3 0.3875 (2) 0.5067 (3) 0.60717 (9) 0.0205 (4)
C4 0.2284 (2) 0.4145 (3) 0.59522 (10) 0.0236 (4)
H4 0.1533 0.4814 0.5618 0.028*
C5 0.1804 (2) 0.2242 (3) 0.63251 (10) 0.0248 (4)
C6 0.2935 (2) 0.1287 (3) 0.68337 (10) 0.0249 (4)
H6 0.2618 0.0021 0.7089 0.030*
C7 0.4524 (2) 0.2179 (3) 0.69683 (10) 0.0228 (4)
C8 0.4990 (2) 0.4068 (3) 0.65800 (10) 0.0219 (4)
H8 0.6056 0.4671 0.6660 0.026*
C9 0.0116 (3) 0.1186 (4) 0.61652 (13) 0.0363 (5)
H9A 0.0273 −0.0096 0.5859 0.054*
H9B −0.0601 0.2213 0.5905 0.054*
H9C −0.0399 0.0770 0.6630 0.054*
C10 0.5724 (3) 0.1112 (3) 0.75218 (11) 0.0314 (4)
H10A 0.6854 0.1597 0.7425 0.047*
H10B 0.5664 −0.0458 0.7469 0.047*
H10C 0.5417 0.1518 0.8023 0.047*

Source of material

A mixture of rubeanic acid (10 mmol, 1.2 g), 3,5-dimethylbenzaldehyde (30 mmol, 4.0 g) were dissolved in anhydrous N,N-dimethylformamide (50 mL) and stirred for 20 min at room temperature. Subsequently, the solution was bubbled by nitrogen for 30 min, heated to reflux and kept 425 K in the nitrogen atmosphere. After 8 h, the reaction system was cooled slowly to room temperature. So the yellowish green crystals were deposited. The mixture was filtered and washed by N,N-dimethylformamide (10 mL) three times. And then the pure title compound was obtained. Yield: 1.8 g (51%, based on rubeanic acid). Anal. Calcd. for C20H18N2S2 (%): C, 68.53; H, 5.18; N, 7.99; S, 18.30. Found: C, 68.25.; H, 5.31; N, 7.46; S, 18.14.

Experimental details

Crystallographic data collection and reduction were performed using the program CrysAlisPRO [1]. Using Olex2 [2], the structure was solved with the ShelXT [3] structure solution program and refined on F2 with the ShelXL [4] refinement package. Hydrogen atoms were added using the typical AFIX commands of the SHELX system [4]. The Uiso values were set to be 1.5Ueq of the carrier atom for methyl hydrogen atoms and 1.2Ueq for aryl hydrogen atom.

Comment

As well-known, the thiazolo[5,4-d]thiazole moiety with a rigid conjugated plane has good photo-electricity activity, which has been applied to many fields, such as fluorescence [5], [6], [7], [8], [9], photothermal therapy [10], laser [11], [12], light-harvester [13], [14] and photocatalysis [15], [16], [17], [18]. Moreover, the photo-electricity activities of thiazolo[5,4-d]thiazole derivatives vary with the substitution. Therefore, it is very significant to design the thiazolo[5,4-d]thiazole derivatives containing the different electronegative substituent groups.

The title compound crystallizes in the monoclinic crystal system with P21/n space group. Its asymmetric unit contains half of the title molecule (the figure). In the crystal structure, all atoms in thiazolo[5,4-d]thiazole moiety are in the same plane, and the thiazolo[5,4-d]thiazole plane (p1) is almost coplanar with the benzene ring plane (p2) (a = −x+1, −y+2, −z+1; cf. the figure). The dihedral angle between the two planes (p1 and p2) is only 2.66(8)°. The title molecules are alternately π-stacked, with thiazole rings overlaid and slightly offset to the benzene rings. The Cg···Cg distances are 3.5981(10) and 3.6391(10) Å, respectively (Cg is the centroid of the benzene ring or the thiazole ring). The slippage value ranges from 0.933 to 1.087 Å. Phenyl H6 is involved in C–H···π interactions with the pendant benzene rings in the neighboring molecules. The H6···Cg3b and C6···Cg3b distances are 2.95 and 3.75 Å, respectively (Cg3 is the centroid of the benzene ring C3–C8; symmetry code: b = −x+0.5, y−0.5, −z+1.5). The C–H···Cg angle is 146°. Angle of the X–H bond with the benzene plane is 68°. Through π–π and C–H···π interactions, the title molecules are stacked to form two-dimensional layers, which are further assembled by Van der Waals forces to extend into a three-dimensional structure. All bond lengths and bond angles within the title structure are in the normal range [19], [20], [21], [22], [23], [24], [25].


Corresponding author: Shuang-Hua Yang, School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, Henan, 471023, People’s Republic of China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku. CrysAlisPro (version 1.171.39.28b); Rigaku Oxford Diffraction Ltd.: England, 2015.Suche in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

3. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar PubMed PubMed Central

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

5. Zhang, Z., Chen, Y. A., Hung, W. Y., Tang, W. F., Hsu, Y. H., Chen, C. L., Meng, F. Y., Chou, P. T. Control of the reversibility of excited-state intramolecular proton transfer (ESIPT) reaction: host-polarity tuning white organic light emitting diode on a new thiazolo[5,4-d]thiazole ESIPT system. Chem. Mater. 2016, 28, 8815–8824; https://doi.org/10.1021/acs.chemmater.6b04707.Suche in Google Scholar

6. Woodward, A. N., Kolesar, J. M., Hall, S. R., Saleh, N. A., Jones, D. S., Walter, M. G. Thiazolothiazole fluorophores exhibiting strong fluorescence and viologen-like reversible electrochromism. J. Am. Chem. Soc. 2017, 139, 8467–8473; https://doi.org/10.1021/jacs.7b01005.Suche in Google Scholar PubMed

7. Sayresmith, N. A., Saminathan, A., Sailer, J. K., Patberg, S. M., Sandor, K., Krishnan, Y., Walter, M. G. Photostable voltage-sensitive dyes based on simple, solvatofluorochromic, asymmetric thiazolothiazoles. J. Am. Chem. Soc. 2019, 141, 18780–18790; https://doi.org/10.1021/jacs.9b08959.Suche in Google Scholar PubMed

8. Zhai, Z. W., Yang, S. H., Cao, M., Li, L. K., Du, C. X., Zang, S. Q. Rational design of three two-fold interpenetrated metal-organic frameworks: luminescent Zn/Cd-metal-organic frameworks for detection of 2,4,6-trinitrophenol and nitrofurazone in the aqueous phase. Cryst. Growth Des. 2018, 18, 7173–7182; https://doi.org/10.1021/acs.cgd.8b01335.Suche in Google Scholar

9. Zhai, Z. W., Yang, S. H., Luo, P., Li, L. K., Du, C. X., Zang, S. Q. Dicarboxylate-induced structural diversity of luminescent Zn(II)/Cd(II) metal-organic frameworks based on the 2,5-bis(4-pyridyl)thiazolo[5,4-d]thiazole ligand. Eur. J. Inorg. Chem. 2019, 2019, 2725–2734; https://doi.org/10.1002/ejic.201900259.Suche in Google Scholar

10. Tang, B., Li, W. L., Chang, Y., Yuan, B., Wu, Y., Zhang, M. T., Xu, J. F., Li, J., Zhang, X. A supramolecular radical dimer: high-efficiency NIR–II photothermal conversion and therapy. Angew. Chem. Int. Ed. 2019, 58, 15526–15531; https://doi.org/10.1002/anie.201910257.Suche in Google Scholar PubMed

11. Han, S., Zhang, W., Qiu, B., Dong, H., Chen, W., Chu, M., Liu, Y., Yang, X., Hu, F., Zhao, Y. S. Controlled assembly of organic composite microdisk/microwire heterostructures for output coupling of dual-color lasers. Adv. Opt. Mater. 2018, 6, 1701077; https://doi.org/10.1002/adom.201701077.Suche in Google Scholar

12. Kakekochi, V., Nikhil, P. P., Chandrasekharan, K., Kumar, D. U. Impact of donor-acceptor alternation on optical power limiting behavior of H-shaped thiophene-imidazo[2,1-b] [1,3,4]thiadiazole flanked conjugated oligomers. Dyes Pigments 2018, 175, 108181.10.1016/j.dyepig.2019.108181Suche in Google Scholar

13. Mierloo, S. V., Hadipour, A., Spijkman, M. J., Brande, N. V., Ruttens, B., Kesters, J., D’Haen, J., Assche, G. V., Leeuw, D. M., Aernouts, T., Manca, J., Lutsen, L., Vanderzande, D. J., Maes, W. Improved photovoltaic performance of a semicrystalline narrow bandgap copolymer based on 4-H-cyclopenta[2,1-b:3,4-b’] dithiophene donor and thiazolo[5,4-d]thiazole acceptor units. Chem. Mater. 2012, 54, 587–593; https://doi.org/10.1021/cm203351t.Suche in Google Scholar

14. Hu, C., Wu, Z., Cao, K., Sun, B., Zhang, Q. Synthesis and photovoltaic properties of new conjugated polymers based on di(2-furyl)thiazolo[5,4-d]thiazole and benzo[1,2-b:4,5-b’]dithiophene. Polymer 2013, 24, 1098–1105; https://doi.org/10.1016/j.polymer.2012.10.025.Suche in Google Scholar

15. Li, W., Zhao, Z., Hu, W., Cheng, Q., Yang, L., Hu, Z., Liu, Y. A., Wen, K., Yang, H. Design of thiazolo[5,4-d]thiazole-bridged ionic covalent organic polymer for highly selective oxygen reduction to H2O2. Chem. Mater. 2020, 32, 8553–8560; https://doi.org/10.1021/acs.chemmater.0c02843.Suche in Google Scholar

16. Li, X., Hao, H., Lang, X. Thiazolo[5,4 d]thiazole linked conjugated microporous polymer photocatalysis for selective aerobic oxidation of amines. J. Colloid Interface Sci. 2021, 593, 380–389; https://doi.org/10.1016/j.jcis.2021.02.111.Suche in Google Scholar PubMed

17. Zhai, Z. W., Yang, S. H., Lv, R. B., Du, C. X., Li, L. K., Zang, S. Q. Amino functionalized Zn/Cd-metal-organic frameworks for selective CO2 adsorption and Knoevenagel condensation reactions. Dalton Trans. 2019, 48, 4007–4014; https://doi.org/10.1039/c9dt00391f.Suche in Google Scholar PubMed

18. Huang, Q., Guo, L., Wang, N., Zhu, X., Jin, S., Tan, B. Layered thiazolo[5,4-d] thiazole-linked conjugated microporous polymers with heteroatom adoption for efficient photocatalysis application. ACS Appl. Mater. Interfaces 2019, 11, 15861–15868; https://doi.org/10.1021/acsami.8b21765.Suche in Google Scholar PubMed

19. Hua, C., Doheny, P. W., Ding, B., Chan, B., Yu, M., Kepert, C. J., D’Alessandro, D. M. Through-space intervalence charge transfer as a mechanism for charge delocalization in metal-organic frameworks. J. Am. Chem. Soc. 2018, 140, 6622–6630; https://doi.org/10.1021/jacs.8b02638.Suche in Google Scholar PubMed

20. Li, D., Zhang, Z., Zhao, S., Wang, Y., Zhang, H. Diboron-containing fluorophores with extended ladder-type π-conjugated skeletons. Dalton Trans. 2011, 40, 1279–1285; https://doi.org/10.1039/c0dt01269f.Suche in Google Scholar PubMed

21. Yousif, Y. Z., Al-hamdani, A. J. Liquid-crystalline behaviour of some bis(4-alkyloxyphenyl) thiazolo [5,4-d] dithiazoles. Liq. Cryst. 1993, 15, 451–460; https://doi.org/10.1080/02678299308036466.Suche in Google Scholar

22. Knighton, R. C., Hallett, A. J., Kariuki, B. M., Pope, S. J. A. A one-step synthesis towards new ligands based on aryl-functionalised thiazolo[5,4-d]thiazole chromophores. Tetrahedron Lett. 2010, 51, 5419–5422; https://doi.org/10.1016/j.tetlet.2010.07.172.Suche in Google Scholar

23. Ando, S., Kumaki, D., Nishida, J., Tada, H., Inoue, Y., Tokito, S., Yamashita, Y. Synthesis, physical properties and field-effect transistors of novel thiazolothiazole-phenylene co-oligomers. J. Mater. Chem. 2007, 17, 553–558; https://doi.org/10.1039/b611814c.Suche in Google Scholar

24. Ando, S., Kumaki, D., Nishida, J., Tada, H., Inoue, Y., Tokito, S., Yamashita, Y. High performance n-type organic field-effect transistors based on π-electronic systems with trifluoromethylphenyl groups. J. Am. Chem. Soc. 2005, 127, 5336–5337; https://doi.org/10.1021/ja042219+.10.1021/ja042219+Suche in Google Scholar PubMed

25. Ziessel, R., Nano, A., Heyer, E., Bura, T., Retailleau, P. Rational design of new thiazolo thiazole dyes as input energy units in molecular dyads. Chem. Eur J. 2013, 19, 2582–2588; https://doi.org/10.1002/chem.201203121.Suche in Google Scholar PubMed

Received: 2021-05-27
Accepted: 2021-06-17
Published Online: 2021-07-12
Published in Print: 2021-09-27

© 2021 Zhi-Wei Zhai and Shuang-Hua Yang, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of [aqua-(4-iodopyridine-2,6-dicarboxylato-κ3 O,N,O′)-(1,10-phenanothroline-κ2 N,N′)copper(II)] dihydrate, C19H16O7N3CuI
  4. The crystal structure of tetrakis(1-isopropyl-1H-imidazolium) octamolybdate, C24H44Mo8N8O26
  5. Crystal structure of catena-poly[bis(µ2-3,5-bis(1-imidazolyl)pyridine-κ2 N:N′)-(µ2-3-nitrophthalato-k3 O,O′:O″)cadmium(II)] dihydrate, C30H25N11O8Cd
  6. The crystal structure of diaqua-bis(2-(3-(1H-pyrazol-4-yl)-1H-1,2,4-triazol-5-yl)pyridine-κ2 N:N′)-bis(3,5-dicarboxybenzoato-κ1 O)cobalt(II), C38H30CoN12O14
  7. Crystal structure of the nickel(II) complex aqua-(2,6-di(pyrazin-2-yl)-4,4′-bipyridine-κ3 N,N′,N′′)-(phthalato-κ2 O,O′)nickel(II) tetrahydrate, C26H26N6O9Ni
  8. The crystal structure of 1-[5-(2-fluorophenyl)-1-(pyridine-3-sulfonyl)-1H-pyrrol-3-yl]-N-methylmethanaminium 3-carboxyprop-2-enoate, C21H20FN3O6S
  9. The crystal structure of 1,2-bis(4-pyridyl)ethane - 4,4-dihydroxydiphenylmethane (1/1), C25H21N2O2
  10. Crystal structure of bis(2-((E)-5-chloro-2-hydroxybenzylidene)hydrazineyl)methaniminium trifluoroacetate dihydrate, C34H36Cl4N10O12
  11. Crystal structure of 1-cyclopropyl-7-ethoxy-6,8-difluoro-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid, C15H13F2NO4
  12. Crystal structure of methyl 3-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)benzoate, C18H15BN2O2
  13. Crystal structure of (E)-N′-(2-chloro-6-hydroxybenzylidene)-2-hydroxybenzohydrazide, C14H11ClN2O3
  14. Crystal structure of Al-rich fluorophlogopite, K1.0(Mg2.8Al0.2)(Si2.8Al1.2)O10F2
  15. The crystal structure of 4,5-diiodo-1,3-dimesityl-1H-1,2,3-triazol-3-ium hexafluoridoantimonate(V), C20H22F6I2N3Sb
  16. Crystal structure of tris(3-iodopyridin-1-ium) catena-poly[(hexachlorido-κ1 Cl)-(μ2-trichlorido-κ2 Cl:Cl)diantimony(III)], C15H15Cl9I3N3Sb2
  17. Crystal structure of methyl 2-(1H-naphtho[1,8-de][1.3.2]diazaborinin-2(3H-yl)benzoate C18H15BN2O2
  18. The crystal structure of 1,8-bis(4-methoxybenzoyl)naphthalene-2,7-diyl dibenzoate, C40H28O8
  19. Crystal structure of 2-bromo-1,3,6,8-tetramethylBOPHY (BOPHY = bis(difluoroboron)-1,2-bis((1H-pyrrol-2-yl)methylene)hydrazine), C14H15B2BrF4N4
  20. The crystal structure of (E)-3-chloro-2-(2-(2-fluorobenzylidene)hydrazinyl)pyridine, C12H9ClFN3
  21. Crystal structure of bis(µ2- 4-iodopyridine-2,6-dicarboxylato-κ3O:N:O′)-bis(4-iodopyridine-2,6-dicarboxylato-κ3O:N:O′)-bis(µ2-1-(4-pyridyl)piperazine-κ2N:N′)-hexa-aqua-tetra-copper(II), C46H46Cu4I4N10O22
  22. Crystal structure of poly[diaqua-(μ2-2,5-dihydroxyterephthalato-κ2O:O′)(μ2-bis(4-pyridylformyl)piperazine-κ2N:N′)cadmium(II)] dihydrate, C24H28CdN4O12
  23. Crystal structure of poly[aqua-(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2N:N′)-(μ3-2,3,5,6-tetrafluoroterephthalato-κ3O:O′:O′′)cadmium(II)], C17H14N4O5F4Cd
  24. Crystal structure of 6-(quinolin-8-yl)benzo[a]phenanthridin-5(6H)-one, C26H16N2O
  25. The crystal structure of aqua-bis(6-chloropicolinato-κ2N,O)copper(II), C12H8Cl2N2O5Cu
  26. Crystal structure of catena-poly[diaqua-bis(μ2-4,4′-bipyridyl-κ2N:N′) disilver(I)] 4-oxidopyridine-3-sulfonate trihydrate, C25H29Ag2N5O9S
  27. The crystal structure of 4-(3-bromophenyl)pyrimidin-2-amine, C10H8BrN3
  28. Crystal structure of 6-oxo-4-phenyl-1-propyl-1,6-dihydropyridine-3-carbonitrile, C15H14N2O
  29. Crystal structure of 4-(2,2-difluoroethyl)-2,4-dimethyl-6-(trifluoromethyl)isoquinoline-1,3(2H,4H)-dione, C14H12F5NO2
  30. Crystal structure of dibromido-(1-methyl-1H-imidazole-κ1N)-(3-(3-methyl-1H-imidazol-3-ium-1-yl)propanoato-κ1O)zinc(II), C11H16Br2N4O2Zn
  31. The crystal structure of 1,1′-(((2 (dimethylamino)ethyl)azanediyl)bis(methylene)) bis(naphthalen-2-olato-κ4 N,N′,O,O′)-(pyridine-2,6-dicarboxylato-N,O,O′)- titanium(IV) ─ dichloromethane (2/1), C33H29N3O6Ti
  32. The layered crystal structure of bis(theophyllinium) hexachloridostannate (IV), C14H18N8O8SnCl6
  33. The crystal structre of 3-(1-ethenyl-1H-imidazol-3-ium-3-yl)propane-1-sulfonate, C8H12N2O3S
  34. Synthesis and crystal structure of di-tert-butyl 1″-acetyl-2,2″,9′-trioxo-4a′,9a′-dihydro-1′H,3′H,9′H-dispiro[indoline-3,2′-xanthene-4′,3″-indoline]-1,3′-dicarboxylate, C39H38N2O9
  35. The crystal structure of 4-chloro-2-(quinolin-8-yl)isoindoline-1,3-dione, C17H9ClN2O2
  36. The crystal structure of 1-fluoro-4-(p-tolylethynyl)benzene, C15H11F
  37. The crystal structure of bis[4-bromo-2-(1H-pyrazol-3-yl) phenolato-κ2N,O] copper(II), C18H12Br2CuN4O2
  38. The crystal structure of poly[(μ 3-imidazolato-κ 3 N:N:N′)(tetrahydrofuran- κ 1 O)lithium(I)], C7H11LiN2O
  39. Crystal structure of N′,N′′′-((1E,1′E)-(propane-2,2-diylbis(1H-pyrrole-5,2diyl))bis(methaneylylidene))di(nicotinohydrazide) pentahydrate, C25H24N8O2·5H2O
  40. Crystal structure of 3-(2-ethoxy-2-oxoethyl)-1-ethyl-1H-imidazol-3-ium hexafluoridophos-phate(V), C9H15F6N2O2P
  41. Crystal structure of (1,10-phenanthroline-κ2N,N′)-bis(3-thiophenecarboxylato-κ2O,O′)copper(II), C22H14N2O4S2Cu
  42. The crystal structure of 2-amino-3-carboxypyridin-1-ium iodide hemihydrate, C6H8IN2O2.5
  43. Crystal structure of (E)-7-methoxy-2-((6-methoxypyridin-2-yl)methylene)-tetralone, C18H17NO3
  44. The crystal structure of [μ-hydroxido-bis[(5,5′-dimethyl-2,2′-bipyridine-κ2N,N′)-tricarbonylrhenium(I)] bromide hemihydrate, C30H26N4O9Re2Br
  45. The crystal structure of 2,5-bis(3,5-dimethylphenyl)thiazolo[5,4-d]thiazole, C20H18N2S2
  46. The crystal structure of 5-benzoyl-1-[(E)-(4-fluorobenzylidene)amino]-4-phenylpyrimidin-2(1H)-one, C24H16FN3O2
  47. Crystal structure of monocarbonyl(N-nitroso-N-oxido-phenylamine-κ 2 O,O′)(tricyclohexylphosphine-κP)rhodium(I), C25H39N2O3PRh
  48. Crystal structure of poly[bis[μ3-1,3,5-tris[(1H-imidazol-1-yl)methyl]benzene-κ3N:N′:N″]nickel(II)] hexafluorosilicate, C36H36N12NiSiF6
  49. The crystal structure of 13-(pyrazole-1-yl-4-carbonitrile)-matrine, C19H25N5O
  50. Crystal structure of 3,5-bis((E)-4-methoxy-2-(trifluoromethyl)benzylidene)-1-methylpiperidin-4-one, C24H21F6NO3
  51. The crystal structure of N,N′-(Disulfanediyldi-2,1-phenylene)di(6′-methylpyridine)-2-carboxamide, C26H22N4O2S2
  52. Crystal structure of (E)-7-fluoro-2-(4-methoxy-2-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2
  53. Crystal structure of ethyl 1-(4-fluorophenyl)-4-phenyl-1H-pyrrole-3-carboxylate, C19H16FNO2
  54. The crystal structure of cis-diaqua-bis (N-butyl-N-(pyridin-2-yl)pyridin-2-amine-κ2N,N′)cobalt(II)] dichloride trihydrate, C28H44Cl2N6O5Co
  55. Crystal structure of (E)-7-methoxy-2-((6-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C18H17NO3
  56. Crystal structure of (E)-2-((3-fluoropyridin-4-yl)methylene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  57. The crystal structure of 6-bromohexanoic acid, C6H11BrO2
  58. The crystal structure of 4-chloro-thiophenol, C6H5ClS
  59. The crystal structure of 4-bromobenzyl chloride, C7H6BrCl
  60. The crystal structure of di-tert-butyl dicarbonate, C10H18O5
  61. The crystal structure of (2-(4-chlorophenyl)-5-methyl-1,3-dioxan-5-yl)methanol, C12H15ClO3
  62. The crystal structure of the co-crystal: 2-hydroxybenzoic acid – N′-(butan-2-ylidene)pyridine-4-carbohydrazide, C10H13N3O·C7H6O3
  63. Crystal structure and anti-inflammatory activity of (E)-7-fluoro-2-((5-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  64. Crystal structure of (E)-7-fluoro-2-((6-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  65. Crystal structure of 1,1′-(butane-1,4-diyl)bis(3-propyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C32H56F24N8P4
  66. The crystal structure of dichlorido-bis(3-methyl-3-imidazolium-1-ylpropionato-κ2)-cadmium(II), C14H20CdCl2N4O4
  67. Crystal structure of 1-(2-cyanobenzyl)-3-cyano-4-phenyl-4-(2-cyanobenzyl)-1,4-dihydropyridine monohydrate, C56H42N8O
  68. The crystal structure of 3-(carboxymethyl)-1-ethenyl-1H-imidazol-3-ium chloride, C7H9N2O2Cl
  69. The crystal structure of adamantylmethoxydiphenylsilane, C23H28OSi
  70. Redetermination of the crystal structure of (2E,4Z,13E,15Z)-3,5,14,16-tetramethyl-2,6,13,17-tetraazatricyclo[16.4.0.07,12]docosa-1(22),2,4,7,9,11,13,15,18,20-decaene, C22H24N4
  71. Crystal structure of (E)-7-hydroxy-2-((6-methoxypyridin-2-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H15NO3
  72. Crystal structure of catena-poly[diaqua-bis(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2 N:N′)cobalt(II)] dinitrate, C18H28N10O8Co
Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0213/html
Button zum nach oben scrollen