Startseite The crystal structure of 4-bromobenzyl chloride, C7H6BrCl
Artikel Open Access

The crystal structure of 4-bromobenzyl chloride, C7H6BrCl

  • Pholani Manana , Eric C. Hosten ORCID logo und Richard Betz ORCID logo EMAIL logo
Veröffentlicht/Copyright: 15. Juli 2021

Abstract

C7H6BrCl, orthorhombic, Pna21 (no. 33), a = 9.4506(7) Å, b = 18.1015(10) Å, c = 4.4418(3) Å, V = 759.86(9) Å3, Z = 4, R gt (F) = 0.0271, wR ref (F2) = 0.0558, T = 200(2) K.

CCDC no.: 2093261

The molecular structure is shown in Figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.24 × 0.29 × 0.34 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 5.66 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θmax, completeness: 28.3°, >99%
N(hkl)measured, N(hkl)unique, Rint: 7312, 1807, 0.025
Criterion for Iobs, N(hkl)gt: Iobs > 2σ(Iobs), 1571
N(param)refined: 235
Programs: BRUKER [1, 2], SHELX [3], WinGX/ORTEP [4], Mercury [5], PLATON [6]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
C1 0.52863 (15) 0.40516 (15) 0.76473 (17) 0.0618 (4)
C2 0.5373 (2) 0.3373 (2) 0.8852 (2) 0.0955 (7)
H2A 0.602527 0.275066 0.905995 0.143*
H2B 0.451652 0.302985 0.864812 0.143*
H2C 0.563527 0.389595 0.963441 0.143*
C3 0.6564 (3) 0.4691 (3) 0.7976 (4) 0.1295 (11)
H3A 0.728741 0.412841 0.828337 0.194*
H3B 0.672335 0.526404 0.869456 0.194*
H3C 0.650420 0.509189 0.716236 0.194*
C4 0.4893 (3) 0.3307 (2) 0.6404 (2) 0.0945 (7)
H4A 0.558053 0.272942 0.655477 0.142*
H4B 0.477248 0.380044 0.562836 0.142*
H4C 0.406965 0.290390 0.621608 0.142*
C7 −0.00964 (14) 0.75511 (15) 0.68634 (15) 0.0575 (4)
C8 0.06147 (18) 0.81784 (17) 0.82089 (17) 0.0696 (5)
H8A −0.001432 0.864227 0.839283 0.104*
H8B 0.128511 0.869420 0.816858 0.104*
H8C 0.103285 0.760391 0.893454 0.104*
C9 −0.1066 (2) 0.66714 (19) 0.6889 (2) 0.0805 (5)
H9A −0.180418 0.707761 0.693531 0.121*
H9B −0.063860 0.616630 0.768449 0.121*
H9C −0.138662 0.619613 0.606289 0.121*
C10 −0.0730 (2) 0.8400 (2) 0.5704 (2) 0.0873 (6)
H10A −0.142392 0.883038 0.581133 0.131*
H10B −0.110742 0.797090 0.484426 0.131*
H10C −0.006851 0.894976 0.570410 0.131*
O1Aa 0.43765 (13) 0.50715 (11) 0.73432 (17) 0.0555 (4)
O2Aa 0.25815 (15) 0.40045 (13) 0.6966 (2) 0.0818 (6)
O3Aa 0.2532 (2) 0.59567 (17) 0.6721 (3) 0.0692 (5)
O4Aa 0.17181 (14) 0.57709 (12) 0.82467 (14) 0.0658 (4)
O5Aa 0.09014 (15) 0.70265 (12) 0.64805 (14) 0.0541 (4)
C5Aa 0.3147 (4) 0.4878 (3) 0.7046 (5) 0.0556 (6)
C6Aa 0.1668 (3) 0.6206 (2) 0.7246 (4) 0.0499 (8)
O1Bb 0.3916 (9) 0.4374 (9) 0.7597 (10) 0.066 (3)
O2Bb 0.3397 (10) 0.5534 (10) 0.5778 (11) 0.077 (3)
O3Bb 0.2003 (9) 0.5234 (8) 0.6676 (13) 0.078 (3)
O4Bb 0.2330 (8) 0.7173 (7) 0.6996 (10) 0.061 (2)
O5Bb 0.0433 (7) 0.6268 (7) 0.6669 (9) 0.052 (2)
C5Bb 0.3226 (14) 0.5105 (14) 0.6679 (17) 0.050 (3)
C6Bb 0.1670 (17) 0.6332 (14) 0.689 (3) 0.052 (6)
O1Cc 0.413 (2) 0.486 (3) 0.676 (3) 0.040 (5)
O2Cc 0.292 (3) 0.425 (3) 0.777 (4) 0.040 (5)
O3Cc 0.262 (3) 0.601 (3) 0.666 (5) 0.040 (5)
O4Cc 0.046 (2) 0.550 (3) 0.568 (3) 0.040 (5)
O5Cc 0.1257 (18) 0.701 (3) 0.710 (4) 0.040 (5)
C5Cc 0.312 (7) 0.488 (5) 0.702 (9) 0.040 (5)
C6Cc 0.133 (2) 0.613 (3) 0.636 (4) 0.040 (5)
  1. aOccupancy: 0.851(3), bOccupancy: 0.122(2), cOccupancy: 0.027(2).

Source of material

The compound was obtained commercially (Sigma-Aldrich). Crystals suitable for the diffraction study were taken directly from the provided product and mounted under inert conditions to prevent rapid hydrolysis.

Experimental details

Carbon-bound atoms (C–H 0.95 Å for aromatic carbon atoms, C–H 0.99 Å for methylene groups) were included in the refinement in the riding model approximation, with U(H) set to 1.2 Ueq(C).

The Flack parameter for this non-centrosymmetric structure refined to 0.049(15).

Comment

Benzene is among the most important synthons in chemistry. Via electrophilic substitution reactions a vast variety of functionalized derivatives is readily available. The interplay between activating and deactivating substituents as well as the competition and synergism between inductive and mesomeric effects allows for the seemingly endless functionalization of the respective archaetype hydrocarbon scaffold. The latter gives rise to a large toolbox of new synthons that can be applied for the production of dyes, medications, catalysts and ligands for novel coordination compounds. Several simple and fundamental derivatives of benzene are powerful and versatile reagents themselves and have entered the preparative chemist’s toolbox decades ago. One notable example for the latter statement is benzylchloride which is readily available upon simple radical chlorination of toluene and whose status as a benzylic compound opens up a vast array of nucleophilic substitution reactions. During the preparation of a number of functionalized derivatives of boronic and borinic acids the title compound – which is commercially available – was used as a starting material. To prevent accidentally characterizing the title compound instead of the sought-after ligands and in continuation of our own studies into the structural aspects of core-halogenated derivatives of benzene [7], [8], [9], [10], [11], [12], the crystallographic data for the substrate was sought. The molecular and crystal structure of benzylchloride [13] and several other core-halogenated derivatives [14], [15], [16] including that of 1-bromo-4-(bromomethyl)benzene [17] have been reported in the literature.

The title compound is the para-brominated derivative of benzylchloride. The C–Cl bond length of 1.806(5) Å as well as the C–Br bond length of 1.898(4) Å are in good agreement with the respective values apparent for similar connectivity patterns in compounds whose metrical parameters have been deposited with the Cambridge Structural Database [18]. Intracyclic C–C–C angles span a narrow range of 118.1(4)°–121.6(4)° with the smallest value apparent on the carbon atom bearing the chloromethylene substituent and the largest angle found on one of the carbon atoms directly in ortho position to this side-chain-bearing C atom. The side chain adopts an almost perpendicular conformation with regards to the aromatic system it is attached to as the least-squares planes as defined by the non-hydrogen atoms of the central phenyl ring on the one hand and the three heavy atoms of the C–CH2–Cl motif enclose an angle of 89.1(4)°.

The crystal structure is almost devoid of intermolecular interactions. Apart from very weak dispersive Br⋯Cl interactions whose range falls just slightly below the sum of van-der-Waals radii of the atoms participating in them (with a distance of only 3.5544(11) Å the shortening is less than 0.1 Å) and no further intra- or intermolecular interactions are apparent. The absence of even π stacking – the shortest intercentroid distance between two centers of gravity measure at 4.442(3) Å – further explains the volatility and mucosa irritating properties of the compound.

The halogen-based contacts connect the molecules to chains along [1 0 1].


Corresponding author: Dr. Richard Betz, Department of Chemistry, Nelson Mandela University, Summerstrand Campus (South), University Way, Summerstrand, P.O. Box 77000, Port Elizabeth 6031, South Africa, E-mail:

Funding source: National Research Foundation

Acknowledgements

The corresponding author thanks the National Research Foundation for financial support.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The study was financially supported by the National Research Foundation for financial support.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. APEX2 and SAINT; Bruker AXS Inc.: Madison, Wisconsin, USA, 2012.Suche in Google Scholar

2. Bruker. SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2008.Suche in Google Scholar

3. Sheldrick, G. M., Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar PubMed

4. Farrugia, L. J. WinGX and ORTEP for windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Suche in Google Scholar

5. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M, Wood, P. A. Mercury 4.0: from visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226–235; https://doi.org/10.1107/s0021889807067908.Suche in Google Scholar

6. Spek, A. L Structure validation in chemical crystallography. Acta Crystallogr. 2009, D65, 148–155; https://doi.org/10.1107/s090744490804362x.Suche in Google Scholar

7. Betz, R., McCleland, C., Glover, S. 2-(4-Iodophenoxy)acetamide. Acta Crystallogr 2011, E67, o1928; https://doi.org/10.1107/s1600536811025840.Suche in Google Scholar

8. Betz, R., Klüfers, P. 1-Bromomethyl-2-iodobenzene. Acta Crystallogr. 2007, E63, o4753; https://doi.org/10.1107/s1600536807058151.Suche in Google Scholar

9. Betz, R., Klüfers, P. 2-Iodobenzaldehyde. Acta Crystallogr. 2007, E63, o4879; https://doi.org/10.1107/s1600536807061272.Suche in Google Scholar

10. Betz, R., Betzler, F., Klüfers, P. 2-Bromobenzaldehyde cyanohydrin. Acta Crystallogr 2008, E64, o55; https://doi.org/10.1107/s1600536807049604.Suche in Google Scholar PubMed PubMed Central

11. Nogororabanga, J., Mama, N., Hosten, E. C., Betz, R. Crystal structure of 3-iodo-4,6-dimethoxy-benzaldehyde, C9H9IO3. Z. Kristallogr. NCS 2015, 230, 91–92; https://doi.org/10.1515/ncrs-2014-9006.Suche in Google Scholar

12. Hosten, E. C., Betz, R. Redetermination of the crystal structure of p-bromophenacyl bromide at 200 K – localization of hydrogen atoms, C8H6Br2O. Z. Kristallogr. NCS 2015, 230, 59–60; https://doi.org/10.1515/ncrs-2014-9027.Suche in Google Scholar

13. Nayak, S. K., Sathishkumar, R., Row, T. N. G. Directing role of functional groups in selective generation of C–H⋯p interactions: in situ cryo-crystallographic studies on benzyl derivatives. CrystEngComm 2010, 12, 3112–3118; https://doi.org/10.1039/c001190h.Suche in Google Scholar

14. Gaefke, G., Enkelmann, V., Hoger, S. A practical synthesis of 1,4-diiodo-2,5-bis(chloromethyl)benzene and 1,4-diiodo-2,5-bis(bromomethyl)benzene. Synthesis 2006, 2006, 2971–2973.10.1055/s-2006-942534Suche in Google Scholar

15. Basaran, R., Dou, S.-Q., Weiss, A. On the persistence of molecular symmetry in the solid state and the role of molecular group dipole moments. Centrosymmetry in bis-(chloromethyl)benzenes. Ber. Bunsen-Ges. Phys. Chem. 1992, 96, 1688–1698; https://doi.org/10.1002/bbpc.19920961131.Suche in Google Scholar

16. Vilela, S. M. F., Fernandes, J. A., Ananias, D., Carlos, L. D., Rocha, J., Tome, J. P. C., Paz, F. A. A. Photoluminescent layered lanthanide–organic framework based on a novel organic linker. CrystEngComm 2014, 16, 344–358; https://doi.org/10.1039/c3ce41482e.Suche in Google Scholar

17. Jones, P. G., Kus, P., Dix, I.. CCDC 896174: Experimental Crystal Structure Determination, 2013; https://doi.org/10.5517/ccz2jvd.Suche in Google Scholar

18. Groom, C. R., Allen, F. H. The Cambridge Structural Database in retrospect and prospect. Angew. Chem. Int. Ed. 2014, 53, 662–671; https://doi.org/10.1107/s0108768102003890.Suche in Google Scholar PubMed

Received: 2021-06-03
Accepted: 2021-06-30
Published Online: 2021-07-15
Published in Print: 2021-09-27

© 2021 Pholani Manana et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of [aqua-(4-iodopyridine-2,6-dicarboxylato-κ3 O,N,O′)-(1,10-phenanothroline-κ2 N,N′)copper(II)] dihydrate, C19H16O7N3CuI
  4. The crystal structure of tetrakis(1-isopropyl-1H-imidazolium) octamolybdate, C24H44Mo8N8O26
  5. Crystal structure of catena-poly[bis(µ2-3,5-bis(1-imidazolyl)pyridine-κ2 N:N′)-(µ2-3-nitrophthalato-k3 O,O′:O″)cadmium(II)] dihydrate, C30H25N11O8Cd
  6. The crystal structure of diaqua-bis(2-(3-(1H-pyrazol-4-yl)-1H-1,2,4-triazol-5-yl)pyridine-κ2 N:N′)-bis(3,5-dicarboxybenzoato-κ1 O)cobalt(II), C38H30CoN12O14
  7. Crystal structure of the nickel(II) complex aqua-(2,6-di(pyrazin-2-yl)-4,4′-bipyridine-κ3 N,N′,N′′)-(phthalato-κ2 O,O′)nickel(II) tetrahydrate, C26H26N6O9Ni
  8. The crystal structure of 1-[5-(2-fluorophenyl)-1-(pyridine-3-sulfonyl)-1H-pyrrol-3-yl]-N-methylmethanaminium 3-carboxyprop-2-enoate, C21H20FN3O6S
  9. The crystal structure of 1,2-bis(4-pyridyl)ethane - 4,4-dihydroxydiphenylmethane (1/1), C25H21N2O2
  10. Crystal structure of bis(2-((E)-5-chloro-2-hydroxybenzylidene)hydrazineyl)methaniminium trifluoroacetate dihydrate, C34H36Cl4N10O12
  11. Crystal structure of 1-cyclopropyl-7-ethoxy-6,8-difluoro-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid, C15H13F2NO4
  12. Crystal structure of methyl 3-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)benzoate, C18H15BN2O2
  13. Crystal structure of (E)-N′-(2-chloro-6-hydroxybenzylidene)-2-hydroxybenzohydrazide, C14H11ClN2O3
  14. Crystal structure of Al-rich fluorophlogopite, K1.0(Mg2.8Al0.2)(Si2.8Al1.2)O10F2
  15. The crystal structure of 4,5-diiodo-1,3-dimesityl-1H-1,2,3-triazol-3-ium hexafluoridoantimonate(V), C20H22F6I2N3Sb
  16. Crystal structure of tris(3-iodopyridin-1-ium) catena-poly[(hexachlorido-κ1 Cl)-(μ2-trichlorido-κ2 Cl:Cl)diantimony(III)], C15H15Cl9I3N3Sb2
  17. Crystal structure of methyl 2-(1H-naphtho[1,8-de][1.3.2]diazaborinin-2(3H-yl)benzoate C18H15BN2O2
  18. The crystal structure of 1,8-bis(4-methoxybenzoyl)naphthalene-2,7-diyl dibenzoate, C40H28O8
  19. Crystal structure of 2-bromo-1,3,6,8-tetramethylBOPHY (BOPHY = bis(difluoroboron)-1,2-bis((1H-pyrrol-2-yl)methylene)hydrazine), C14H15B2BrF4N4
  20. The crystal structure of (E)-3-chloro-2-(2-(2-fluorobenzylidene)hydrazinyl)pyridine, C12H9ClFN3
  21. Crystal structure of bis(µ2- 4-iodopyridine-2,6-dicarboxylato-κ3O:N:O′)-bis(4-iodopyridine-2,6-dicarboxylato-κ3O:N:O′)-bis(µ2-1-(4-pyridyl)piperazine-κ2N:N′)-hexa-aqua-tetra-copper(II), C46H46Cu4I4N10O22
  22. Crystal structure of poly[diaqua-(μ2-2,5-dihydroxyterephthalato-κ2O:O′)(μ2-bis(4-pyridylformyl)piperazine-κ2N:N′)cadmium(II)] dihydrate, C24H28CdN4O12
  23. Crystal structure of poly[aqua-(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2N:N′)-(μ3-2,3,5,6-tetrafluoroterephthalato-κ3O:O′:O′′)cadmium(II)], C17H14N4O5F4Cd
  24. Crystal structure of 6-(quinolin-8-yl)benzo[a]phenanthridin-5(6H)-one, C26H16N2O
  25. The crystal structure of aqua-bis(6-chloropicolinato-κ2N,O)copper(II), C12H8Cl2N2O5Cu
  26. Crystal structure of catena-poly[diaqua-bis(μ2-4,4′-bipyridyl-κ2N:N′) disilver(I)] 4-oxidopyridine-3-sulfonate trihydrate, C25H29Ag2N5O9S
  27. The crystal structure of 4-(3-bromophenyl)pyrimidin-2-amine, C10H8BrN3
  28. Crystal structure of 6-oxo-4-phenyl-1-propyl-1,6-dihydropyridine-3-carbonitrile, C15H14N2O
  29. Crystal structure of 4-(2,2-difluoroethyl)-2,4-dimethyl-6-(trifluoromethyl)isoquinoline-1,3(2H,4H)-dione, C14H12F5NO2
  30. Crystal structure of dibromido-(1-methyl-1H-imidazole-κ1N)-(3-(3-methyl-1H-imidazol-3-ium-1-yl)propanoato-κ1O)zinc(II), C11H16Br2N4O2Zn
  31. The crystal structure of 1,1′-(((2 (dimethylamino)ethyl)azanediyl)bis(methylene)) bis(naphthalen-2-olato-κ4 N,N′,O,O′)-(pyridine-2,6-dicarboxylato-N,O,O′)- titanium(IV) ─ dichloromethane (2/1), C33H29N3O6Ti
  32. The layered crystal structure of bis(theophyllinium) hexachloridostannate (IV), C14H18N8O8SnCl6
  33. The crystal structre of 3-(1-ethenyl-1H-imidazol-3-ium-3-yl)propane-1-sulfonate, C8H12N2O3S
  34. Synthesis and crystal structure of di-tert-butyl 1″-acetyl-2,2″,9′-trioxo-4a′,9a′-dihydro-1′H,3′H,9′H-dispiro[indoline-3,2′-xanthene-4′,3″-indoline]-1,3′-dicarboxylate, C39H38N2O9
  35. The crystal structure of 4-chloro-2-(quinolin-8-yl)isoindoline-1,3-dione, C17H9ClN2O2
  36. The crystal structure of 1-fluoro-4-(p-tolylethynyl)benzene, C15H11F
  37. The crystal structure of bis[4-bromo-2-(1H-pyrazol-3-yl) phenolato-κ2N,O] copper(II), C18H12Br2CuN4O2
  38. The crystal structure of poly[(μ 3-imidazolato-κ 3 N:N:N′)(tetrahydrofuran- κ 1 O)lithium(I)], C7H11LiN2O
  39. Crystal structure of N′,N′′′-((1E,1′E)-(propane-2,2-diylbis(1H-pyrrole-5,2diyl))bis(methaneylylidene))di(nicotinohydrazide) pentahydrate, C25H24N8O2·5H2O
  40. Crystal structure of 3-(2-ethoxy-2-oxoethyl)-1-ethyl-1H-imidazol-3-ium hexafluoridophos-phate(V), C9H15F6N2O2P
  41. Crystal structure of (1,10-phenanthroline-κ2N,N′)-bis(3-thiophenecarboxylato-κ2O,O′)copper(II), C22H14N2O4S2Cu
  42. The crystal structure of 2-amino-3-carboxypyridin-1-ium iodide hemihydrate, C6H8IN2O2.5
  43. Crystal structure of (E)-7-methoxy-2-((6-methoxypyridin-2-yl)methylene)-tetralone, C18H17NO3
  44. The crystal structure of [μ-hydroxido-bis[(5,5′-dimethyl-2,2′-bipyridine-κ2N,N′)-tricarbonylrhenium(I)] bromide hemihydrate, C30H26N4O9Re2Br
  45. The crystal structure of 2,5-bis(3,5-dimethylphenyl)thiazolo[5,4-d]thiazole, C20H18N2S2
  46. The crystal structure of 5-benzoyl-1-[(E)-(4-fluorobenzylidene)amino]-4-phenylpyrimidin-2(1H)-one, C24H16FN3O2
  47. Crystal structure of monocarbonyl(N-nitroso-N-oxido-phenylamine-κ 2 O,O′)(tricyclohexylphosphine-κP)rhodium(I), C25H39N2O3PRh
  48. Crystal structure of poly[bis[μ3-1,3,5-tris[(1H-imidazol-1-yl)methyl]benzene-κ3N:N′:N″]nickel(II)] hexafluorosilicate, C36H36N12NiSiF6
  49. The crystal structure of 13-(pyrazole-1-yl-4-carbonitrile)-matrine, C19H25N5O
  50. Crystal structure of 3,5-bis((E)-4-methoxy-2-(trifluoromethyl)benzylidene)-1-methylpiperidin-4-one, C24H21F6NO3
  51. The crystal structure of N,N′-(Disulfanediyldi-2,1-phenylene)di(6′-methylpyridine)-2-carboxamide, C26H22N4O2S2
  52. Crystal structure of (E)-7-fluoro-2-(4-methoxy-2-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2
  53. Crystal structure of ethyl 1-(4-fluorophenyl)-4-phenyl-1H-pyrrole-3-carboxylate, C19H16FNO2
  54. The crystal structure of cis-diaqua-bis (N-butyl-N-(pyridin-2-yl)pyridin-2-amine-κ2N,N′)cobalt(II)] dichloride trihydrate, C28H44Cl2N6O5Co
  55. Crystal structure of (E)-7-methoxy-2-((6-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C18H17NO3
  56. Crystal structure of (E)-2-((3-fluoropyridin-4-yl)methylene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  57. The crystal structure of 6-bromohexanoic acid, C6H11BrO2
  58. The crystal structure of 4-chloro-thiophenol, C6H5ClS
  59. The crystal structure of 4-bromobenzyl chloride, C7H6BrCl
  60. The crystal structure of di-tert-butyl dicarbonate, C10H18O5
  61. The crystal structure of (2-(4-chlorophenyl)-5-methyl-1,3-dioxan-5-yl)methanol, C12H15ClO3
  62. The crystal structure of the co-crystal: 2-hydroxybenzoic acid – N′-(butan-2-ylidene)pyridine-4-carbohydrazide, C10H13N3O·C7H6O3
  63. Crystal structure and anti-inflammatory activity of (E)-7-fluoro-2-((5-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  64. Crystal structure of (E)-7-fluoro-2-((6-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  65. Crystal structure of 1,1′-(butane-1,4-diyl)bis(3-propyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C32H56F24N8P4
  66. The crystal structure of dichlorido-bis(3-methyl-3-imidazolium-1-ylpropionato-κ2)-cadmium(II), C14H20CdCl2N4O4
  67. Crystal structure of 1-(2-cyanobenzyl)-3-cyano-4-phenyl-4-(2-cyanobenzyl)-1,4-dihydropyridine monohydrate, C56H42N8O
  68. The crystal structure of 3-(carboxymethyl)-1-ethenyl-1H-imidazol-3-ium chloride, C7H9N2O2Cl
  69. The crystal structure of adamantylmethoxydiphenylsilane, C23H28OSi
  70. Redetermination of the crystal structure of (2E,4Z,13E,15Z)-3,5,14,16-tetramethyl-2,6,13,17-tetraazatricyclo[16.4.0.07,12]docosa-1(22),2,4,7,9,11,13,15,18,20-decaene, C22H24N4
  71. Crystal structure of (E)-7-hydroxy-2-((6-methoxypyridin-2-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H15NO3
  72. Crystal structure of catena-poly[diaqua-bis(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2 N:N′)cobalt(II)] dinitrate, C18H28N10O8Co
Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0227/html
Button zum nach oben scrollen