Home Crystal structure of Al-rich fluorophlogopite, K1.0(Mg2.8Al0.2)(Si2.8Al1.2)O10F2
Article Open Access

Crystal structure of Al-rich fluorophlogopite, K1.0(Mg2.8Al0.2)(Si2.8Al1.2)O10F2

  • Chen Aiqing ORCID logo EMAIL logo and Zhang Lixue
Published/Copyright: June 25, 2021

Abstract

K1.0(Mg2.8Al0.2)(Si2.8Al1.2)O10F2, monoclinic, C2/m (no. 12), a = 5.3040(11) Å, b = 9.2288(18) Å, c = 10.1286(20) Å, β = 100.173(3)°, V = 488.00(17) Å3, Z = 2, R gt (F) = 0.0387, wR ref (F2) = 0.1086, T = 298 K.

CCDC no.: 2077627

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless flake
Size: 0.10 × 0.10 × 0.05 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 1.28 mm−1
Diffractometer, scan mode: XtaLAB, φ and ω
θmax, completeness: 33.7°, >99%
N(hkl)measured, N(hkl)unique, Rint: 2246, 940, 0.017
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 874
N(param)refined: 53
Programs: CrysAlisPRO [1], SHELX [2], [3], Olex2 [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
K1 1.000000 0.000000 0.000000 0.0287 (3)
F1 0.3672 (3) 0.500000 0.59653 (16) 0.0122 (3)
O1 0.5119 (4) 0.000000 0.1673 (2) 0.0163 (4)
O2 0.8282 (3) 0.22812 (18) 0.16727 (14) 0.0164 (3)
O3 0.6313 (3) 0.16655 (14) 0.39191 (14) 0.0098 (3)
Si1a 0.57553 (9) 0.16665 (5) 0.22461 (5) 0.00728 (15)
Al1b 0.57553 (9) 0.16665 (5) 0.22461 (5) 0.00728 (15)
Mg2c 0.500000 0.33029 (9) 0.500000 0.0084 (2)
Al3d 0.500000 0.33029 (9) 0.500000 0.0084 (2)
Mg1c 0.000000 0.500000 0.500000 0.0089 (3)
Al2d 0.000000 0.500000 0.500000 0.0089 (3)
  1. aOccupancy: 0.7, bOccupancy: 0.3, cOccupancy: 0.934, dOccupancy: 0.066.

Source of material

Pure raw materials of 11.6 wt% SiO2, 32.6 wt% Al2O3, 30.7 wt% MgO, and 25.1 wt% K2SiF2 were ground in an agate mortar and loaded into a corundum crucible. The muffle furnace was heated to 1450 °C in 4 h to completely melt the reactants. Then, the muffle furnace was cooled to 1000 °C at a rate of 10 °C/h to make the fluorophlogopite crystallize during this period. At last, the furnace was freely cooled to room temperature. The specimen thus obtained was an intimate aggregate of flakes of colorless and transparent crystals.

Experimental details

Crystals were selected from the aggregate and cut to a suitable size for the single crystal measurement. The chemical compositions of the measured single crystal were determined by electron microprobe analysis (EPMA, JEOL–JXA8230). Atomic occupancy of Si/Al ratio in the tetrahedral sites and Mg/Al ratio in the octahedral sheets were constrained according to the EPMA results. Moreover, atoms sharing the same sites were constrained to have identical thermal displacements.

Comment

Synthetic fluorophlogopite attracts considerable interest because of its wide applications to material science [5], [6], [7]. Fluorophlogopite belongs to tetrahedron-octahedron-tetrahedron (TOT) type in which one octahedral sheet is sandwiched between two tetrahedral sheets (Figure 1a). Cation substitutions of Al3+ for Si4+ in the tetrahedral sheet lend to a positive charge deficiency in the TOT layer. The negative charge of the TOT unit is balanced and bonded together by the K+ in the interlayer (Figure 1a) [8]. To date, fluorophlogopite with different Al content, K1.0Mg2.5Si4O10F2, K1.0Mg2.75(Si3.5Al0.5)O10F2, and K1.0Mg3(Si3Al1)O10F2 have been synthesized [9], [10], [11]. Previous research shows that K1.0Mg2.5Si4O10F2 is considerably brittle, while K1.0Mg3(Si3Al1)O10F2 is much more flexible. This suggests that the Al content has an important influence on the amount of negative charge which could affect the physical and chemical properties of the compound. However, Al-rich fluorophlogopite is poorly known.

EPMA shows that the chemical compositions of the synthetic Al-rich fluorophlogopite are: SiO2 40.03 wt%, Al2O3 17.06 wt%, FeO 0.02 wt%, MgO 26.87 wt%, Na2O 0.01 wt%, K2O 11.09 wt%, and F 9.05 wt%. The crystal formula based on EMPA is K1.0(Mg2.8Al0.2)(Si2.8Al1.2)O10F2, which is consistent with the result of structural refinement. This Al-rich fluorophlogopite belongs to the 1 M polytype (space group C2/m) with cell dimensions of a = 5.3040(11) Å, b = 9.2288(18) Å, c = 10.1286(20) Å, and β = 100.173(3)°. In the tetrahedral sheet, an individual TO4 tetrahedron is linked with neighboring TO4 by sharing the three basal oxygen atoms (i.e., O1 and O2) to form an infinite two-dimensional hexagonal mesh pattern (Figure 1b). Si and Al occupy the tetrahedral sites in a ratio Si:Al = 2.8:1.2. The average bond distance (<T–O> = 1.658 Å) of the Al-rich fluorophlogopite is obviously longer than in K1.0Mg2.5Si4O10F2 (<T–O> = 1.625 Å), K1.0Mg2.75(Si3.5Al0.5)O10F2 (<T–O> = 1.638 Å), and K1.0Mg3 (Si3Al1)O10F2 (<T–O> = 1.642 Å) [9], [10], [11]. Substitutions of Al3+ for Si4+ in the tetrahedral sheet decrease the bond lengths because the ionic radius of Al3+ (0.53 Å) is larger than that of Si4+ (0.40 Å). The tetrahedral rotation angle α is 8.66°. In the octahedral sheet, each octahedral coordination unit is comprised of four apical oxygen atoms (i.e., O3) and two F anions (Figure 1a). An individual octahedron is linked laterally by sharing edges to form octahedral sheets (Figure 1c). The octahedral sites are mainly occupied by Mg (2.8 atoms per formula unit) and minor amounts of Al (0.2 atoms per formula unit). The average bond distance of <M1–O> and <M2–O> are 2.058 and 2.054 Å, respectively. Similar bond distances between M1 and M2 sites confirm that Al is disordered in the octahedral sites [12]. The interlayer K+ is coordinated with 12 oxygen atoms (six from the upper and six from the lower tetrahedral sheets) (Figure 1a). The mean bond length of <K–O> is 3.138 Å.


Corresponding author: Chen Aiqing, Analysis and Testing Center, China Three Gorges University, Yichang 443002, China, E-mail:

Funding source: National Natural Science Foundation of China 10.13039/501100001809

Award Identifier / Grant number: 41772039

Funding source: Talent program of China Three Gorges University

Award Identifier / Grant number: 19103

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was financially supported by National Natural Science Foundation of China (No. 41772039) and Talent program of China Three Gorges University (No. 19103).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Agilent Technologies. CrysAlisPRO; Agilent Technologies: Santa Clara, CA, USA, 2017.Search in Google Scholar

2. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

5. Shell, H. R., Ivey, K. H. Fluorine Micas; U. S. Department of the Interior, Bureau of Mines: Washington, 1969.Search in Google Scholar

6. Hammouda, T., Pichavant, M., Barbey, P., Brearley, A. J. Synthesis of fluorphlogopite single crystals. applications to experimental studies. Eur. J. Mineral 1995, 7, 1381–1387; https://doi.org/10.1127/ejm/7/6/1381.Search in Google Scholar

7. Dong, G., Zhang, L. Investigation on grinding force and machining quality during rotary ultrasonic grinding deep-small hole of fluorophlogopite ceramics. Int. J. Adv. Manuf. Technol. 2019, 104, 2815–2825; https://doi.org/10.1007/s00170-019-04138-7.Search in Google Scholar

8. Meunier, A. Clays; Springer: Berlin, Germany, 2005.Search in Google Scholar

9. Mccauley, J. W., Newnham, R. E., Gibbs, G. V. Crystal structure analysis of synthetic fluorophlogopite. Am. Mineral. 1973, 58, 249–254.Search in Google Scholar

10. Toraya, H., Iwai, S., Makimo, F., Kondo, R., Daimon, M. The crystal structure of tetrasilicic potassium fluor mica, KMg2,5Si4O10F2. Z. für Kristallogr. - Cryst. Mater. 1976, 144, 42–52; https://doi.org/10.1524/zkri.1976.144.1-6.42.Search in Google Scholar

11. Toraya, H., Iwai, S., Marumo, F., Nishikawa, T. The crystal structure of synthetic mica, KMg2.75Si3.5Al0.5O10F2. Mineral. J. 1978, 9, 210–220; https://doi.org/10.2465/minerj.9.210.Search in Google Scholar

12. Gianfagna, A., Scordari, F., Mazziotti-Tagliani, S., Ventruti, G., Ottolini, L. Fluorophlogopite from Biancavilla (Mt. Etna, Sicily, Italy): crystal structure and crystal chemistry of a new F-dominant analog of phlogopite. Am. Mineral. 2007, 92, 1601–1609; https://doi.org/10.2138/am.2007.2502.Search in Google Scholar

Received: 2021-04-26
Accepted: 2021-05-17
Published Online: 2021-06-25
Published in Print: 2021-09-27

© 2021 Chen Aiqing and Zhang Lixue, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of [aqua-(4-iodopyridine-2,6-dicarboxylato-κ3 O,N,O′)-(1,10-phenanothroline-κ2 N,N′)copper(II)] dihydrate, C19H16O7N3CuI
  4. The crystal structure of tetrakis(1-isopropyl-1H-imidazolium) octamolybdate, C24H44Mo8N8O26
  5. Crystal structure of catena-poly[bis(µ2-3,5-bis(1-imidazolyl)pyridine-κ2 N:N′)-(µ2-3-nitrophthalato-k3 O,O′:O″)cadmium(II)] dihydrate, C30H25N11O8Cd
  6. The crystal structure of diaqua-bis(2-(3-(1H-pyrazol-4-yl)-1H-1,2,4-triazol-5-yl)pyridine-κ2 N:N′)-bis(3,5-dicarboxybenzoato-κ1 O)cobalt(II), C38H30CoN12O14
  7. Crystal structure of the nickel(II) complex aqua-(2,6-di(pyrazin-2-yl)-4,4′-bipyridine-κ3 N,N′,N′′)-(phthalato-κ2 O,O′)nickel(II) tetrahydrate, C26H26N6O9Ni
  8. The crystal structure of 1-[5-(2-fluorophenyl)-1-(pyridine-3-sulfonyl)-1H-pyrrol-3-yl]-N-methylmethanaminium 3-carboxyprop-2-enoate, C21H20FN3O6S
  9. The crystal structure of 1,2-bis(4-pyridyl)ethane - 4,4-dihydroxydiphenylmethane (1/1), C25H21N2O2
  10. Crystal structure of bis(2-((E)-5-chloro-2-hydroxybenzylidene)hydrazineyl)methaniminium trifluoroacetate dihydrate, C34H36Cl4N10O12
  11. Crystal structure of 1-cyclopropyl-7-ethoxy-6,8-difluoro-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid, C15H13F2NO4
  12. Crystal structure of methyl 3-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)benzoate, C18H15BN2O2
  13. Crystal structure of (E)-N′-(2-chloro-6-hydroxybenzylidene)-2-hydroxybenzohydrazide, C14H11ClN2O3
  14. Crystal structure of Al-rich fluorophlogopite, K1.0(Mg2.8Al0.2)(Si2.8Al1.2)O10F2
  15. The crystal structure of 4,5-diiodo-1,3-dimesityl-1H-1,2,3-triazol-3-ium hexafluoridoantimonate(V), C20H22F6I2N3Sb
  16. Crystal structure of tris(3-iodopyridin-1-ium) catena-poly[(hexachlorido-κ1 Cl)-(μ2-trichlorido-κ2 Cl:Cl)diantimony(III)], C15H15Cl9I3N3Sb2
  17. Crystal structure of methyl 2-(1H-naphtho[1,8-de][1.3.2]diazaborinin-2(3H-yl)benzoate C18H15BN2O2
  18. The crystal structure of 1,8-bis(4-methoxybenzoyl)naphthalene-2,7-diyl dibenzoate, C40H28O8
  19. Crystal structure of 2-bromo-1,3,6,8-tetramethylBOPHY (BOPHY = bis(difluoroboron)-1,2-bis((1H-pyrrol-2-yl)methylene)hydrazine), C14H15B2BrF4N4
  20. The crystal structure of (E)-3-chloro-2-(2-(2-fluorobenzylidene)hydrazinyl)pyridine, C12H9ClFN3
  21. Crystal structure of bis(µ2- 4-iodopyridine-2,6-dicarboxylato-κ3O:N:O′)-bis(4-iodopyridine-2,6-dicarboxylato-κ3O:N:O′)-bis(µ2-1-(4-pyridyl)piperazine-κ2N:N′)-hexa-aqua-tetra-copper(II), C46H46Cu4I4N10O22
  22. Crystal structure of poly[diaqua-(μ2-2,5-dihydroxyterephthalato-κ2O:O′)(μ2-bis(4-pyridylformyl)piperazine-κ2N:N′)cadmium(II)] dihydrate, C24H28CdN4O12
  23. Crystal structure of poly[aqua-(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2N:N′)-(μ3-2,3,5,6-tetrafluoroterephthalato-κ3O:O′:O′′)cadmium(II)], C17H14N4O5F4Cd
  24. Crystal structure of 6-(quinolin-8-yl)benzo[a]phenanthridin-5(6H)-one, C26H16N2O
  25. The crystal structure of aqua-bis(6-chloropicolinato-κ2N,O)copper(II), C12H8Cl2N2O5Cu
  26. Crystal structure of catena-poly[diaqua-bis(μ2-4,4′-bipyridyl-κ2N:N′) disilver(I)] 4-oxidopyridine-3-sulfonate trihydrate, C25H29Ag2N5O9S
  27. The crystal structure of 4-(3-bromophenyl)pyrimidin-2-amine, C10H8BrN3
  28. Crystal structure of 6-oxo-4-phenyl-1-propyl-1,6-dihydropyridine-3-carbonitrile, C15H14N2O
  29. Crystal structure of 4-(2,2-difluoroethyl)-2,4-dimethyl-6-(trifluoromethyl)isoquinoline-1,3(2H,4H)-dione, C14H12F5NO2
  30. Crystal structure of dibromido-(1-methyl-1H-imidazole-κ1N)-(3-(3-methyl-1H-imidazol-3-ium-1-yl)propanoato-κ1O)zinc(II), C11H16Br2N4O2Zn
  31. The crystal structure of 1,1′-(((2 (dimethylamino)ethyl)azanediyl)bis(methylene)) bis(naphthalen-2-olato-κ4 N,N′,O,O′)-(pyridine-2,6-dicarboxylato-N,O,O′)- titanium(IV) ─ dichloromethane (2/1), C33H29N3O6Ti
  32. The layered crystal structure of bis(theophyllinium) hexachloridostannate (IV), C14H18N8O8SnCl6
  33. The crystal structre of 3-(1-ethenyl-1H-imidazol-3-ium-3-yl)propane-1-sulfonate, C8H12N2O3S
  34. Synthesis and crystal structure of di-tert-butyl 1″-acetyl-2,2″,9′-trioxo-4a′,9a′-dihydro-1′H,3′H,9′H-dispiro[indoline-3,2′-xanthene-4′,3″-indoline]-1,3′-dicarboxylate, C39H38N2O9
  35. The crystal structure of 4-chloro-2-(quinolin-8-yl)isoindoline-1,3-dione, C17H9ClN2O2
  36. The crystal structure of 1-fluoro-4-(p-tolylethynyl)benzene, C15H11F
  37. The crystal structure of bis[4-bromo-2-(1H-pyrazol-3-yl) phenolato-κ2N,O] copper(II), C18H12Br2CuN4O2
  38. The crystal structure of poly[(μ 3-imidazolato-κ 3 N:N:N′)(tetrahydrofuran- κ 1 O)lithium(I)], C7H11LiN2O
  39. Crystal structure of N′,N′′′-((1E,1′E)-(propane-2,2-diylbis(1H-pyrrole-5,2diyl))bis(methaneylylidene))di(nicotinohydrazide) pentahydrate, C25H24N8O2·5H2O
  40. Crystal structure of 3-(2-ethoxy-2-oxoethyl)-1-ethyl-1H-imidazol-3-ium hexafluoridophos-phate(V), C9H15F6N2O2P
  41. Crystal structure of (1,10-phenanthroline-κ2N,N′)-bis(3-thiophenecarboxylato-κ2O,O′)copper(II), C22H14N2O4S2Cu
  42. The crystal structure of 2-amino-3-carboxypyridin-1-ium iodide hemihydrate, C6H8IN2O2.5
  43. Crystal structure of (E)-7-methoxy-2-((6-methoxypyridin-2-yl)methylene)-tetralone, C18H17NO3
  44. The crystal structure of [μ-hydroxido-bis[(5,5′-dimethyl-2,2′-bipyridine-κ2N,N′)-tricarbonylrhenium(I)] bromide hemihydrate, C30H26N4O9Re2Br
  45. The crystal structure of 2,5-bis(3,5-dimethylphenyl)thiazolo[5,4-d]thiazole, C20H18N2S2
  46. The crystal structure of 5-benzoyl-1-[(E)-(4-fluorobenzylidene)amino]-4-phenylpyrimidin-2(1H)-one, C24H16FN3O2
  47. Crystal structure of monocarbonyl(N-nitroso-N-oxido-phenylamine-κ 2 O,O′)(tricyclohexylphosphine-κP)rhodium(I), C25H39N2O3PRh
  48. Crystal structure of poly[bis[μ3-1,3,5-tris[(1H-imidazol-1-yl)methyl]benzene-κ3N:N′:N″]nickel(II)] hexafluorosilicate, C36H36N12NiSiF6
  49. The crystal structure of 13-(pyrazole-1-yl-4-carbonitrile)-matrine, C19H25N5O
  50. Crystal structure of 3,5-bis((E)-4-methoxy-2-(trifluoromethyl)benzylidene)-1-methylpiperidin-4-one, C24H21F6NO3
  51. The crystal structure of N,N′-(Disulfanediyldi-2,1-phenylene)di(6′-methylpyridine)-2-carboxamide, C26H22N4O2S2
  52. Crystal structure of (E)-7-fluoro-2-(4-methoxy-2-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2
  53. Crystal structure of ethyl 1-(4-fluorophenyl)-4-phenyl-1H-pyrrole-3-carboxylate, C19H16FNO2
  54. The crystal structure of cis-diaqua-bis (N-butyl-N-(pyridin-2-yl)pyridin-2-amine-κ2N,N′)cobalt(II)] dichloride trihydrate, C28H44Cl2N6O5Co
  55. Crystal structure of (E)-7-methoxy-2-((6-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C18H17NO3
  56. Crystal structure of (E)-2-((3-fluoropyridin-4-yl)methylene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  57. The crystal structure of 6-bromohexanoic acid, C6H11BrO2
  58. The crystal structure of 4-chloro-thiophenol, C6H5ClS
  59. The crystal structure of 4-bromobenzyl chloride, C7H6BrCl
  60. The crystal structure of di-tert-butyl dicarbonate, C10H18O5
  61. The crystal structure of (2-(4-chlorophenyl)-5-methyl-1,3-dioxan-5-yl)methanol, C12H15ClO3
  62. The crystal structure of the co-crystal: 2-hydroxybenzoic acid – N′-(butan-2-ylidene)pyridine-4-carbohydrazide, C10H13N3O·C7H6O3
  63. Crystal structure and anti-inflammatory activity of (E)-7-fluoro-2-((5-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  64. Crystal structure of (E)-7-fluoro-2-((6-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  65. Crystal structure of 1,1′-(butane-1,4-diyl)bis(3-propyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C32H56F24N8P4
  66. The crystal structure of dichlorido-bis(3-methyl-3-imidazolium-1-ylpropionato-κ2)-cadmium(II), C14H20CdCl2N4O4
  67. Crystal structure of 1-(2-cyanobenzyl)-3-cyano-4-phenyl-4-(2-cyanobenzyl)-1,4-dihydropyridine monohydrate, C56H42N8O
  68. The crystal structure of 3-(carboxymethyl)-1-ethenyl-1H-imidazol-3-ium chloride, C7H9N2O2Cl
  69. The crystal structure of adamantylmethoxydiphenylsilane, C23H28OSi
  70. Redetermination of the crystal structure of (2E,4Z,13E,15Z)-3,5,14,16-tetramethyl-2,6,13,17-tetraazatricyclo[16.4.0.07,12]docosa-1(22),2,4,7,9,11,13,15,18,20-decaene, C22H24N4
  71. Crystal structure of (E)-7-hydroxy-2-((6-methoxypyridin-2-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H15NO3
  72. Crystal structure of catena-poly[diaqua-bis(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2 N:N′)cobalt(II)] dinitrate, C18H28N10O8Co
Downloaded on 15.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0157/html
Scroll to top button