Startseite Synthesis and crystal structure of di-tert-butyl 1″-acetyl-2,2″,9′-trioxo-4a′,9a′-dihydro-1′H,3′H,9′H-dispiro[indoline-3,2′-xanthene-4′,3″-indoline]-1,3′-dicarboxylate, C39H38N2O9
Artikel Open Access

Synthesis and crystal structure of di-tert-butyl 1″-acetyl-2,2″,9′-trioxo-4a′,9a′-dihydro-1′H,3′H,9′H-dispiro[indoline-3,2′-xanthene-4′,3″-indoline]-1,3′-dicarboxylate, C39H38N2O9

  • Wu-Wu Li ORCID logo EMAIL logo , Xiong-Li Liu , Xiao-Peng Li , Hao-Nan Zheng , A-Tong Weng , Ling-Ying Feng und Lu Liu
Veröffentlicht/Copyright: 18. Juni 2021

Abstract

C39H38N2O9, monoclinic, P21/c (no. 14), a = 9.9846(6) Å, b = 31.4308(13) Å, c = 11.5739(6) Å, β = 110.712(7)°, V = 3397.4(3) Å3, Z = 4, R gt (F) = 0.0596, wRref(F2) = 0.1221, T = 293 K.

CCDC no.: 2086877

The molecular structure is shown in the figure (hydrogen atoms were omitted for clarity). Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.16 × 0.13 × 0.11 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.10 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θmax, completeness: 29.6°, >99%
N(hkl)measured, N(hkl)unique, Rint: 20424, 8056, 0.051
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 5688
N(param)refined: 458
Programs: Bruker [1], SHELX [2]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
O1 0.49268 (18) 0.18408 (5) 0.79183 (15) 0.0368 (4)
O2 0.64878 (14) 0.28258 (4) 0.63529 (13) 0.0215 (3)
O3 0.74880 (14) 0.31560 (4) 0.90630 (12) 0.0201 (3)
O4 0.92507 (16) 0.42983 (5) 0.87169 (14) 0.0306 (4)
O5 0.49526 (15) 0.42826 (4) 0.82492 (12) 0.0223 (3)
O6 0.23033 (13) 0.38045 (4) 0.60009 (12) 0.0183 (3)
O7 0.25144 (15) 0.31789 (4) 0.51315 (14) 0.0263 (3)
O8 0.31723 (15) 0.49176 (4) 0.79910 (12) 0.0212 (3)
O9 0.24867 (15) 0.52715 (4) 0.61685 (13) 0.0249 (3)
N1 0.52248 (17) 0.25325 (5) 0.75146 (15) 0.0178 (4)
N2 0.37647 (17) 0.46539 (5) 0.64275 (14) 0.0163 (3)
C1 0.5324 (2) 0.32910 (6) 0.74002 (18) 0.0166 (4)
C2 0.43796 (19) 0.31519 (6) 0.80994 (17) 0.0162 (4)
C3 0.3683 (2) 0.33940 (6) 0.87029 (18) 0.0210 (4)
H3 0.369890 0.368940 0.866324 0.025*
C4 0.2954 (2) 0.31906 (7) 0.93747 (19) 0.0249 (5)
H4 0.246592 0.334953 0.977736 0.030*
C5 0.2960 (2) 0.27518 (7) 0.94391 (19) 0.0250 (5)
H5 0.247062 0.261898 0.988952 0.030*
C6 0.3675 (2) 0.25034 (6) 0.88514 (18) 0.0214 (4)
H6 0.368012 0.220821 0.890802 0.026*
C7 0.4379 (2) 0.27106 (6) 0.81786 (17) 0.0180 (4)
C8 0.5777 (2) 0.28625 (6) 0.69990 (17) 0.0171 (4)
C9 0.6681 (2) 0.35001 (6) 0.83104 (18) 0.0169 (4)
H9 0.639916 0.369778 0.883865 0.020*
C10 0.8779 (2) 0.32722 (6) 0.99111 (18) 0.0202 (4)
C11 0.9436 (2) 0.29799 (7) 1.08407 (19) 0.0257 (5)
H11 0.901493 0.271667 1.085194 0.031*
C12 1.0722 (2) 0.30861 (7) 1.1748 (2) 0.0295 (5)
H12 1.117060 0.289172 1.237076 0.035*
C13 1.1353 (2) 0.34790 (7) 1.1741 (2) 0.0295 (5)
H13 1.220749 0.354919 1.236757 0.035*
C14 1.0714 (2) 0.37641 (7) 1.08101 (19) 0.0250 (5)
H14 1.114289 0.402666 1.080817 0.030*
C15 0.9421 (2) 0.36633 (6) 0.98604 (18) 0.0199 (4)
C16 0.8807 (2) 0.39410 (6) 0.87733 (19) 0.0203 (4)
C17 0.7599 (2) 0.37376 (6) 0.77198 (18) 0.0177 (4)
H17 0.802843 0.352534 0.733661 0.021*
C18 0.6779 (2) 0.40547 (6) 0.67114 (19) 0.0203 (4)
H18A 0.704284 0.400462 0.599278 0.024*
H18B 0.709312 0.433962 0.700578 0.024*
C19 0.5124 (2) 0.40397 (6) 0.62977 (17) 0.0166 (4)
C20 0.4640 (2) 0.35701 (6) 0.62150 (17) 0.0159 (4)
H20 0.498611 0.344297 0.559933 0.019*
C21 0.3025 (2) 0.34942 (6) 0.57068 (17) 0.0168 (4)
C22 0.0706 (2) 0.37942 (6) 0.55657 (19) 0.0222 (4)
C23 0.0371 (2) 0.42098 (7) 0.6058 (2) 0.0357 (6)
H23A 0.084355 0.421828 0.693864 0.054*
H23B −0.064497 0.423339 0.585978 0.054*
H23C 0.069954 0.444194 0.568963 0.054*
C24 0.0102 (2) 0.37871 (8) 0.4169 (2) 0.0327 (5)
H24A 0.059461 0.399262 0.385260 0.049*
H24B −0.089981 0.385530 0.388797 0.049*
H24C 0.022641 0.350876 0.388075 0.049*
C25 0.0219 (2) 0.34165 (7) 0.6131 (2) 0.0311 (5)
H25A 0.055126 0.315822 0.587999 0.047*
H25B −0.080747 0.341321 0.585665 0.047*
H25C 0.060573 0.343890 0.701541 0.047*
C26 0.44382 (19) 0.42554 (6) 0.50591 (17) 0.0162 (4)
C27 0.4613 (2) 0.43241 (6) 0.71501 (18) 0.0174 (4)
C28 0.3649 (2) 0.46072 (6) 0.51691 (17) 0.0159 (4)
C29 0.2889 (2) 0.48476 (6) 0.41492 (18) 0.0194 (4)
H29 0.234244 0.507913 0.421966 0.023*
C30 0.2964 (2) 0.47328 (6) 0.30135 (18) 0.0211 (4)
H30 0.245992 0.489034 0.231467 0.025*
C31 0.3774 (2) 0.43895 (6) 0.29027 (18) 0.0209 (4)
H31 0.382392 0.432151 0.213687 0.025*
C32 0.4516 (2) 0.41451 (6) 0.39325 (18) 0.0192 (4)
H32 0.505347 0.391158 0.386180 0.023*
C33 0.2469 (2) 0.52174 (6) 0.85992 (18) 0.0212 (4)
C34 0.3150 (2) 0.56543 (6) 0.8695 (2) 0.0263 (5)
H34A 0.416180 0.563227 0.913497 0.040*
H34B 0.273669 0.584306 0.912976 0.040*
H34C 0.298006 0.576379 0.788123 0.040*
C35 0.0868 (2) 0.52217 (7) 0.7905 (2) 0.0274 (5)
H35A 0.067435 0.532713 0.708333 0.041*
H35B 0.041595 0.540269 0.832701 0.041*
H35C 0.049801 0.493796 0.786470 0.041*
C36 0.2811 (3) 0.50167 (7) 0.9859 (2) 0.0293 (5)
H36A 0.246674 0.472893 0.976435 0.044*
H36B 0.235438 0.517591 1.032424 0.044*
H36C 0.382823 0.501794 1.028791 0.044*
C37 0.5490 (2) 0.20934 (6) 0.74495 (19) 0.0236 (5)
C38 0.6490 (2) 0.19630 (7) 0.6812 (2) 0.0313 (5)
H38A 0.657248 0.165863 0.682714 0.047*
H38B 0.741453 0.208681 0.722864 0.047*
H38C 0.612451 0.205984 0.597151 0.047*
C39 0.3073 (2) 0.49828 (6) 0.68328 (18) 0.0186 (4)

Source of material

The mixture of tert-butyl 2-oxo-3-((4-oxo-4H -chromen-3-yl)methyl)indoline-1-carboxylate (0.2 mmol), tert-butyl (E)-2-(1-acetyl-2-oxoindolin-3-ylidene)acetate (0.3 mmol), 5 Å molecular sieves 125 mg, catalyst (3,5-bis(trifluoromethyl)phenyl)-3-((S)-(6-methoxyquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)thiourea (10 mol %) and 6.0 mL of freshly distilled Et2O was maintained at room temperature for 84 h. Then concentration by evaporation under reduced pressure gave a crude product, which was purified by column chromatography on a silica gel column using hexane/EtOAc (8/1, v/v) to give the corresponding pure products [3].

Experimental details

All hydrogen atoms were placed in geometrically idealized positions. The Uiso values of the hydrogen atoms of methyl groups were set to 1.5Ueq(C) and the Uiso values of all other hydrogen atons were set to 1.2Ueq(C).

Comment

The spirooxindole system is the core structure of some natural alkaloids. Moreover, they have momentous medicinal properties including anticancer [4], antioxidant [5], antimicrobial [6], antifungal [7], anti HIV [8] and antitubercular activities [9]. Due to the aforesaid properties a variety of methods using diverse types of catalysts have been reported in the literature for the procurement of these types of compounds [1013]. On the other hand, 4H-chromen-4-ones, a well-known class of oxygenated heterocyclic compounds, play an important role in nature due to their recognized biological, pharmacological and biocidal activities [1416]. Due to the significance of hybrid systems in drug discovery [17], there is an urgent need to assemble multiple pharmacophores into a single molecule. According to physiological activity structure combination strategy, spirooxindole skeleton and 4H-chromen-4-ones ring were joined together and the title compound was synthesized.

X-ray crystal structural analysis indicates that the molecular structure of the title structure consists of a 1,2,3,4,4a,9a-hexahydro-9H-xanthen-9-one ring, a 1-acetylindoline-2-one ring, a tert-butyl 2-oxoindoline-1-carboxylate ring and a tert-butyloxycarbonyl moiety (cf. the figure). The indoline-2-one rings are essentially planar, with a mean deviation from plane of 0.0168(3) Å for 1-acetylindoline-2-one ring and 0.0120(2) Å for tert-butyl 2-oxoindoline-1-carboxylate ring. Xanthen and indoline-2-one rings form spiro structural feature through atom C1 and C19. Because C1 and C19 are sp3 carbon atoms, the indoline-2-one rings are non-coplanar with the xanthen ring. Bond lengths and angles in the title molecule are all in the expected ranges [18, 19].


Corresponding author: Wu-Wu Li, College of Chemistry & Chemical Engineering, Xianyang Normal University, Xianyang, 712000, P. R. China, E-mail:

Funding source: Scientific Research Program Funded by Shaanxi Provincial Education Department

Award Identifier / Grant number: 18JK0837

Funding source: Natural Science Basic Research Plan Funded by Shaanxi Province of China

Award Identifier / Grant number: 2018JM2045

Funding source: Scientific Research Project Funded by Xianyang Normal University

Award Identifier / Grant number: XSYK18006

Funding source: University Students Research and Innovation Training Program of Ministry of Education

Award Identifier / Grant number: S202010722009

Funding source: Qing–Lan Talents Project Funded by Xianyang Normal University

Award Identifier / Grant number: XSYQL201904

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was supported by Scientific Research Program Funded by Shaanxi Provincial Education Department (No. 18JK0837), Natural Science Basic Research Plan Funded by Shaanxi Province of China (No. 2018JM2045), Scientific Research Project Funded by Xianyang Normal University (No. XSYK18006), University Students Research and Innovation Training Program of Ministry of Education (S202010722009) and Qing–Lan Talents Project Funded by Xianyang Normal University (No. XSYQL201904).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. APEX2 and SAINT; Bruker AXS Inc.: Madison, Wisconsin, USA, 2012.Suche in Google Scholar

2. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

3. Liu, X. L., Zhou, G., Gong, Y., Yao, Z., Zuo, X., Zhang, W. H., Zhou, Y. Stereocontrolled synthesis of bispirooxindole-based hexahydroxanthones with five contiguous stereocenters. Org. Lett. 2019, 21, 1428–1431; https://doi.org/10.1021/acs.orglett.9b00139.Suche in Google Scholar PubMed

4. Ding, K., Lu, Y., Nikolovska-Coleska, Z., Qiu, S., Ding, Y., Gao, W., Stuckey, J., Krajewski, K., Roller, P. P., Tomita, Y., Parrish, D. A., Deschamps, J. R., Wang, S. Structure-based design of potent non-peptide MDM2 inhibitors. J. Am. Chem. Soc. 2005, 127, 10130–10131; https://doi.org/10.1021/ja051147z.Suche in Google Scholar PubMed

5. Mathusalini, S., Arasakumar, T., Lakshmi, K., Lin, C. H., Mohan, P. S., Ramnath, M. G., Thirugnanasampandan, R. Synthesis and biological evaluation of new spiro oxindoles with embedded pharmacophores. New J. Chem. 2016, 40, 5164–5169; https://doi.org/10.1039/c6nj00534a.Suche in Google Scholar

6. Ramadoss, H., Saravanan, D., Sudhan, S. P. N., Mansoor, S. S. Synthesis and antimicrobial evaluation of diversely substituted spirooxindole derivatives. Der Pharm. Lett. 2016, 8, 25–29.Suche in Google Scholar

7. Abdel-Rahman, A. H., Keshk, E. M., Hanna, M. A., El-Bady, S. M. Synthesis and evaluation of some new spiro indoline-based heterocycles as potentially active antimicrobial agents. Bioorg. Med. Chem. 2004, 12, 2483–2488; https://doi.org/10.1016/j.bmc.2003.10.063.Suche in Google Scholar PubMed

8. Kumari, G., Modi, M., Gupta, S. K., Singh, R. K. Rhodium(II) acetate-catalyzed stereoselective synthesis, SAR and anti-HIV activity of novel oxindoles bearing cyclopropane ring. Eur. J. Med. Chem. 2011, 46, 1181–1188; https://doi.org/10.1016/j.ejmech.2011.01.037.Suche in Google Scholar PubMed

9. Vintonyak, V. V., Warburg, K., Kruse, H., Grimme, S., Hübel, K., Rauh, D., Waldmann, H. Identification of thiazolidinones spiro-fused to indolin-2-ones as potent and selective inhibitors of the mycobacterium tuberculosis protein tyrosine phosphatase B. Angew. Chem. Int. Ed. Engl. 2010, 49, 5902–5905; https://doi.org/10.1002/anie.201002138.Suche in Google Scholar PubMed

10. Rao, B. M., Niranjan Reddy, G., Vijaikumar Reddy, T., Prabhavathi Devi, B. L. A., Prasad, R. B. N., Yadav, J. S., Reddy, B. V. S. Carbon—SO3H: a novel and recyclable solid acid catalyst for the synthesis of spiro[4H-pyran-3,3′-oxindoles]. Tetrahedron Lett. 2013, 54, 2466–2471.10.1016/j.tetlet.2013.02.089Suche in Google Scholar

11. Rad-Moghadam, K., Youseftabar-Miri, L. Ambient synthesis of spiro[4H-pyran-oxindole] derivatives under [BMIm]BF4 catalysis. Tetrahedron 2011, 67, 5693–5699; https://doi.org/10.1016/j.tet.2011.05.077.Suche in Google Scholar

12. Wagh, Y. B., Tayade, Y. A., Padvi, S. A., Patil, B. S., Patil, N. B., Dalal, D. S. A cesium fluoride promoted efficient and rapid multicomponent synthesis of functionalized 2-amino-3-cyano-4H-pyran and spirooxindole derivatives. Chin. Chem. Lett. 2015, 26, 1273–1277; https://doi.org/10.1016/j.cclet.2015.06.014.Suche in Google Scholar

13. Li, Y., Chen, H., Shi, C., Shi, D., Ji, S. Efficient one-pot synthesis of spirooxindole derivatives catalyzed by L-proline in aqueous medium. J. Comb. Chem. 2010, 12, 231–237; https://doi.org/10.1021/cc9001185.Suche in Google Scholar PubMed

14. Keri, R. S., Budagumpi, S., Pai, R. K., Balakrishna, R. G. Chromones as a privileged scaffold in drug discovery: a review. Eur. J. Med. Chem. 2014, 78, 340–374; https://doi.org/10.1016/j.ejmech.2014.03.047.Suche in Google Scholar PubMed

15. Gaspar, A., Matos, M. J., Garrido, J., Uriarte, E., Chromone, B F. A valid scaffold in medicinal chemistry. Chem. Rev. 2014, 114, 4960–4992; https://doi.org/10.1021/cr400265z.Suche in Google Scholar PubMed

16. Sharma, K. S., Kumar, S., Chand, K., Kathuria, A., Gupta, A., Jain, R. An update on natural occurrence and biological activity of chromones. Curr. Med. Chem. 2011, 18, 3825–3852; https://doi.org/10.2174/092986711803414359.Suche in Google Scholar PubMed

17. Ramprasad, J., Nayak, N., Dalimba, U. Design of new phenothiazine-thiadiazole hybrids via molecular hybridization approach for the development of potent antitubercular agents. Eur. J. Med. Chem. 2015, 106, 75–84; https://doi.org/10.1016/j.ejmech.2015.10.035.Suche in Google Scholar PubMed

18. Li, W.-W., Gu, Y.-Z., Cao, L. Synthesis and crystal structure of tert- butyl (2′R,3R,3′R,4a′R,9a′S)-1-acetyl-5-chloro-3″-methyl-2,5″,9′-trioxo-1″-phenyl-1″,4a′,5″, 9a′-tetrahydro-1′H,3′H,9′H-dispiro[indoline-3,4′-xanthene-2′,4″-pyrazole]-3′-carboxylate, C36H32ClN3O7. Z. Kristallogr. NCS 2021, 236, 77–80; https://doi.org/10.1515/ncrs-2020-0408.Suche in Google Scholar

19. Liu, X.-L., Zuo, X., Wang, J.-X., Chang, S.-q., Wei, Q.-D., Zhou, Y. A bifunctional pyrazolone-chromone synthon directed organocatalytic double Michael cascade reaction: forging five stereocenters in structurally diverse hexahydroxanthones. Org. Chem. Front. 2019, 6, 1485–1490; https://doi.org/10.1039/c9qo00265k.Suche in Google Scholar

Received: 2021-05-14
Accepted: 2021-05-31
Published Online: 2021-06-18
Published in Print: 2021-09-27

© 2021 Wu-Wu Li et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of [aqua-(4-iodopyridine-2,6-dicarboxylato-κ3 O,N,O′)-(1,10-phenanothroline-κ2 N,N′)copper(II)] dihydrate, C19H16O7N3CuI
  4. The crystal structure of tetrakis(1-isopropyl-1H-imidazolium) octamolybdate, C24H44Mo8N8O26
  5. Crystal structure of catena-poly[bis(µ2-3,5-bis(1-imidazolyl)pyridine-κ2 N:N′)-(µ2-3-nitrophthalato-k3 O,O′:O″)cadmium(II)] dihydrate, C30H25N11O8Cd
  6. The crystal structure of diaqua-bis(2-(3-(1H-pyrazol-4-yl)-1H-1,2,4-triazol-5-yl)pyridine-κ2 N:N′)-bis(3,5-dicarboxybenzoato-κ1 O)cobalt(II), C38H30CoN12O14
  7. Crystal structure of the nickel(II) complex aqua-(2,6-di(pyrazin-2-yl)-4,4′-bipyridine-κ3 N,N′,N′′)-(phthalato-κ2 O,O′)nickel(II) tetrahydrate, C26H26N6O9Ni
  8. The crystal structure of 1-[5-(2-fluorophenyl)-1-(pyridine-3-sulfonyl)-1H-pyrrol-3-yl]-N-methylmethanaminium 3-carboxyprop-2-enoate, C21H20FN3O6S
  9. The crystal structure of 1,2-bis(4-pyridyl)ethane - 4,4-dihydroxydiphenylmethane (1/1), C25H21N2O2
  10. Crystal structure of bis(2-((E)-5-chloro-2-hydroxybenzylidene)hydrazineyl)methaniminium trifluoroacetate dihydrate, C34H36Cl4N10O12
  11. Crystal structure of 1-cyclopropyl-7-ethoxy-6,8-difluoro-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid, C15H13F2NO4
  12. Crystal structure of methyl 3-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)benzoate, C18H15BN2O2
  13. Crystal structure of (E)-N′-(2-chloro-6-hydroxybenzylidene)-2-hydroxybenzohydrazide, C14H11ClN2O3
  14. Crystal structure of Al-rich fluorophlogopite, K1.0(Mg2.8Al0.2)(Si2.8Al1.2)O10F2
  15. The crystal structure of 4,5-diiodo-1,3-dimesityl-1H-1,2,3-triazol-3-ium hexafluoridoantimonate(V), C20H22F6I2N3Sb
  16. Crystal structure of tris(3-iodopyridin-1-ium) catena-poly[(hexachlorido-κ1 Cl)-(μ2-trichlorido-κ2 Cl:Cl)diantimony(III)], C15H15Cl9I3N3Sb2
  17. Crystal structure of methyl 2-(1H-naphtho[1,8-de][1.3.2]diazaborinin-2(3H-yl)benzoate C18H15BN2O2
  18. The crystal structure of 1,8-bis(4-methoxybenzoyl)naphthalene-2,7-diyl dibenzoate, C40H28O8
  19. Crystal structure of 2-bromo-1,3,6,8-tetramethylBOPHY (BOPHY = bis(difluoroboron)-1,2-bis((1H-pyrrol-2-yl)methylene)hydrazine), C14H15B2BrF4N4
  20. The crystal structure of (E)-3-chloro-2-(2-(2-fluorobenzylidene)hydrazinyl)pyridine, C12H9ClFN3
  21. Crystal structure of bis(µ2- 4-iodopyridine-2,6-dicarboxylato-κ3O:N:O′)-bis(4-iodopyridine-2,6-dicarboxylato-κ3O:N:O′)-bis(µ2-1-(4-pyridyl)piperazine-κ2N:N′)-hexa-aqua-tetra-copper(II), C46H46Cu4I4N10O22
  22. Crystal structure of poly[diaqua-(μ2-2,5-dihydroxyterephthalato-κ2O:O′)(μ2-bis(4-pyridylformyl)piperazine-κ2N:N′)cadmium(II)] dihydrate, C24H28CdN4O12
  23. Crystal structure of poly[aqua-(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2N:N′)-(μ3-2,3,5,6-tetrafluoroterephthalato-κ3O:O′:O′′)cadmium(II)], C17H14N4O5F4Cd
  24. Crystal structure of 6-(quinolin-8-yl)benzo[a]phenanthridin-5(6H)-one, C26H16N2O
  25. The crystal structure of aqua-bis(6-chloropicolinato-κ2N,O)copper(II), C12H8Cl2N2O5Cu
  26. Crystal structure of catena-poly[diaqua-bis(μ2-4,4′-bipyridyl-κ2N:N′) disilver(I)] 4-oxidopyridine-3-sulfonate trihydrate, C25H29Ag2N5O9S
  27. The crystal structure of 4-(3-bromophenyl)pyrimidin-2-amine, C10H8BrN3
  28. Crystal structure of 6-oxo-4-phenyl-1-propyl-1,6-dihydropyridine-3-carbonitrile, C15H14N2O
  29. Crystal structure of 4-(2,2-difluoroethyl)-2,4-dimethyl-6-(trifluoromethyl)isoquinoline-1,3(2H,4H)-dione, C14H12F5NO2
  30. Crystal structure of dibromido-(1-methyl-1H-imidazole-κ1N)-(3-(3-methyl-1H-imidazol-3-ium-1-yl)propanoato-κ1O)zinc(II), C11H16Br2N4O2Zn
  31. The crystal structure of 1,1′-(((2 (dimethylamino)ethyl)azanediyl)bis(methylene)) bis(naphthalen-2-olato-κ4 N,N′,O,O′)-(pyridine-2,6-dicarboxylato-N,O,O′)- titanium(IV) ─ dichloromethane (2/1), C33H29N3O6Ti
  32. The layered crystal structure of bis(theophyllinium) hexachloridostannate (IV), C14H18N8O8SnCl6
  33. The crystal structre of 3-(1-ethenyl-1H-imidazol-3-ium-3-yl)propane-1-sulfonate, C8H12N2O3S
  34. Synthesis and crystal structure of di-tert-butyl 1″-acetyl-2,2″,9′-trioxo-4a′,9a′-dihydro-1′H,3′H,9′H-dispiro[indoline-3,2′-xanthene-4′,3″-indoline]-1,3′-dicarboxylate, C39H38N2O9
  35. The crystal structure of 4-chloro-2-(quinolin-8-yl)isoindoline-1,3-dione, C17H9ClN2O2
  36. The crystal structure of 1-fluoro-4-(p-tolylethynyl)benzene, C15H11F
  37. The crystal structure of bis[4-bromo-2-(1H-pyrazol-3-yl) phenolato-κ2N,O] copper(II), C18H12Br2CuN4O2
  38. The crystal structure of poly[(μ 3-imidazolato-κ 3 N:N:N′)(tetrahydrofuran- κ 1 O)lithium(I)], C7H11LiN2O
  39. Crystal structure of N′,N′′′-((1E,1′E)-(propane-2,2-diylbis(1H-pyrrole-5,2diyl))bis(methaneylylidene))di(nicotinohydrazide) pentahydrate, C25H24N8O2·5H2O
  40. Crystal structure of 3-(2-ethoxy-2-oxoethyl)-1-ethyl-1H-imidazol-3-ium hexafluoridophos-phate(V), C9H15F6N2O2P
  41. Crystal structure of (1,10-phenanthroline-κ2N,N′)-bis(3-thiophenecarboxylato-κ2O,O′)copper(II), C22H14N2O4S2Cu
  42. The crystal structure of 2-amino-3-carboxypyridin-1-ium iodide hemihydrate, C6H8IN2O2.5
  43. Crystal structure of (E)-7-methoxy-2-((6-methoxypyridin-2-yl)methylene)-tetralone, C18H17NO3
  44. The crystal structure of [μ-hydroxido-bis[(5,5′-dimethyl-2,2′-bipyridine-κ2N,N′)-tricarbonylrhenium(I)] bromide hemihydrate, C30H26N4O9Re2Br
  45. The crystal structure of 2,5-bis(3,5-dimethylphenyl)thiazolo[5,4-d]thiazole, C20H18N2S2
  46. The crystal structure of 5-benzoyl-1-[(E)-(4-fluorobenzylidene)amino]-4-phenylpyrimidin-2(1H)-one, C24H16FN3O2
  47. Crystal structure of monocarbonyl(N-nitroso-N-oxido-phenylamine-κ 2 O,O′)(tricyclohexylphosphine-κP)rhodium(I), C25H39N2O3PRh
  48. Crystal structure of poly[bis[μ3-1,3,5-tris[(1H-imidazol-1-yl)methyl]benzene-κ3N:N′:N″]nickel(II)] hexafluorosilicate, C36H36N12NiSiF6
  49. The crystal structure of 13-(pyrazole-1-yl-4-carbonitrile)-matrine, C19H25N5O
  50. Crystal structure of 3,5-bis((E)-4-methoxy-2-(trifluoromethyl)benzylidene)-1-methylpiperidin-4-one, C24H21F6NO3
  51. The crystal structure of N,N′-(Disulfanediyldi-2,1-phenylene)di(6′-methylpyridine)-2-carboxamide, C26H22N4O2S2
  52. Crystal structure of (E)-7-fluoro-2-(4-methoxy-2-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2
  53. Crystal structure of ethyl 1-(4-fluorophenyl)-4-phenyl-1H-pyrrole-3-carboxylate, C19H16FNO2
  54. The crystal structure of cis-diaqua-bis (N-butyl-N-(pyridin-2-yl)pyridin-2-amine-κ2N,N′)cobalt(II)] dichloride trihydrate, C28H44Cl2N6O5Co
  55. Crystal structure of (E)-7-methoxy-2-((6-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C18H17NO3
  56. Crystal structure of (E)-2-((3-fluoropyridin-4-yl)methylene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  57. The crystal structure of 6-bromohexanoic acid, C6H11BrO2
  58. The crystal structure of 4-chloro-thiophenol, C6H5ClS
  59. The crystal structure of 4-bromobenzyl chloride, C7H6BrCl
  60. The crystal structure of di-tert-butyl dicarbonate, C10H18O5
  61. The crystal structure of (2-(4-chlorophenyl)-5-methyl-1,3-dioxan-5-yl)methanol, C12H15ClO3
  62. The crystal structure of the co-crystal: 2-hydroxybenzoic acid – N′-(butan-2-ylidene)pyridine-4-carbohydrazide, C10H13N3O·C7H6O3
  63. Crystal structure and anti-inflammatory activity of (E)-7-fluoro-2-((5-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  64. Crystal structure of (E)-7-fluoro-2-((6-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  65. Crystal structure of 1,1′-(butane-1,4-diyl)bis(3-propyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C32H56F24N8P4
  66. The crystal structure of dichlorido-bis(3-methyl-3-imidazolium-1-ylpropionato-κ2)-cadmium(II), C14H20CdCl2N4O4
  67. Crystal structure of 1-(2-cyanobenzyl)-3-cyano-4-phenyl-4-(2-cyanobenzyl)-1,4-dihydropyridine monohydrate, C56H42N8O
  68. The crystal structure of 3-(carboxymethyl)-1-ethenyl-1H-imidazol-3-ium chloride, C7H9N2O2Cl
  69. The crystal structure of adamantylmethoxydiphenylsilane, C23H28OSi
  70. Redetermination of the crystal structure of (2E,4Z,13E,15Z)-3,5,14,16-tetramethyl-2,6,13,17-tetraazatricyclo[16.4.0.07,12]docosa-1(22),2,4,7,9,11,13,15,18,20-decaene, C22H24N4
  71. Crystal structure of (E)-7-hydroxy-2-((6-methoxypyridin-2-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H15NO3
  72. Crystal structure of catena-poly[diaqua-bis(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2 N:N′)cobalt(II)] dinitrate, C18H28N10O8Co
Heruntergeladen am 8.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0187/html
Button zum nach oben scrollen