Startseite Crystal structure of monocarbonyl(N-nitroso-N-oxido-phenylamine-κ 2 O,O′)(tricyclohexylphosphine-κP)rhodium(I), C25H39N2O3PRh
Artikel Open Access

Crystal structure of monocarbonyl(N-nitroso-N-oxido-phenylamine-κ 2 O,O′)(tricyclohexylphosphine-κP)rhodium(I), C25H39N2O3PRh

  • Orbett T. Alexander ORCID logo EMAIL logo und Johan Venter
Veröffentlicht/Copyright: 19. Juli 2021

Abstract

C25H39N2O3PRh, triclinic, P21/n (no. 14), a = 13.505(5) Å, b = 14.266(5) Å, c = 13.405(4) Å, β = 91.280(3)°, V = 2574.8(15) Å3, Z = 4, R gt (F) = 0.0399, wR ref (F 2) = 0.1026, T = 100 K.

CCDC no.: 2086956

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Orange plate
Size: 0.24 × 0.19 × 0.10 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.75 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θ max, completeness: 28.0°, 99%
N(hkl)measured, N(hkl)unique, R int: 31,008, 6189, 0.070
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 5256
N(param)refined: 289
Programs: Bruker [1], SIR97 [2], WinGX [3], SHELX [4], Diamond [5]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Rh1 0.27045 (2) 0.23037 (2) 0.40595 (2) 0.02524 (8)
P1 0.22497 (5) 0.36301 (5) 0.32757 (5) 0.02454 (15)
O1 0.08193 (18) 0.22858 (19) 0.5150 (2) 0.0480 (6)
O2 0.40484 (15) 0.22150 (14) 0.33833 (16) 0.0312 (4)
O3 0.33146 (15) 0.10746 (15) 0.46387 (16) 0.0328 (5)
N1 0.41959 (18) 0.08689 (18) 0.4324 (2) 0.0315 (5)
N2 0.45498 (17) 0.14612 (16) 0.37090 (18) 0.0279 (5)
C1 0.1568 (3) 0.2303 (2) 0.4703 (2) 0.0352 (7)
C11 0.3319 (2) 0.4031 (2) 0.2527 (2) 0.0284 (6)
H11 0.360617 0.344279 0.224364 0.034*
C12 0.4162 (2) 0.4465 (2) 0.3171 (2) 0.0323 (6)
H12A 0.393850 0.507222 0.344712 0.039*
H12B 0.432213 0.404030 0.373754 0.039*
C13 0.5095 (2) 0.4623 (3) 0.2558 (3) 0.0406 (7)
H13A 0.560806 0.493642 0.297887 0.049*
H13B 0.536006 0.400923 0.234188 0.049*
C14 0.4859 (3) 0.5229 (3) 0.1645 (3) 0.0420 (8)
H14A 0.467057 0.586771 0.186359 0.050*
H14B 0.545735 0.528427 0.123590 0.050*
C15 0.4019 (2) 0.4808 (2) 0.1016 (2) 0.0387 (7)
H15A 0.423637 0.419790 0.074103 0.046*
H15B 0.386418 0.523222 0.044876 0.046*
C16 0.3085(2) 0.4657(2) 0.1619 (2) 0.0324 (6)
H16A 0.256715 0.435616 0.119336 0.039*
H16B 0.282879 0.527128 0.184603 0.039*
C21 0.1807 (2) 0.45819 (19) 0.4090 (2) 0.0279 (6)
H21 0.115301 0.435915 0.433321 0.034*
C22 0.2449 (2) 0.4734 (2) 0.5041 (2) 0.0348 (6)
H22A 0.255241 0.412602 0.538606 0.042*
H22B 0.310472 0.498307 0.485712 0.042*
C23 0.1948 (3) 0.5423 (2) 0.5738 (3) 0.0412 (7)
H23A 0.132411 0.514342 0.597393 0.049*
H23B 0.238596 0.553662 0.632839 0.049*
C24 0.1723 (3) 0.6350 (2) 0.5224 (3) 0.0422 (8)
H24A 0.235272 0.666357 0.505729 0.051*
H24B 0.136455 0.676504 0.568655 0.051*
C25 0.1100 (3) 0.6214 (2) 0.4276 (3) 0.0406 (7)
H25A 0.101242 0.682708 0.393582 0.049*
H25B 0.043711 0.597780 0.445138 0.049*
C26 0.1586 (2) 0.5519 (2) 0.3565 (2) 0.0349 (7)
H26A 0.220998 0.579132 0.332124 0.042*
H26B 0.113892 0.540805 0.298178 0.042*
C31 0.1233 (2) 0.3461 (2) 0.2333 (2) 0.0269 (6)
H31 0.120302 0.403498 0.190231 0.032*
C32 0.0204 (2) 0.3325 (2) 0.2789 (2) 0.0345 (7)
H32A 0.022178 0.277505 0.324251 0.041*
H32B 0.003460 0.388608 0.318756 0.041*
C33 −0.0597 (2) 0.3171 (3) 0.1971 (3) 0.0416 (8)
H33A −0.124296 0.305873 0.228553 0.050*
H33B −0.065864 0.374514 0.155708 0.050*
C34 −0.0352 (2) 0.2342 (2) 0.1309 (3) 0.0403 (8)
H34A −0.085601 0.229181 0.076344 0.048*
H34B −0.037070 0.175544 0.170485 0.048*
C35 0.0674 (3) 0.2457 (3) 0.0863 (3) 0.0413 (8)
H35A 0.066306 0.299467 0.039428 0.050*
H35B 0.083766 0.188436 0.048047 0.050*
C36 0.1480 (2) 0.2623 (2) 0.1669 (2) 0.0319 (6)
H36A 0.155116 0.205194 0.208727 0.038*
H36B 0.212108 0.273756 0.134643 0.038*
C41 0.5559 (2) 0.1349 (2) 0.3381 (2) 0.0279 (6)
C42 0.5885(2) 0.1907 (2) 0.2613 (2) 0.0355 (7)
H42 0.544764 0.233238 0.228065 0.043*
C43 0.6869 (2) 0.1833(3) 0.2334 (3) 0.0428 (8)
H43 0.710497 0.221407 0.180847 0.051*
C44 0.7504 (2) 0.1214 (3) 0.2813 (3) 0.0438 (8)
H44 0.817658 0.117649 0.262491 0.053*
C45 0.7161 (3) 0.0647 (3) 0.3567 (3) 0.0458 (8)
H45 0.759559 0.020912 0.388487 0.055*
C46 0.6180 (2) 0.0714 (2) 0.3865 (3) 0.0381 (7)
H46 0.594376 0.033162 0.438986 0.046*

Source of material

The synthesis of the title complex started with refluxing of hydrated RhCl3 in DMF for 30 min [6]. After cooling, an equivalent amount of the ammonium salt of N-nitrosophenylhydroxylamine (cupferron) was added to the DMF solution [7], whereupon [Rh(cupf)(CO)2] was precipitated by the addition of ice-water. [Rh(cupf)(CO)(PCy3)] was prepared by adding an equivalent amount of tricyclohexylphosphine to an acetone solution of [Rh(cupf)(CO)2] and precipitated with the addition of ice-water. Orange single crystals of [Rh(cupf)(CO)(PCy3)] suitable for data collection were obtained after recrystallization from a 1:1 dichloromethane acetonitrile mixture.

Experimental details

The H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H = 0.95 and 0.98 Å and U iso(H) = 1.5 and 1.2 U eq(C), respectively. The highest peak is 2.06 e Å−3 and deepest hole is −1.05 e Å−3.

Comment

The use of tertiary phosphine mono-dentate ligands in the chemistry of [Rh(L,L–Bid)(CO)]2 (where L,L–Bid = mono-anionic bidentate ligands) to yield [Rh(L,L–Bid)(CO)(PR3)] has been extensively studied as potential catalysts precursors [8], [9], [10], [11]. Tertiary phosphines are known to increase electron density on the metal centre. As a result, it has the potential to alter the chemistry thereof, depending on the PR3 [10, 12, 13]. Moreover, the introduction of tertiary phosphines not only effect the electronic properties of these systems, but it also brings additional stability to these complexes [10].

More often than not, in square planar complexes of [Rh(L,L–Bid)(CO)]2, substitution of tertiary phosphines tends to form two isomers as only one phosphine substitutes a carbonyl. Carbonyls extend the possibilities during the oxidative addition of alkyl iodides since they allow the formation of acyl adducts via migratory insertion into the metal alkyl bonds formed. The major isomer of the substitution product becomes quite predominant when the incoming PR3 ligand is positioned trans to the stronger donor atom of the bidentate ligand. However, in cases where both donors have comparable donor capabilities the isomers will therefore form in comparable ratios [14]. The title structure consists of an O,O-donor bidentate ligand (cupferrate), a carbonyl and PCy3 tertiary phosphine trans to the nitroso group. This substitution pattern in [Rh(cupf)(CO)(PCy3)] is identical to what was found in [Rh(cupf)(CO)(PPh3)] [11] and the related [Rh(neocupf)(CO)(PPh3)] [15]. Substitution of the carbonyl trans to the nitroso group shows that the nitroso oxygen (O3) has a greater trans influence than O2.

The geometric coordination is that of a square planar one. However, the square planar geometric orientation around the rhodium atom is significantly distorted from the ideal geometry, mainly caused by the small O2–Rh–O3 bite angle (76.45(8)°) of the cupferrate ligand. This angular distortion is also indicated by the C1–Rh–O2 angle of 175.52(11)°. The respective Rh–O bond lengths are 2.075(2) and 2.051(6) Å which is in agreement with other rhodium(I) complexes with O,O-donor atoms [11, 14], [15], [16].


Corresponding author: Orbett T. Alexander, Department of Chemistry, University of the Free State, Bloemfontein, 9301, South Africa, E-mail:

Funding source: National Research Foundation of South Africa

Award Identifier / Grant number: 116302

Funding source: South African National Research Foundation

Funding source: University of the Free State

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: National Research Foundation of South Africa (Grant UID: 116302) and University of the Free State.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. SAINT–Plus (version 7.12); Bruker AXS Inc.: Madison, Wisconsin, USA, 2004.Suche in Google Scholar

2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G., Spagna, R. SIR97: a new tool for crystal structure determination and refinement. J. Appl. Crystallogr. 1999, 32, 115–119.https://doi.org/10.1107/s0021889898007717.Suche in Google Scholar

3. Farrugia, L. J. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 1999, 32, 837–838; https://doi.org/10.1107/s0021889899006020.Suche in Google Scholar

4. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar PubMed

5. Brandenbug, K., Putz, H. DIAMOND. Visual Crystal Structure Information System, (version 3.0c); Crystal Impact GbR: Bonn, Germany, 2005.Suche in Google Scholar

6. Varshavskii, V. S., Cherkasova, T. G. A simple method for preparing acetylacetonatodicarbonylrhodium(I). Russ. J. Inorg. Chem. 1967, 12, 899.Suche in Google Scholar

7. Goswami, K., Singh, M. M. Di and monocarbonyl complexes of rhodium(I) containing singly charged bidentate ligands. Transition Met. Chem. 1980, 5, 83–85; https://doi.org/10.1007/bf01396876.Suche in Google Scholar

8. Warsink, S., Fessha, F. G., Purcell, W., Venter, J. A. Synthesis and characterization of rhodium(I) 2-methylcupferrate complexes and their kinetic behaviour in iodomethane oxidative addition. J. Organomet. Chem. 2013, 726, 14–20; https://doi.org/10.1016/j.jorganchem.2012.12.005.Suche in Google Scholar

9. Roodt, A., Visser, H. G., Brink, A. Structure/reactivity relationships and mechanism from X-ray data and spectroscopic kinetic analysis. Chem. Rev. 2011, 17, 241–280; https://doi.org/10.1080/0889311x.2011.593032.Suche in Google Scholar

10. Warsink, S., Riekert Kotze, P. D., Janse van Rensburg, J. M., Venter, J. A., Otto, S., Botha, E., Roodt, A. Kinetic–mechanistic and solid–state study of the oxidative addition and migratory insertion of iodomethane to [rhodium(S,O—BdiPT or N,O–ox)(CO)(PR1R2R3)] complexes. Eur. J. Inorg. Chem. 2018, 32, 3615–3625; https://doi.org/10.1002/ejic.201800293.Suche in Google Scholar

11. Basson, S. S., Leipoldt, J. G., Roodt, A., Venter, J. A. Crystal structure of carbonyl(N-hydroxy-N-nitroso-benzenaminato-O,O′)- triphenylphosphinerhodium(I). Inorg. Chim. Acta 1986, 118, L45–L47; https://doi.org/10.1016/s0020-1693(00)81365-1.Suche in Google Scholar

12. Otto, S., Alexander, O. T., Roodt, A. Structure and reactivity relationships in trans-[PtPh(L)2Cl] as observed from Cl− anation by I− upon interchanging phosphine, arsine and stibine (L) ligands. S. Afr. J. Sci. Tech. 2019, 38, 1–15.Suche in Google Scholar

13. Manicum, A. L. E., Schutte-Smith, M., Alexander, O. T., Twigge, L., Roodt, A., Visser, H. G. First kinetic data of the CO substitution in fac-[Re(L,L′–Bid)(CO)3(X)] complexes (L,L′–Bid = acacetylacetonate or tropolonate) by tertiary phosphines PTA and PPh3: synthesis and crystal structures of water-soluble rhenium(I) tri- and dicarbonyl complexes with 1,3,5-triaza-7-phosphaadamantane (PTA). Inorg. Chem. Commun. 2019, 101, 93–98; https://doi.org/10.1016/j.inoche.2019.01.014.Suche in Google Scholar

14. Elmakki, M. A. E., Alexander, O. T., Venter, G. J. S., Venter, J. A., Roodt, A. Synthesis and structural determination of [Rh(opo)(CO)(PR3)] complexes (opo- = 2-oxopyridin-1-olate) and in situ isomeric behavior from preliminary kinetic study of iodomethane oxidative addition. J. Coord. Chem. 2021, 74, 444–466; https://doi.org/10.1080/00958972.2021.1879385.Suche in Google Scholar

15. Venter, J. A., Purcell, W., Visser, H. G., Muller, T. J. Carbonyl(N-nitroso-N-oxido-1-naphtylamine-κ2O,O′)(triphenylphosphine-kP)rhodium(I) acetone solvate. Acta Crystallogr. 2009, E65, m1578–m1579https://doi.org/10.1107/s1600536809047321.Suche in Google Scholar

16. Elmakki, M. A. E., Alexander, O. T., Venter, J. A., Roodt, A. Crystal structure of carbonyl(2-oxopyridin-1(2H)-olato-k2O,O′) (triphenylarsine-κAs)rhodium(I). Z. Kristallogr. N. Cryst. Struct. 2021, 236, 223–225; https://doi.org/10.1515/ncrs-2020-0490.Suche in Google Scholar

Received: 2021-05-31
Accepted: 2021-06-17
Published Online: 2021-07-19
Published in Print: 2021-09-27

© 2021 Orbett T. Alexander and Johan Venter, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of [aqua-(4-iodopyridine-2,6-dicarboxylato-κ3 O,N,O′)-(1,10-phenanothroline-κ2 N,N′)copper(II)] dihydrate, C19H16O7N3CuI
  4. The crystal structure of tetrakis(1-isopropyl-1H-imidazolium) octamolybdate, C24H44Mo8N8O26
  5. Crystal structure of catena-poly[bis(µ2-3,5-bis(1-imidazolyl)pyridine-κ2 N:N′)-(µ2-3-nitrophthalato-k3 O,O′:O″)cadmium(II)] dihydrate, C30H25N11O8Cd
  6. The crystal structure of diaqua-bis(2-(3-(1H-pyrazol-4-yl)-1H-1,2,4-triazol-5-yl)pyridine-κ2 N:N′)-bis(3,5-dicarboxybenzoato-κ1 O)cobalt(II), C38H30CoN12O14
  7. Crystal structure of the nickel(II) complex aqua-(2,6-di(pyrazin-2-yl)-4,4′-bipyridine-κ3 N,N′,N′′)-(phthalato-κ2 O,O′)nickel(II) tetrahydrate, C26H26N6O9Ni
  8. The crystal structure of 1-[5-(2-fluorophenyl)-1-(pyridine-3-sulfonyl)-1H-pyrrol-3-yl]-N-methylmethanaminium 3-carboxyprop-2-enoate, C21H20FN3O6S
  9. The crystal structure of 1,2-bis(4-pyridyl)ethane - 4,4-dihydroxydiphenylmethane (1/1), C25H21N2O2
  10. Crystal structure of bis(2-((E)-5-chloro-2-hydroxybenzylidene)hydrazineyl)methaniminium trifluoroacetate dihydrate, C34H36Cl4N10O12
  11. Crystal structure of 1-cyclopropyl-7-ethoxy-6,8-difluoro-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid, C15H13F2NO4
  12. Crystal structure of methyl 3-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)benzoate, C18H15BN2O2
  13. Crystal structure of (E)-N′-(2-chloro-6-hydroxybenzylidene)-2-hydroxybenzohydrazide, C14H11ClN2O3
  14. Crystal structure of Al-rich fluorophlogopite, K1.0(Mg2.8Al0.2)(Si2.8Al1.2)O10F2
  15. The crystal structure of 4,5-diiodo-1,3-dimesityl-1H-1,2,3-triazol-3-ium hexafluoridoantimonate(V), C20H22F6I2N3Sb
  16. Crystal structure of tris(3-iodopyridin-1-ium) catena-poly[(hexachlorido-κ1 Cl)-(μ2-trichlorido-κ2 Cl:Cl)diantimony(III)], C15H15Cl9I3N3Sb2
  17. Crystal structure of methyl 2-(1H-naphtho[1,8-de][1.3.2]diazaborinin-2(3H-yl)benzoate C18H15BN2O2
  18. The crystal structure of 1,8-bis(4-methoxybenzoyl)naphthalene-2,7-diyl dibenzoate, C40H28O8
  19. Crystal structure of 2-bromo-1,3,6,8-tetramethylBOPHY (BOPHY = bis(difluoroboron)-1,2-bis((1H-pyrrol-2-yl)methylene)hydrazine), C14H15B2BrF4N4
  20. The crystal structure of (E)-3-chloro-2-(2-(2-fluorobenzylidene)hydrazinyl)pyridine, C12H9ClFN3
  21. Crystal structure of bis(µ2- 4-iodopyridine-2,6-dicarboxylato-κ3O:N:O′)-bis(4-iodopyridine-2,6-dicarboxylato-κ3O:N:O′)-bis(µ2-1-(4-pyridyl)piperazine-κ2N:N′)-hexa-aqua-tetra-copper(II), C46H46Cu4I4N10O22
  22. Crystal structure of poly[diaqua-(μ2-2,5-dihydroxyterephthalato-κ2O:O′)(μ2-bis(4-pyridylformyl)piperazine-κ2N:N′)cadmium(II)] dihydrate, C24H28CdN4O12
  23. Crystal structure of poly[aqua-(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2N:N′)-(μ3-2,3,5,6-tetrafluoroterephthalato-κ3O:O′:O′′)cadmium(II)], C17H14N4O5F4Cd
  24. Crystal structure of 6-(quinolin-8-yl)benzo[a]phenanthridin-5(6H)-one, C26H16N2O
  25. The crystal structure of aqua-bis(6-chloropicolinato-κ2N,O)copper(II), C12H8Cl2N2O5Cu
  26. Crystal structure of catena-poly[diaqua-bis(μ2-4,4′-bipyridyl-κ2N:N′) disilver(I)] 4-oxidopyridine-3-sulfonate trihydrate, C25H29Ag2N5O9S
  27. The crystal structure of 4-(3-bromophenyl)pyrimidin-2-amine, C10H8BrN3
  28. Crystal structure of 6-oxo-4-phenyl-1-propyl-1,6-dihydropyridine-3-carbonitrile, C15H14N2O
  29. Crystal structure of 4-(2,2-difluoroethyl)-2,4-dimethyl-6-(trifluoromethyl)isoquinoline-1,3(2H,4H)-dione, C14H12F5NO2
  30. Crystal structure of dibromido-(1-methyl-1H-imidazole-κ1N)-(3-(3-methyl-1H-imidazol-3-ium-1-yl)propanoato-κ1O)zinc(II), C11H16Br2N4O2Zn
  31. The crystal structure of 1,1′-(((2 (dimethylamino)ethyl)azanediyl)bis(methylene)) bis(naphthalen-2-olato-κ4 N,N′,O,O′)-(pyridine-2,6-dicarboxylato-N,O,O′)- titanium(IV) ─ dichloromethane (2/1), C33H29N3O6Ti
  32. The layered crystal structure of bis(theophyllinium) hexachloridostannate (IV), C14H18N8O8SnCl6
  33. The crystal structre of 3-(1-ethenyl-1H-imidazol-3-ium-3-yl)propane-1-sulfonate, C8H12N2O3S
  34. Synthesis and crystal structure of di-tert-butyl 1″-acetyl-2,2″,9′-trioxo-4a′,9a′-dihydro-1′H,3′H,9′H-dispiro[indoline-3,2′-xanthene-4′,3″-indoline]-1,3′-dicarboxylate, C39H38N2O9
  35. The crystal structure of 4-chloro-2-(quinolin-8-yl)isoindoline-1,3-dione, C17H9ClN2O2
  36. The crystal structure of 1-fluoro-4-(p-tolylethynyl)benzene, C15H11F
  37. The crystal structure of bis[4-bromo-2-(1H-pyrazol-3-yl) phenolato-κ2N,O] copper(II), C18H12Br2CuN4O2
  38. The crystal structure of poly[(μ 3-imidazolato-κ 3 N:N:N′)(tetrahydrofuran- κ 1 O)lithium(I)], C7H11LiN2O
  39. Crystal structure of N′,N′′′-((1E,1′E)-(propane-2,2-diylbis(1H-pyrrole-5,2diyl))bis(methaneylylidene))di(nicotinohydrazide) pentahydrate, C25H24N8O2·5H2O
  40. Crystal structure of 3-(2-ethoxy-2-oxoethyl)-1-ethyl-1H-imidazol-3-ium hexafluoridophos-phate(V), C9H15F6N2O2P
  41. Crystal structure of (1,10-phenanthroline-κ2N,N′)-bis(3-thiophenecarboxylato-κ2O,O′)copper(II), C22H14N2O4S2Cu
  42. The crystal structure of 2-amino-3-carboxypyridin-1-ium iodide hemihydrate, C6H8IN2O2.5
  43. Crystal structure of (E)-7-methoxy-2-((6-methoxypyridin-2-yl)methylene)-tetralone, C18H17NO3
  44. The crystal structure of [μ-hydroxido-bis[(5,5′-dimethyl-2,2′-bipyridine-κ2N,N′)-tricarbonylrhenium(I)] bromide hemihydrate, C30H26N4O9Re2Br
  45. The crystal structure of 2,5-bis(3,5-dimethylphenyl)thiazolo[5,4-d]thiazole, C20H18N2S2
  46. The crystal structure of 5-benzoyl-1-[(E)-(4-fluorobenzylidene)amino]-4-phenylpyrimidin-2(1H)-one, C24H16FN3O2
  47. Crystal structure of monocarbonyl(N-nitroso-N-oxido-phenylamine-κ 2 O,O′)(tricyclohexylphosphine-κP)rhodium(I), C25H39N2O3PRh
  48. Crystal structure of poly[bis[μ3-1,3,5-tris[(1H-imidazol-1-yl)methyl]benzene-κ3N:N′:N″]nickel(II)] hexafluorosilicate, C36H36N12NiSiF6
  49. The crystal structure of 13-(pyrazole-1-yl-4-carbonitrile)-matrine, C19H25N5O
  50. Crystal structure of 3,5-bis((E)-4-methoxy-2-(trifluoromethyl)benzylidene)-1-methylpiperidin-4-one, C24H21F6NO3
  51. The crystal structure of N,N′-(Disulfanediyldi-2,1-phenylene)di(6′-methylpyridine)-2-carboxamide, C26H22N4O2S2
  52. Crystal structure of (E)-7-fluoro-2-(4-methoxy-2-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2
  53. Crystal structure of ethyl 1-(4-fluorophenyl)-4-phenyl-1H-pyrrole-3-carboxylate, C19H16FNO2
  54. The crystal structure of cis-diaqua-bis (N-butyl-N-(pyridin-2-yl)pyridin-2-amine-κ2N,N′)cobalt(II)] dichloride trihydrate, C28H44Cl2N6O5Co
  55. Crystal structure of (E)-7-methoxy-2-((6-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C18H17NO3
  56. Crystal structure of (E)-2-((3-fluoropyridin-4-yl)methylene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  57. The crystal structure of 6-bromohexanoic acid, C6H11BrO2
  58. The crystal structure of 4-chloro-thiophenol, C6H5ClS
  59. The crystal structure of 4-bromobenzyl chloride, C7H6BrCl
  60. The crystal structure of di-tert-butyl dicarbonate, C10H18O5
  61. The crystal structure of (2-(4-chlorophenyl)-5-methyl-1,3-dioxan-5-yl)methanol, C12H15ClO3
  62. The crystal structure of the co-crystal: 2-hydroxybenzoic acid – N′-(butan-2-ylidene)pyridine-4-carbohydrazide, C10H13N3O·C7H6O3
  63. Crystal structure and anti-inflammatory activity of (E)-7-fluoro-2-((5-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  64. Crystal structure of (E)-7-fluoro-2-((6-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  65. Crystal structure of 1,1′-(butane-1,4-diyl)bis(3-propyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C32H56F24N8P4
  66. The crystal structure of dichlorido-bis(3-methyl-3-imidazolium-1-ylpropionato-κ2)-cadmium(II), C14H20CdCl2N4O4
  67. Crystal structure of 1-(2-cyanobenzyl)-3-cyano-4-phenyl-4-(2-cyanobenzyl)-1,4-dihydropyridine monohydrate, C56H42N8O
  68. The crystal structure of 3-(carboxymethyl)-1-ethenyl-1H-imidazol-3-ium chloride, C7H9N2O2Cl
  69. The crystal structure of adamantylmethoxydiphenylsilane, C23H28OSi
  70. Redetermination of the crystal structure of (2E,4Z,13E,15Z)-3,5,14,16-tetramethyl-2,6,13,17-tetraazatricyclo[16.4.0.07,12]docosa-1(22),2,4,7,9,11,13,15,18,20-decaene, C22H24N4
  71. Crystal structure of (E)-7-hydroxy-2-((6-methoxypyridin-2-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H15NO3
  72. Crystal structure of catena-poly[diaqua-bis(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2 N:N′)cobalt(II)] dinitrate, C18H28N10O8Co
Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0218/html
Button zum nach oben scrollen