Home The crystal structure of adamantylmethoxydiphenylsilane, C23H28OSi
Article Open Access

The crystal structure of adamantylmethoxydiphenylsilane, C23H28OSi

  • Jonathan O. Bauer ORCID logo EMAIL logo
Published/Copyright: July 12, 2021

Abstract

C23H28OSi, monoclinic, P21/c (no. 14), a = 14.2882(11) Å, b = 17.8169(10) Å, c = 7.6201(6) Å, β = 103.780(8)°, V = 1884.0(2) Å3, Z = 4, R gt (F) = 0.0538, wR ref (F 2) = 0.1241, T = 173(2) K.

CCDC no.: 2091881

The molecular structure (left part) and the two-dimensional (2D) fingerprint plot (right part; showing all contributions of intermolecular contacts) of the title compound are shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size: 0.30 × 0.20 × 0.20 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.13 mm−1
Diffractometer, scan mode: Xcalibur, ω
θ max, completeness: 29.9°, >99%
N(hkl)measured, N(hkl)unique, R int: 15475, 4795, 0.054
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 3241
N(param)refined: 338
Programs: CrysAlisPRO [1], SHELX [2], [3], [4], [5], Olex2 [6], WinGX/ORTEP [7], CrystalExplorer17 [810]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.39183 (18) 0.55609 (15) 0.1620 (3) 0.0302 (5)
H1A 0.344 (2) 0.5666 (15) 0.056 (4) 0.059 (8)*
H1B 0.4165 (19) 0.6019 (17) 0.218 (4) 0.066 (9)*
H1C 0.439 (2) 0.5273 (15) 0.124 (4) 0.068 (9)*
C2 0.24224 (12) 0.46467 (10) 0.5219 (3) 0.0161 (4)
C3 0.32901 (14) 0.42936 (11) 0.6591 (3) 0.0207 (4)
H3A 0.3568 (13) 0.4667 (11) 0.747 (3) 0.016 (5)*
H3B 0.3788 (14) 0.4143 (11) 0.596 (3) 0.022 (5)*
C4 0.29661 (15) 0.36154 (11) 0.7538 (3) 0.0241 (5)
H4 0.3512 (15) 0.3431 (11) 0.838 (3) 0.028 (6)*
C5 0.25269 (16) 0.30202 (11) 0.6134 (3) 0.0245 (5)
H5A 0.2360 (15) 0.2583 (13) 0.678 (3) 0.032 (6)*
H5B 0.3009 (14) 0.2857 (11) 0.547 (3) 0.024 (5)*
C6 0.16531 (14) 0.33542 (11) 0.4792 (3) 0.0210 (4)
H6 0.1391 (14) 0.2974 (11) 0.388 (3) 0.022 (5)*
C7 0.19733 (15) 0.40326 (11) 0.3839 (3) 0.0200 (4)
H7A 0.1404 (15) 0.4241 (11) 0.297 (3) 0.025 (6)*
H7B 0.2417 (14) 0.3882 (10) 0.319 (3) 0.016 (5)*
C8 0.16617 (14) 0.48869 (10) 0.6261 (3) 0.0206 (4)
H8A 0.1951 (13) 0.5292 (11) 0.718 (3) 0.020 (5)*
H8B 0.1072 (13) 0.5105 (10) 0.536 (3) 0.016 (5)*
C9 0.13449 (15) 0.42015 (11) 0.7222 (3) 0.0243 (5)
H9 0.0889 (14) 0.4350 (10) 0.786 (3) 0.019 (5)*
C10 0.22228 (17) 0.38702 (12) 0.8555 (3) 0.0276 (5)
H10A 0.2037 (15) 0.3459 (12) 0.919 (3) 0.033 (6)*
H10B 0.2484 (14) 0.4237 (12) 0.948 (3) 0.028 (6)*
C11 0.09054 (15) 0.36089 (12) 0.5811 (3) 0.0256 (5)
H11A 0.0668 (13) 0.3167 (11) 0.641 (3) 0.021 (5)*
H11B 0.0357 (15) 0.3794 (11) 0.502 (3) 0.027 (6)*
C12 0.35666 (14) 0.61289 (10) 0.5871 (3) 0.0187 (4)
C13 0.31701 (16) 0.66250 (11) 0.6927 (3) 0.0258 (5)
H13 0.2460 (14) 0.6654 (10) 0.679 (3) 0.016 (5)*
C14 0.37521 (17) 0.70776 (12) 0.8234 (3) 0.0332 (5)
H14 0.3469 (17) 0.7396 (14) 0.899 (3) 0.045 (7)*
C15 0.47464 (17) 0.70377 (13) 0.8538 (3) 0.0353 (6)
H15 0.5165 (15) 0.7379 (13) 0.940 (3) 0.037 (6)*
C16 0.51568 (16) 0.65382 (12) 0.7546 (3) 0.0329 (5)
H16 0.5877 (16) 0.6495 (12) 0.777 (3) 0.033 (6)*
C17 0.45751 (14) 0.60918 (11) 0.6237 (3) 0.0236 (5)
H17 0.4885 (14) 0.5762 (11) 0.562 (3) 0.022 (5)*
C18 0.18264 (13) 0.59858 (10) 0.2527 (3) 0.0187 (4)
C19 0.13572 (15) 0.56110 (12) 0.0933 (3) 0.0260 (5)
H19 0.1561 (15) 0.5114 (13) 0.071 (3) 0.035 (6)*
C20 0.06044 (16) 0.59322 (12) −0.0340 (3) 0.0302 (5)
H20 0.0275 (17) 0.5634 (13) −0.146 (3) 0.045 (7)*
C21 0.02969 (15) 0.66508 (12) −0.0058 (3) 0.0294 (5)
H21 −0.0262 (15) 0.6865 (12) −0.094 (3) 0.034 (6)*
C22 0.07570 (15) 0.70426 (12) 0.1470 (3) 0.0292 (5)
H22 0.0544 (15) 0.7541 (14) 0.163 (3) 0.037 (6)*
C23 0.15084 (15) 0.67164 (11) 0.2746 (3) 0.0248 (5)
H23 0.1797 (15) 0.7006 (12) 0.380 (3) 0.030 (6)*
O 0.35523 (9) 0.51318 (7) 0.28997 (18) 0.0217 (3)
Si 0.28431 (4) 0.54843 (3) 0.41056 (7) 0.01617 (14)

Source of material

The title compound was obtained as a by-product in the reaction of adamantyltrimethoxysilane with phenyllithium in diethyl ether/dibutyl ether. Crystals suitable for single-crystal X-ray diffraction analysis were obtained after filtration from a concentrated solution of the crude mixture in diethyl ether/dibutyl ether at room temperature within one day.

Experimental details

Single-crystal X-ray diffraction analysis of adamantylmethoxydiphenylsilane was performed on an Oxford Diffraction CCD Xcalibur S Diffractometer equipped with a Sapphire3 CCD detector at 173(2) K using graphite-monochromated Mo-Kα radiation (λ = 0.71073 Å). Data collection and reduction were performed using the CrysAlisPro software system, version 1.171.36.24 [1]. The crystal structure was solved with SHELXT 2018/2 using Olex2 [2, 3, 6]. The crystal structure was refined based on F 2 (SHELXL-2018/3) [3], [4], [5] using Olex2 [6] and the SHELX program package as implemented in WinGX [7]. A multi-scan absorption correction using spherical harmonics as implemented in SCALE3 ABSPACK was employed [1]. The hydrogen atoms were located on the difference Fourier map and refined independently. The Hirshfeld surface [8] was mapped over d norm ranging from 0.0222 to 1.3228 a.u. d i and d e in the 2D fingerprint diagram [9] are the distances from the surface to the nearest atom interior and exterior to the surface, respectively, and are each given in the range of 0.4–3.0 Å. The molecular structure and the 2D fingerprint plot of the title compound, shown in the figure, were created using CrystalExplorer 17.5 [10].

Comment

Methoxysilanes are common building blocks with many applications in preparative chemistry, e.g. they are used to form polymers [11] and silica-based materials [12], and for the silylation of surfaces [13, 14]. They are also widely used as valuable coupling reagents [15, 16] for the controlled design of polysiloxanes [17, 18], as synthesis intermediates [19], [20], [21], and for the construction of specially functionalized methoxysilanes [22], [23], [24], [25], [26], [27], [28] and siloxanes [22, 23, 26, 29, 30]. We recently reported an in-depth structural study on the involvement of the tert-butyldiphenylsilyl (TBDPS) moiety in intermolecular interaction pattern in the crystalline state [31]. Bulky and rigid silyl moieties play an important role in protecting group chemistry [32] and the TBDPS group has therefore become an indispensable component for protecting functional groups in organic total synthesis [33, 34].

Herein, the crystal structure of adamantylmethoxydiphenylsilane is presented, i.e. a bulkier analog of tert-butylmethoxydiphenylsilane described previously [31]. There is one title molecule in the asymmetric unit (see the left part of the Figure). The comparison with the recently described tert-butyl derivative [31] shows that the replacement of a tert-butyl group by an adamantyl group has no significant influence on the intramolecular structural parameters. Both compounds deviate only slightly from an ideal tetrahedral coordination around the silicon atom. The Si–C2 bond length from the silicon atom to the adamantyl group is 1.8844(18) Å, which is similar to the corresponding bond length of 1.8889(16) Å in the tert-butyl compound [31].

The intermolecular interaction pattern of the title compound shows some differences compared to that reported for the tert-butyl derivative [31]. In general, due to the higher steric demand of the adamantyl group, the title compound is less densely packed than the tert-butyl compound, which can be seen at the dotted region in the 2D fingerprint plot indicating large distances for a number of H⃛H and H⃛C contacts (see the figure) [9]. The shortest H⃛H contact (2.377 Å) can be found between the adamantyl (H10B) and a phenyl group (H19). C–H⃛C(π) contacts are important structure-determining interactions [31, 35, 36]. The small wings that can be attributed to edge-shifted C(aryl)–H⃛C(π) contacts are also somewhat more pronounced here than for the tert-butyl compound [31], with the closest H⃛C contact being found for C14–H14⃛C13 (2.948 Å). In addition, the adamantyl group is involved in the shortest C–H⃛C(π) contact that can be found in the crystal structure (2.909 Å), with the C–H group pointing more towards a single carbon atom (C11–H11A⃛C22). Although weak C–H⃛O contacts only contribute 2.2% to the intermolecular interactions in the title compound, they might play an important directional role for the crystal packing [31, 37], [38], [39]. The shortest intermolecular H⃛O contact that can be found is 2.756 Å (C17–H17⃛O), which is slightly longer than the H⃛O contact in the tert-butyl compound [31].


Corresponding author: Dr. Jonathan O. Bauer, Institut für Anorganische Chemie, Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany, E-mail:

Funding source: Elite Network of Bavaria (ENB) 10.13039/501100008848

Funding source: Bavarian State Ministry of Science and the Arts (StMWK)

Funding source: University of Regensburg 10.13039/501100005626

Award Identifier / Grant number: N–LW–NW-2016–366

Acknowledgements

I thank Prof. Dr. Manfred Scheer for continuous support and providing laboratory facilities.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The Elite Network of Bavaria (ENB), the Bavarian State Ministry of Science and the Arts (StMWK), and the University of Regensburg are gratefully acknowledged for financial support (N–LW–NW-2016–366).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. CrysAlisPro Software System; Agilent Technologies: Yarnton, Oxfordshire, UK, 2012.Search in Google Scholar

2. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

5. Sheldrick, G. M. SHELXL-2018; Universität Göttingen: Göttingen, Germany, 2018.Search in Google Scholar

6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

7. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar

8. Spackman, M. A., Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32; https://doi.org/10.1039/b818330a.Search in Google Scholar

9. Spackman, M. A., McKinnon, J. J. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 2002, 4, 378–392; https://doi.org/10.1039/b203191b.Search in Google Scholar

10. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., Spackman, M. A. CrystalExplorer17; University of Western Australia: Perth, Australia, 2017.Search in Google Scholar

11. Jones, R. G., Ando, W., Chojnowski, J. Silicon-containing Polymers: The Science and Technology of Their Synthesis and Applications; Springer: Netherlands, 2000.10.1007/978-94-011-3939-7Search in Google Scholar

12. Schubert, U., Hüsing, N. Synthesis of Inorganic Materials, 4th ed.; Wiley–VCH: Weinheim, 2019.Search in Google Scholar

13. Deschner, T., Liang, Y., Anwander, R. Silylation efficiency of chorosilanes, alkoxysilanes, and monosilazanes on periodic mesoporous silica. J. Phys. Chem. C 2010, 114, 22603–22609; https://doi.org/10.1021/jp107749g.Search in Google Scholar

14. Pujari, S. P., Scheres, L., Marcelis, A. T. M., Zuilhof, H. Covalent surface modification of oxide surfaces. Angew. Chem. Int. Ed. 2014, 53, 6322–6356. Angew. Chem. 2014, 126, 6438–6474; https://doi.org/10.1002/anie.201306709.Search in Google Scholar PubMed

15. Parks, D. J., Piers, W. E. Tris(pentafluorophenyl)boron-catalyzed hydrosilation of aromatic aldehydes, ketones, and esters. J. Am. Chem. Soc. 1996, 118, 9440–9441; https://doi.org/10.1021/ja961536g.Search in Google Scholar

16. Rubinsztajn, S., Cella, J. A. A new polycondensation process for the preparation of polysiloxane copolymers. Macromolecules 2005, 38, 1061–1063; https://doi.org/10.1021/ma047984n.Search in Google Scholar

17. Thompson, D. B., Brook, M. A. Rapid assembly of complex 3D siloxane architectures. J. Am. Chem. Soc. 2008, 130, 32–33; https://doi.org/10.1021/ja0778491.Search in Google Scholar PubMed

18. Yu, J., Liu, Y. Cyclic polysiloxanes with linked cyclotetrasiloxane subunits. Angew. Chem. Int. Ed. 2017, 56, 8706–8710. Angew. Chem. 2017, 129, 8832–8836; https://doi.org/10.1002/anie.201703347.Search in Google Scholar PubMed

19. Bauer, J. O., Stiller, J., Marqués–López, E., Strohfeldt, K., Christmann, M., Strohmann, C. Silyl-modified analogues of 2-tritylpyrrolidine: synthesis and applications in asymmetric organocatalysis. Chem. Eur J. 2010, 16, 12553–12558; https://doi.org/10.1002/chem.201002166.Search in Google Scholar PubMed

20. Igawa, K., Kokan, N., Tomooka, K. Asymmetric synthesis of chiral silacarboxylic acids and their ester derivatives. Angew. Chem. Int. Ed. 2010, 49, 728–731. Angew. Chem. 2010, 122, 740–743; https://doi.org/10.1002/anie.200904922.Search in Google Scholar PubMed

21. Lainer, T., Leypold, M., Kugler, C., Fischer, R. C., Haas, M. Dodecamethoxyneopentasilane as a new building block for defined silicon frameworks. Eur. J. Inorg. Chem. 2021, 529–533; https://doi.org/10.1002/ejic.202001112.Search in Google Scholar

22. Bauer, J. O., Strohmann, C. One-step conversion of methoxysilanes to aminosilanes: a convenient synthetic strategy to N,O-functionalised organosilanes. Chem. Commun. 2012, 48, 7212–7214; https://doi.org/10.1039/c2cc32727a.Search in Google Scholar PubMed

23. Bauer, J. O., Strohmann, C. Stereoselective synthesis of silicon- stereogenic aminomethoxysilanes: easy access to highly enantiomerically enriched siloxanes. Angew. Chem. Int. Ed. 2014, 53, 720–724. Angew. Chem. 2014, 126, 738–742; https://doi.org/10.1002/anie.201307826.Search in Google Scholar PubMed

24. Bauer, J. O., Strohmann, C. Recent progress in asymmetric synthesis and application of difunctionalized silicon-stereogenic silanes. Eur. J. Inorg. Chem. 2016, 2868–2881; https://doi.org/10.1002/ejic.201600100.Search in Google Scholar

25. Barth, E. R., Krupp, A., Langenohl, F., Brieger, L., Strohmann, C. Kinetically controlled asymmetric synthesis of silicon-stereogenic methoxy silanes using a planar chiral ferrocene backbone. Chem. Commun. 2019, 55, 6882–6885; https://doi.org/10.1039/c9cc03619a.Search in Google Scholar PubMed

26. Espinosa–Jalapa, N. A., Bauer, J. O. Controlled synthesis and molecular structures of methoxy-, amino-, and chloro-functionalized disiloxane building blocks. Z. Anorg. Allg. Chem. 2020, 646, 828–834; https://doi.org/10.1002/zaac.202070081.Search in Google Scholar

27. Zibula, L., Achternbosch, M., Wattenberg, J., Otte, F., Strohmann, C. Influences of steric factors on the reactivity and structure of diorganoalkoxysilylamides. Z. Anorg. Allg. Chem. 2020, 646, 978–984; https://doi.org/10.1002/zaac.202000039.Search in Google Scholar

28. Bauer, J. O., Strohmann, C. Unusual coordination pattern of the lithium center in a chiral α-lithiated silicon compound. Organometallics 2021, 40, 11–15; https://doi.org/10.1021/acs.organomet.0c00756.Search in Google Scholar

29. Wakabayashi, R., Kawahara, K., Kuroda, K. Nonhydrolytic synthesis of branched alkoxysiloxane oligomers Si[OSiH(OR)2]4 (R = Me, Et). Angew. Chem. Int. Ed. 2010, 49, 5273–5277. Angew. Chem. 2010, 122, 5401–5405; https://doi.org/10.1002/anie.201001640.Search in Google Scholar PubMed

30. Yoshikawa, M., Tamura, Y., Wakabayashi, R., Tamai, M., Shimojima, A., Kuroda, K. Protecting and leaving functions of trimethylsilyl groups in trimethylsilylated silicates for the synthesis of alkoxysiloxane oligomers. Angew. Chem. Int. Ed. 2017, 56, 13990–13994. Angew. Chem. 2017, 129, 14178–14182; https://doi.org/10.1002/anie.201705942.Search in Google Scholar PubMed

31. Bauer, J. O., Espinosa–Jalapa, N. A., Fontana, N., Götz, T., Falk, A. Eur. J. Inorg. Chem. 2021, 2636–2642; https://doi.org/10.1002/ejic.202100342.Search in Google Scholar

32. Wuts, P. G. M., Greene, T. W. Greenes Protective Groups in Organic Synthesis, 4th ed.; John Wiley & Sons Inc.: Hoboken, 2006.10.1002/0470053488Search in Google Scholar

33. Brady, T. P., Kim, S. H., Wen, K., Theodorakis, E. A. Stereoselective total synthesis of (+)-norrisolide. Angew. Chem. Int. Ed. 2004, 43, 739–742. Angew. Chem. 2004, 116, 757–760; https://doi.org/10.1002/anie.200352868.Search in Google Scholar PubMed

34. Wang, B., Hansen, T. M., Wang, T., Wu, D., Weyer, L., Ying, L., Engler, M. M., Sanville, M., Leitheiser, C., Christmann, M., Lu, Y., Chen, J., Zunker, N., Cink, R. D., Ahmed, F., Lee, C.-S., Forsyth, C. J. Total synthesis of phorboxazole a via de novo oxazole formation: strategy and component assembly. J. Am. Chem. Soc. 2011, 133, 1484–1505; https://doi.org/10.1021/ja108906e.Search in Google Scholar PubMed

35. Nishio, M., Umezawa, Y., Honda, K., Tsuboyama, S., Suezawa, H. CH/π hydrogen bonds in organic and organometallic chemistry. CrystEngComm 2009, 11, 1757–1788; https://doi.org/10.1039/b902318f.Search in Google Scholar

36. Bauer, J. O., Götz, T. Chloropentaphenyldisiloxane - model study on intermolecular interactions in the crystal structure of a monofunctionalized disiloxane. Chemistry 2021, 3, 444–453; https://doi.org/10.3390/chemistry3020033.Search in Google Scholar

37. Steiner, T. Unrolling the hydrogen bond properties of C–H⃛O interactions. Chem. Commun. 1997, 727–734; https://doi.org/10.1039/a603049a.Search in Google Scholar

38. Bauer, J. O. The crystal structure of the first ether solvate of hexaphenyldistannane [(Ph3Sn)2⃛2 THF]. Main Group Met. Chem. 2020, 43, 1–6; https://doi.org/10.1515/mgmc-2020-0001.Search in Google Scholar

39. Bauer, J. O. Crystal structure and Hirshfeld surface analysis of trimethoxy(1-naphthyl)silane - intermolecular interactions in a one-component single-crystalline trimethoxysilane. Z. Anorg. Allg. Chem. 2021, 647, 1053–1057; https://doi.org/10.1002/zaac.202100027.Search in Google Scholar

Received: 2021-06-11
Accepted: 2021-06-24
Published Online: 2021-07-12
Published in Print: 2021-09-27

© 2021 Jonathan O. Bauer, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of [aqua-(4-iodopyridine-2,6-dicarboxylato-κ3 O,N,O′)-(1,10-phenanothroline-κ2 N,N′)copper(II)] dihydrate, C19H16O7N3CuI
  4. The crystal structure of tetrakis(1-isopropyl-1H-imidazolium) octamolybdate, C24H44Mo8N8O26
  5. Crystal structure of catena-poly[bis(µ2-3,5-bis(1-imidazolyl)pyridine-κ2 N:N′)-(µ2-3-nitrophthalato-k3 O,O′:O″)cadmium(II)] dihydrate, C30H25N11O8Cd
  6. The crystal structure of diaqua-bis(2-(3-(1H-pyrazol-4-yl)-1H-1,2,4-triazol-5-yl)pyridine-κ2 N:N′)-bis(3,5-dicarboxybenzoato-κ1 O)cobalt(II), C38H30CoN12O14
  7. Crystal structure of the nickel(II) complex aqua-(2,6-di(pyrazin-2-yl)-4,4′-bipyridine-κ3 N,N′,N′′)-(phthalato-κ2 O,O′)nickel(II) tetrahydrate, C26H26N6O9Ni
  8. The crystal structure of 1-[5-(2-fluorophenyl)-1-(pyridine-3-sulfonyl)-1H-pyrrol-3-yl]-N-methylmethanaminium 3-carboxyprop-2-enoate, C21H20FN3O6S
  9. The crystal structure of 1,2-bis(4-pyridyl)ethane - 4,4-dihydroxydiphenylmethane (1/1), C25H21N2O2
  10. Crystal structure of bis(2-((E)-5-chloro-2-hydroxybenzylidene)hydrazineyl)methaniminium trifluoroacetate dihydrate, C34H36Cl4N10O12
  11. Crystal structure of 1-cyclopropyl-7-ethoxy-6,8-difluoro-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid, C15H13F2NO4
  12. Crystal structure of methyl 3-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)benzoate, C18H15BN2O2
  13. Crystal structure of (E)-N′-(2-chloro-6-hydroxybenzylidene)-2-hydroxybenzohydrazide, C14H11ClN2O3
  14. Crystal structure of Al-rich fluorophlogopite, K1.0(Mg2.8Al0.2)(Si2.8Al1.2)O10F2
  15. The crystal structure of 4,5-diiodo-1,3-dimesityl-1H-1,2,3-triazol-3-ium hexafluoridoantimonate(V), C20H22F6I2N3Sb
  16. Crystal structure of tris(3-iodopyridin-1-ium) catena-poly[(hexachlorido-κ1 Cl)-(μ2-trichlorido-κ2 Cl:Cl)diantimony(III)], C15H15Cl9I3N3Sb2
  17. Crystal structure of methyl 2-(1H-naphtho[1,8-de][1.3.2]diazaborinin-2(3H-yl)benzoate C18H15BN2O2
  18. The crystal structure of 1,8-bis(4-methoxybenzoyl)naphthalene-2,7-diyl dibenzoate, C40H28O8
  19. Crystal structure of 2-bromo-1,3,6,8-tetramethylBOPHY (BOPHY = bis(difluoroboron)-1,2-bis((1H-pyrrol-2-yl)methylene)hydrazine), C14H15B2BrF4N4
  20. The crystal structure of (E)-3-chloro-2-(2-(2-fluorobenzylidene)hydrazinyl)pyridine, C12H9ClFN3
  21. Crystal structure of bis(µ2- 4-iodopyridine-2,6-dicarboxylato-κ3O:N:O′)-bis(4-iodopyridine-2,6-dicarboxylato-κ3O:N:O′)-bis(µ2-1-(4-pyridyl)piperazine-κ2N:N′)-hexa-aqua-tetra-copper(II), C46H46Cu4I4N10O22
  22. Crystal structure of poly[diaqua-(μ2-2,5-dihydroxyterephthalato-κ2O:O′)(μ2-bis(4-pyridylformyl)piperazine-κ2N:N′)cadmium(II)] dihydrate, C24H28CdN4O12
  23. Crystal structure of poly[aqua-(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2N:N′)-(μ3-2,3,5,6-tetrafluoroterephthalato-κ3O:O′:O′′)cadmium(II)], C17H14N4O5F4Cd
  24. Crystal structure of 6-(quinolin-8-yl)benzo[a]phenanthridin-5(6H)-one, C26H16N2O
  25. The crystal structure of aqua-bis(6-chloropicolinato-κ2N,O)copper(II), C12H8Cl2N2O5Cu
  26. Crystal structure of catena-poly[diaqua-bis(μ2-4,4′-bipyridyl-κ2N:N′) disilver(I)] 4-oxidopyridine-3-sulfonate trihydrate, C25H29Ag2N5O9S
  27. The crystal structure of 4-(3-bromophenyl)pyrimidin-2-amine, C10H8BrN3
  28. Crystal structure of 6-oxo-4-phenyl-1-propyl-1,6-dihydropyridine-3-carbonitrile, C15H14N2O
  29. Crystal structure of 4-(2,2-difluoroethyl)-2,4-dimethyl-6-(trifluoromethyl)isoquinoline-1,3(2H,4H)-dione, C14H12F5NO2
  30. Crystal structure of dibromido-(1-methyl-1H-imidazole-κ1N)-(3-(3-methyl-1H-imidazol-3-ium-1-yl)propanoato-κ1O)zinc(II), C11H16Br2N4O2Zn
  31. The crystal structure of 1,1′-(((2 (dimethylamino)ethyl)azanediyl)bis(methylene)) bis(naphthalen-2-olato-κ4 N,N′,O,O′)-(pyridine-2,6-dicarboxylato-N,O,O′)- titanium(IV) ─ dichloromethane (2/1), C33H29N3O6Ti
  32. The layered crystal structure of bis(theophyllinium) hexachloridostannate (IV), C14H18N8O8SnCl6
  33. The crystal structre of 3-(1-ethenyl-1H-imidazol-3-ium-3-yl)propane-1-sulfonate, C8H12N2O3S
  34. Synthesis and crystal structure of di-tert-butyl 1″-acetyl-2,2″,9′-trioxo-4a′,9a′-dihydro-1′H,3′H,9′H-dispiro[indoline-3,2′-xanthene-4′,3″-indoline]-1,3′-dicarboxylate, C39H38N2O9
  35. The crystal structure of 4-chloro-2-(quinolin-8-yl)isoindoline-1,3-dione, C17H9ClN2O2
  36. The crystal structure of 1-fluoro-4-(p-tolylethynyl)benzene, C15H11F
  37. The crystal structure of bis[4-bromo-2-(1H-pyrazol-3-yl) phenolato-κ2N,O] copper(II), C18H12Br2CuN4O2
  38. The crystal structure of poly[(μ 3-imidazolato-κ 3 N:N:N′)(tetrahydrofuran- κ 1 O)lithium(I)], C7H11LiN2O
  39. Crystal structure of N′,N′′′-((1E,1′E)-(propane-2,2-diylbis(1H-pyrrole-5,2diyl))bis(methaneylylidene))di(nicotinohydrazide) pentahydrate, C25H24N8O2·5H2O
  40. Crystal structure of 3-(2-ethoxy-2-oxoethyl)-1-ethyl-1H-imidazol-3-ium hexafluoridophos-phate(V), C9H15F6N2O2P
  41. Crystal structure of (1,10-phenanthroline-κ2N,N′)-bis(3-thiophenecarboxylato-κ2O,O′)copper(II), C22H14N2O4S2Cu
  42. The crystal structure of 2-amino-3-carboxypyridin-1-ium iodide hemihydrate, C6H8IN2O2.5
  43. Crystal structure of (E)-7-methoxy-2-((6-methoxypyridin-2-yl)methylene)-tetralone, C18H17NO3
  44. The crystal structure of [μ-hydroxido-bis[(5,5′-dimethyl-2,2′-bipyridine-κ2N,N′)-tricarbonylrhenium(I)] bromide hemihydrate, C30H26N4O9Re2Br
  45. The crystal structure of 2,5-bis(3,5-dimethylphenyl)thiazolo[5,4-d]thiazole, C20H18N2S2
  46. The crystal structure of 5-benzoyl-1-[(E)-(4-fluorobenzylidene)amino]-4-phenylpyrimidin-2(1H)-one, C24H16FN3O2
  47. Crystal structure of monocarbonyl(N-nitroso-N-oxido-phenylamine-κ 2 O,O′)(tricyclohexylphosphine-κP)rhodium(I), C25H39N2O3PRh
  48. Crystal structure of poly[bis[μ3-1,3,5-tris[(1H-imidazol-1-yl)methyl]benzene-κ3N:N′:N″]nickel(II)] hexafluorosilicate, C36H36N12NiSiF6
  49. The crystal structure of 13-(pyrazole-1-yl-4-carbonitrile)-matrine, C19H25N5O
  50. Crystal structure of 3,5-bis((E)-4-methoxy-2-(trifluoromethyl)benzylidene)-1-methylpiperidin-4-one, C24H21F6NO3
  51. The crystal structure of N,N′-(Disulfanediyldi-2,1-phenylene)di(6′-methylpyridine)-2-carboxamide, C26H22N4O2S2
  52. Crystal structure of (E)-7-fluoro-2-(4-methoxy-2-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2
  53. Crystal structure of ethyl 1-(4-fluorophenyl)-4-phenyl-1H-pyrrole-3-carboxylate, C19H16FNO2
  54. The crystal structure of cis-diaqua-bis (N-butyl-N-(pyridin-2-yl)pyridin-2-amine-κ2N,N′)cobalt(II)] dichloride trihydrate, C28H44Cl2N6O5Co
  55. Crystal structure of (E)-7-methoxy-2-((6-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C18H17NO3
  56. Crystal structure of (E)-2-((3-fluoropyridin-4-yl)methylene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  57. The crystal structure of 6-bromohexanoic acid, C6H11BrO2
  58. The crystal structure of 4-chloro-thiophenol, C6H5ClS
  59. The crystal structure of 4-bromobenzyl chloride, C7H6BrCl
  60. The crystal structure of di-tert-butyl dicarbonate, C10H18O5
  61. The crystal structure of (2-(4-chlorophenyl)-5-methyl-1,3-dioxan-5-yl)methanol, C12H15ClO3
  62. The crystal structure of the co-crystal: 2-hydroxybenzoic acid – N′-(butan-2-ylidene)pyridine-4-carbohydrazide, C10H13N3O·C7H6O3
  63. Crystal structure and anti-inflammatory activity of (E)-7-fluoro-2-((5-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  64. Crystal structure of (E)-7-fluoro-2-((6-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  65. Crystal structure of 1,1′-(butane-1,4-diyl)bis(3-propyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C32H56F24N8P4
  66. The crystal structure of dichlorido-bis(3-methyl-3-imidazolium-1-ylpropionato-κ2)-cadmium(II), C14H20CdCl2N4O4
  67. Crystal structure of 1-(2-cyanobenzyl)-3-cyano-4-phenyl-4-(2-cyanobenzyl)-1,4-dihydropyridine monohydrate, C56H42N8O
  68. The crystal structure of 3-(carboxymethyl)-1-ethenyl-1H-imidazol-3-ium chloride, C7H9N2O2Cl
  69. The crystal structure of adamantylmethoxydiphenylsilane, C23H28OSi
  70. Redetermination of the crystal structure of (2E,4Z,13E,15Z)-3,5,14,16-tetramethyl-2,6,13,17-tetraazatricyclo[16.4.0.07,12]docosa-1(22),2,4,7,9,11,13,15,18,20-decaene, C22H24N4
  71. Crystal structure of (E)-7-hydroxy-2-((6-methoxypyridin-2-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H15NO3
  72. Crystal structure of catena-poly[diaqua-bis(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2 N:N′)cobalt(II)] dinitrate, C18H28N10O8Co
Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0243/html
Scroll to top button