Home Crystal structure of dibromido-(1-methyl-1H-imidazole-κ1N)-(3-(3-methyl-1H-imidazol-3-ium-1-yl)propanoato-κ1O)zinc(II), C11H16Br2N4O2Zn
Article Open Access

Crystal structure of dibromido-(1-methyl-1H-imidazole-κ1N)-(3-(3-methyl-1H-imidazol-3-ium-1-yl)propanoato-κ1O)zinc(II), C11H16Br2N4O2Zn

  • Pengju Liu , Zongwei Wang , Libing Guo and Junming Tang ORCID logo EMAIL logo
Published/Copyright: June 21, 2021

Abstract

C11H16Br2N4O2Zn, monoclinic, Cc (no. 9), a = 15.534(7) Å, b = 7.956(4) Å, c = 14.589(7) Å, β = 119.094(8)°, V = 1575.5(13) Å3, Z = 4, R gt (F) = 0.0296, wR ref (F2) = 0.0703, T = 296 K.

CCDC no.: 2082130

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Figure 1: 
The asymmetric unit of the title compound.
Figure 1:

The asymmetric unit of the title compound.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.22 × 0.19 × 0.15 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 6.64 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θmax, completeness: 26.0°, >99%
N(hkl)measured, N(hkl)unique, Rint: 4151, 2086, 0.029
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 1845
N(param)refined: 181
Programs: Bruker [1], SHELX [2], [3], Olex2 [4], Diamond [5]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
Br1 0.23519 (6) 0.80205 (9) 1.13786 (5) 0.0599 (3)
Br2 0.23089 (5) 0.32299 (9) 1.15759 (5) 0.0523 (2)
C1 −0.3128 (6) 0.5418 (10) 0.3383 (7) 0.056 (2)
H1A −0.315560 0.595234 0.277884 0.084*
H1B −0.350220 0.439450 0.317294 0.084*
H1C −0.339788 0.615641 0.369817 0.084*
C2 −0.1329 (7) 0.5382 (12) 0.4017 (7) 0.065 (2)
H2 −0.134754 0.588798 0.343335 0.078*
C3 −0.0522 (8) 0.4881 (16) 0.4869 (8) 0.079 (3)
H3 0.012395 0.497545 0.499795 0.095*
C4 −0.1787 (7) 0.4311 (8) 0.5051 (6) 0.0467 (18)
H4 −0.218054 0.392865 0.532549 0.056*
C5 −0.0188 (7) 0.3590 (10) 0.6588 (6) 0.059 (2)
H5A 0.037957 0.302672 0.662026 0.071*
H5B −0.054479 0.278439 0.677582 0.071*
C6 0.0149 (7) 0.5032 (9) 0.7352 (6) 0.0457 (17)
H6A −0.042365 0.553508 0.734323 0.055*
H6B 0.044566 0.587717 0.711388 0.055*
C7 0.0878 (5) 0.4567 (9) 0.8467 (5) 0.0387 (16)
C8 0.4647 (8) 0.4469 (12) 0.8745 (8) 0.071 (3)
H8A 0.533653 0.470010 0.902706 0.107*
H8B 0.453003 0.328988 0.859668 0.107*
H8C 0.427742 0.509789 0.810913 0.107*
C9 0.4942 (8) 0.5608 (12) 1.0469 (8) 0.063 (2)
H9 0.561158 0.584016 1.077059 0.076*
C10 0.4352 (6) 0.5847 (10) 1.0897 (6) 0.053 (2)
H10 0.455805 0.629304 1.156119 0.063*
C11 0.3447 (6) 0.4815 (9) 0.9380 (6) 0.0438 (17)
H11 0.290379 0.440056 0.878342 0.053*
N1 −0.2110 (5) 0.5039 (7) 0.4136 (4) 0.0403 (13)
N2 −0.0829 (5) 0.4204 (8) 0.5518 (5) 0.0481 (15)
N3 0.4342 (5) 0.4949 (8) 0.9497 (5) 0.0453 (14)
N4 0.3428 (5) 0.5355 (7) 1.0234 (5) 0.0399 (13)
O1 0.1200 (6) 0.3157 (8) 0.8674 (5) 0.093 (2)
O2 0.1133 (4) 0.5752 (6) 0.9098 (4) 0.0502 (13)
Zn1 0.22680 (6) 0.54721 (8) 1.04820 (6) 0.0365 (2)

Source of material

All chemicals were available from commercial sources and used without further purification. 3-(3–Carboxy-propyl)-1-methyl-imidazolium bromide was synthesized according to the method reported in the literature [6]. Zinc (0.030 mmol), 3-(2-carboxy-propyl)-1-methyl-imidazolium bromide (0.020 mol) and 1-methylimidazole (0.010 mol) were dissolved in 50 mL water, and this mixture was stirred for 10 days at 50 °C. After filtration of the reaction mixture, the filtrate was concentrated to 10 mL. Slow evaporation at room temperature yielded block crystals after seven days.

Experimental details

The Uiso values were set to 1.5Ueq(C) for hydrogen atoms of all methyl groups and 1.2Ueq(C) for the other functional groups. All hydrogen atoms were placed in the idealized positions and refined using riding coordinates.

Comment

Carboxyl-functional ionic liquids (COOH–ILs) have been attracting growing attention and are used for a variety of applications such as synthesis [6], catalysis [7], [8] and selective separation and extraction [9], [10] and so on. The structures of some COOH–ILs have also been experimentally and theoretically investigated [11], [12], [13], [14]. For example, Fei et al. [6], [12] reported the imidazolium containing one or two carboxylic acid substituent groups with chloride, tetrafluorobrate and trifluoromethanesulphonate anion, and used them to construct stable coordination polymers [12]. Xuan et al. [13] determined the crystal structures of COOH–ILs with bromide, chloride, hexafluorophosphate and bis(trifluoromethylsulfonyl)imide anion and found a difference in the hydrogen bonding network between the hydrophobic and hydrophilic COOH–ILs. In addition, the pH-dependent reversible crystal transformation from ILs to their zwitterions was found [11, 12, 15]. A further model study on a zwitterionic molecule [3-(3-methylimidazolium-1-yl)propanoate] has revealed a substantial conformational rearrangement [16]. Herein, we reported the crystal structure of the title coordination compound, which was prepared by slow evaporation from the reaction mixture, reacted with 3-(2-carboxy-propyl)-1-methyl-imidazolium bromide, 1-methylimidazole in a 2:1 M ratio with an excess of zinc powder.

In the case of the title compound as shown in Figure 1, a mononuclear zinc complex crystallizes in the non-centrosymmetric space group Cc with one independent zinc ion, one 1-methyl-1H-imidazole [17] molecule, one 3-(3-methyl-1H-imidazol-3-ium-1-yl)propanoate and two bromides in the asymmetric unit. The central Zn2+ is fourfold coordinated in a slightly distorted tetrahedral geometry. The Br1–Zn1 and Br2–Zn1 bond lengths are 2.3817 (11) and 2.3738(11) Å, respectively. The distance [2.006 (5)] between Zn1 and N4 is different to that [1.942 (4) Å] between Zn1 and O2. The angle of O2–Zn1–Br2 is about [119.97 (13)°], which is significantly larger than that of O2–Zn1–Br1 [104.74 (12)°]. The conformation of 3-(3-methyl-1H-imidazol-3-ium-1-yl)propanoate is similar to the structure reported in reference [16]. The weak C–H⃛Br and C–H⃛O hydrogen bonds and a C⃛Br short contact (3.549 Å) further stabilize the crystal.


Corresponding author: Junming Tang, Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China; and Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, 450002, P. R. China, E-mail:

Funding source: Scientific Research Projects of the Henan Academy of Sciences

Award Identifier / Grant number: 200603109

Award Identifier / Grant number: 200603026

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The Special Scientific Research Projects of the Henan Academy of Sciences (200603109, 200603026) is gratefully acknowledged.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. SAINT and SADABS; Bruker AXS Inc.: Madison, WI, USA, 2009.Search in Google Scholar

2. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

3. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

5. Brandenburg, K. DIAMOND. Visual Crystal Structure Information System. Version 3.2i; Crystal Impact: Bonn, Germany, 2012.Search in Google Scholar

6. Fei, Z. F., Geldbach, T. J., Scopelliti, R., Dyson, P. J. Metal-organic frameworks derived from imidazolium dicarboxylates and group I and II salts. Inorg. Chem. 2006, 45, 6331–6337; https://doi.org/10.1021/ic060297n.Search in Google Scholar PubMed

7. Ma, C., Li, J. Y., Peng, J. J., Bai, Y., Zhang, G. D., Xiao, W. J., Lai, G. Q. Effect of carboxyl-functionalized imidazolium salts on the rhodium-catalyzed hydrosilylation of alkene. J. Organomet. Chem. 2013, 727, 28–36; https://doi.org/10.1016/j.jorganchem.2012.12.016.Search in Google Scholar

8. Albert–Soriano, M., Pastor, I. M. Metal-organic framework based on copper and carboxylate-imidazole as robust and effective catalyst in the oxidative amidation of carboxylic acids and formamides. Eur. J. Org Chem. 2016, 2016, 5180–5188; https://doi.org/10.1002/ejoc.201600991.Search in Google Scholar

9. Chen, Y. H., Wang, H. Y., Pei, Y. C., Wang, J. J. Selective separation of scandium (III) from rare earth metals by carboxyl-functionalized ionic liquids. Separ. Purif. Technol. 2017, 178, 261–268; https://doi.org/10.1016/j.seppur.2017.01.058.Search in Google Scholar

10. Fan, Y. C., Dong, X., Li, Y., Zhong, Y. Y., Miao, J., Hua, S. F., Sun, Y. C. Extraction of L-tryptophan by hydroxyl-functionalized ionic liquids. Ind. Eng. Chem. Res. 2015, 54, 12966–12973; https://doi.org/10.1021/acs.iecr.5b03651.Search in Google Scholar

11. Barczynski, P., Komasa, A., Ratajczak–Sitarz, M., Katrusiak, A., Huczynski, A., Brzezinski, B. Molecular structure of 1,3-bis(carboxymethyl)imidazolium bromide and its betaine form in crystal. J. Mol. Struct. 2008, 876, 170–176.10.1016/j.molstruc.2007.06.015Search in Google Scholar

12. Fei, Z., Zhao, D., Geldbach, T. J., Scopelliti, R., Dyson, P. J. Brønsted acidic ionic liquids and their zwitterions: synthesis, characterization and pKa determination. Chem. Eur J. 2004, 10, 4886–4893; https://doi.org/10.1002/chem.200400145.Search in Google Scholar PubMed

13. Xuan, X.-P., Chang, L.-L., Zhang, H., Wang, N., Zhao, Y. Hydrogen bonds in the crystal structure of hydrophobic and hydrophilic COOH-functionalized imidazolium ionic liquids. CrystEngComm 2014, 16, 3040–3046; https://doi.org/10.1039/c3ce42492h.Search in Google Scholar

14. Liu, X., Tong, Y., Wang, A., Xuan, X. Synthesis, structural characterization, thermal stability, vibrational spectra and density functional theoretical studies of 1,3-bis(carboxymethyl)imidazolium nitrate ionic liquid. J. Mol. Liq. 2017, 246, 173–177; https://doi.org/10.1016/j.molliq.2017.09.069.Search in Google Scholar

15. Li, Z., Li, A., Zhou, Y., Zhang, L., Zhao, Y., Xuan, X. From hydrophobity to hydrophilicity: design, synthesis, structural transformation and distinguishment of highly symmetric 1,3-bis(carboxymethyl)imidazolium bis(trifluoromethyl)sulfonyl)amide ionic liquids. J. Mol. Struct. 2021, 1231, 129688; https://doi.org/10.1016/j.molstruc.2020.129688.Search in Google Scholar

16. Braun, D. E., Lampl, M., Wurst, K., Kahlenberg, V., Griesser, U. J., Schottenberger, H. Computational and analytical approaches for investigating hydrates: the neat and hydrated solid-state forms of 3-(3-methylimidazolium-1-yl)propanoate. CrystEngComm 2018, 20, 7826–7837; https://doi.org/10.1039/c8ce01565a.Search in Google Scholar

17. Zhang, G., Luan, J., Wang, X.-J., The crystal structure bis{hexakis(1-methyl-1H-imidazole-κ1N)cobalt(II)} tetrakis(μ3-oxido)-octakis(μ2-oxido)-tetradecaoxido-octamolybdate(VI), C24H36CoMo4N12O13. Z. Kristallogr. - N. Cryst. Struct. 2020, 235, 1307–1309; https://doi.org/10.1515/ncrs-2020-0289.Search in Google Scholar

Received: 2021-05-10
Accepted: 2021-05-31
Published Online: 2021-06-21
Published in Print: 2021-09-27

© 2021 Pengju Liu et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of [aqua-(4-iodopyridine-2,6-dicarboxylato-κ3 O,N,O′)-(1,10-phenanothroline-κ2 N,N′)copper(II)] dihydrate, C19H16O7N3CuI
  4. The crystal structure of tetrakis(1-isopropyl-1H-imidazolium) octamolybdate, C24H44Mo8N8O26
  5. Crystal structure of catena-poly[bis(µ2-3,5-bis(1-imidazolyl)pyridine-κ2 N:N′)-(µ2-3-nitrophthalato-k3 O,O′:O″)cadmium(II)] dihydrate, C30H25N11O8Cd
  6. The crystal structure of diaqua-bis(2-(3-(1H-pyrazol-4-yl)-1H-1,2,4-triazol-5-yl)pyridine-κ2 N:N′)-bis(3,5-dicarboxybenzoato-κ1 O)cobalt(II), C38H30CoN12O14
  7. Crystal structure of the nickel(II) complex aqua-(2,6-di(pyrazin-2-yl)-4,4′-bipyridine-κ3 N,N′,N′′)-(phthalato-κ2 O,O′)nickel(II) tetrahydrate, C26H26N6O9Ni
  8. The crystal structure of 1-[5-(2-fluorophenyl)-1-(pyridine-3-sulfonyl)-1H-pyrrol-3-yl]-N-methylmethanaminium 3-carboxyprop-2-enoate, C21H20FN3O6S
  9. The crystal structure of 1,2-bis(4-pyridyl)ethane - 4,4-dihydroxydiphenylmethane (1/1), C25H21N2O2
  10. Crystal structure of bis(2-((E)-5-chloro-2-hydroxybenzylidene)hydrazineyl)methaniminium trifluoroacetate dihydrate, C34H36Cl4N10O12
  11. Crystal structure of 1-cyclopropyl-7-ethoxy-6,8-difluoro-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid, C15H13F2NO4
  12. Crystal structure of methyl 3-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)benzoate, C18H15BN2O2
  13. Crystal structure of (E)-N′-(2-chloro-6-hydroxybenzylidene)-2-hydroxybenzohydrazide, C14H11ClN2O3
  14. Crystal structure of Al-rich fluorophlogopite, K1.0(Mg2.8Al0.2)(Si2.8Al1.2)O10F2
  15. The crystal structure of 4,5-diiodo-1,3-dimesityl-1H-1,2,3-triazol-3-ium hexafluoridoantimonate(V), C20H22F6I2N3Sb
  16. Crystal structure of tris(3-iodopyridin-1-ium) catena-poly[(hexachlorido-κ1 Cl)-(μ2-trichlorido-κ2 Cl:Cl)diantimony(III)], C15H15Cl9I3N3Sb2
  17. Crystal structure of methyl 2-(1H-naphtho[1,8-de][1.3.2]diazaborinin-2(3H-yl)benzoate C18H15BN2O2
  18. The crystal structure of 1,8-bis(4-methoxybenzoyl)naphthalene-2,7-diyl dibenzoate, C40H28O8
  19. Crystal structure of 2-bromo-1,3,6,8-tetramethylBOPHY (BOPHY = bis(difluoroboron)-1,2-bis((1H-pyrrol-2-yl)methylene)hydrazine), C14H15B2BrF4N4
  20. The crystal structure of (E)-3-chloro-2-(2-(2-fluorobenzylidene)hydrazinyl)pyridine, C12H9ClFN3
  21. Crystal structure of bis(µ2- 4-iodopyridine-2,6-dicarboxylato-κ3O:N:O′)-bis(4-iodopyridine-2,6-dicarboxylato-κ3O:N:O′)-bis(µ2-1-(4-pyridyl)piperazine-κ2N:N′)-hexa-aqua-tetra-copper(II), C46H46Cu4I4N10O22
  22. Crystal structure of poly[diaqua-(μ2-2,5-dihydroxyterephthalato-κ2O:O′)(μ2-bis(4-pyridylformyl)piperazine-κ2N:N′)cadmium(II)] dihydrate, C24H28CdN4O12
  23. Crystal structure of poly[aqua-(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2N:N′)-(μ3-2,3,5,6-tetrafluoroterephthalato-κ3O:O′:O′′)cadmium(II)], C17H14N4O5F4Cd
  24. Crystal structure of 6-(quinolin-8-yl)benzo[a]phenanthridin-5(6H)-one, C26H16N2O
  25. The crystal structure of aqua-bis(6-chloropicolinato-κ2N,O)copper(II), C12H8Cl2N2O5Cu
  26. Crystal structure of catena-poly[diaqua-bis(μ2-4,4′-bipyridyl-κ2N:N′) disilver(I)] 4-oxidopyridine-3-sulfonate trihydrate, C25H29Ag2N5O9S
  27. The crystal structure of 4-(3-bromophenyl)pyrimidin-2-amine, C10H8BrN3
  28. Crystal structure of 6-oxo-4-phenyl-1-propyl-1,6-dihydropyridine-3-carbonitrile, C15H14N2O
  29. Crystal structure of 4-(2,2-difluoroethyl)-2,4-dimethyl-6-(trifluoromethyl)isoquinoline-1,3(2H,4H)-dione, C14H12F5NO2
  30. Crystal structure of dibromido-(1-methyl-1H-imidazole-κ1N)-(3-(3-methyl-1H-imidazol-3-ium-1-yl)propanoato-κ1O)zinc(II), C11H16Br2N4O2Zn
  31. The crystal structure of 1,1′-(((2 (dimethylamino)ethyl)azanediyl)bis(methylene)) bis(naphthalen-2-olato-κ4 N,N′,O,O′)-(pyridine-2,6-dicarboxylato-N,O,O′)- titanium(IV) ─ dichloromethane (2/1), C33H29N3O6Ti
  32. The layered crystal structure of bis(theophyllinium) hexachloridostannate (IV), C14H18N8O8SnCl6
  33. The crystal structre of 3-(1-ethenyl-1H-imidazol-3-ium-3-yl)propane-1-sulfonate, C8H12N2O3S
  34. Synthesis and crystal structure of di-tert-butyl 1″-acetyl-2,2″,9′-trioxo-4a′,9a′-dihydro-1′H,3′H,9′H-dispiro[indoline-3,2′-xanthene-4′,3″-indoline]-1,3′-dicarboxylate, C39H38N2O9
  35. The crystal structure of 4-chloro-2-(quinolin-8-yl)isoindoline-1,3-dione, C17H9ClN2O2
  36. The crystal structure of 1-fluoro-4-(p-tolylethynyl)benzene, C15H11F
  37. The crystal structure of bis[4-bromo-2-(1H-pyrazol-3-yl) phenolato-κ2N,O] copper(II), C18H12Br2CuN4O2
  38. The crystal structure of poly[(μ 3-imidazolato-κ 3 N:N:N′)(tetrahydrofuran- κ 1 O)lithium(I)], C7H11LiN2O
  39. Crystal structure of N′,N′′′-((1E,1′E)-(propane-2,2-diylbis(1H-pyrrole-5,2diyl))bis(methaneylylidene))di(nicotinohydrazide) pentahydrate, C25H24N8O2·5H2O
  40. Crystal structure of 3-(2-ethoxy-2-oxoethyl)-1-ethyl-1H-imidazol-3-ium hexafluoridophos-phate(V), C9H15F6N2O2P
  41. Crystal structure of (1,10-phenanthroline-κ2N,N′)-bis(3-thiophenecarboxylato-κ2O,O′)copper(II), C22H14N2O4S2Cu
  42. The crystal structure of 2-amino-3-carboxypyridin-1-ium iodide hemihydrate, C6H8IN2O2.5
  43. Crystal structure of (E)-7-methoxy-2-((6-methoxypyridin-2-yl)methylene)-tetralone, C18H17NO3
  44. The crystal structure of [μ-hydroxido-bis[(5,5′-dimethyl-2,2′-bipyridine-κ2N,N′)-tricarbonylrhenium(I)] bromide hemihydrate, C30H26N4O9Re2Br
  45. The crystal structure of 2,5-bis(3,5-dimethylphenyl)thiazolo[5,4-d]thiazole, C20H18N2S2
  46. The crystal structure of 5-benzoyl-1-[(E)-(4-fluorobenzylidene)amino]-4-phenylpyrimidin-2(1H)-one, C24H16FN3O2
  47. Crystal structure of monocarbonyl(N-nitroso-N-oxido-phenylamine-κ 2 O,O′)(tricyclohexylphosphine-κP)rhodium(I), C25H39N2O3PRh
  48. Crystal structure of poly[bis[μ3-1,3,5-tris[(1H-imidazol-1-yl)methyl]benzene-κ3N:N′:N″]nickel(II)] hexafluorosilicate, C36H36N12NiSiF6
  49. The crystal structure of 13-(pyrazole-1-yl-4-carbonitrile)-matrine, C19H25N5O
  50. Crystal structure of 3,5-bis((E)-4-methoxy-2-(trifluoromethyl)benzylidene)-1-methylpiperidin-4-one, C24H21F6NO3
  51. The crystal structure of N,N′-(Disulfanediyldi-2,1-phenylene)di(6′-methylpyridine)-2-carboxamide, C26H22N4O2S2
  52. Crystal structure of (E)-7-fluoro-2-(4-methoxy-2-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2
  53. Crystal structure of ethyl 1-(4-fluorophenyl)-4-phenyl-1H-pyrrole-3-carboxylate, C19H16FNO2
  54. The crystal structure of cis-diaqua-bis (N-butyl-N-(pyridin-2-yl)pyridin-2-amine-κ2N,N′)cobalt(II)] dichloride trihydrate, C28H44Cl2N6O5Co
  55. Crystal structure of (E)-7-methoxy-2-((6-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C18H17NO3
  56. Crystal structure of (E)-2-((3-fluoropyridin-4-yl)methylene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  57. The crystal structure of 6-bromohexanoic acid, C6H11BrO2
  58. The crystal structure of 4-chloro-thiophenol, C6H5ClS
  59. The crystal structure of 4-bromobenzyl chloride, C7H6BrCl
  60. The crystal structure of di-tert-butyl dicarbonate, C10H18O5
  61. The crystal structure of (2-(4-chlorophenyl)-5-methyl-1,3-dioxan-5-yl)methanol, C12H15ClO3
  62. The crystal structure of the co-crystal: 2-hydroxybenzoic acid – N′-(butan-2-ylidene)pyridine-4-carbohydrazide, C10H13N3O·C7H6O3
  63. Crystal structure and anti-inflammatory activity of (E)-7-fluoro-2-((5-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  64. Crystal structure of (E)-7-fluoro-2-((6-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  65. Crystal structure of 1,1′-(butane-1,4-diyl)bis(3-propyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C32H56F24N8P4
  66. The crystal structure of dichlorido-bis(3-methyl-3-imidazolium-1-ylpropionato-κ2)-cadmium(II), C14H20CdCl2N4O4
  67. Crystal structure of 1-(2-cyanobenzyl)-3-cyano-4-phenyl-4-(2-cyanobenzyl)-1,4-dihydropyridine monohydrate, C56H42N8O
  68. The crystal structure of 3-(carboxymethyl)-1-ethenyl-1H-imidazol-3-ium chloride, C7H9N2O2Cl
  69. The crystal structure of adamantylmethoxydiphenylsilane, C23H28OSi
  70. Redetermination of the crystal structure of (2E,4Z,13E,15Z)-3,5,14,16-tetramethyl-2,6,13,17-tetraazatricyclo[16.4.0.07,12]docosa-1(22),2,4,7,9,11,13,15,18,20-decaene, C22H24N4
  71. Crystal structure of (E)-7-hydroxy-2-((6-methoxypyridin-2-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H15NO3
  72. Crystal structure of catena-poly[diaqua-bis(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2 N:N′)cobalt(II)] dinitrate, C18H28N10O8Co
Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0180/html
Scroll to top button