Startseite Neutron diffraction analysis of martensite ageing in high-carbon FeCMnSi steel
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Neutron diffraction analysis of martensite ageing in high-carbon FeCMnSi steel

  • Liesbeth Barbé , Ludovic Samek , Kim Verbeken EMAIL logo , Kelly Conlon und Bruno C. De Cooman
Veröffentlicht/Copyright: 12. Januar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A high-carbon metastable austenite phase was quenched in liquid nitrogen to obtain fresh athermal martensite. Different ageing treatments were performed in order to study the transformation of the martensite phase and the formation of carbides. Neutron diffraction experiments give detailed information on the transformations during the annealing treatment itself. The tetragonal athermal martensite transformed immediately, i. e. during the heating to the ageing temperature, to cubic martensite. Ageing at 400 °C resulted in the decomposition of the austenite in ferrite and carbides and the formation of bainite. Those carbides could be determined as η-carbides transforming in χ-carbides after extended annealing times. As was expected, ageing at 170 °C resulted in the formation of a small amount of η carbides while the austenite phase remained stable.


Dr. Kim Verbeken Department of Metallurgy and Materials Science, UGent Technologiepark 903, B-9052 Zwijnaarde Gent, Belgium Tel.: +32 9 264 57 61 (secretariat) Fax: +32 9 264 58 33

* Postdoctoral Fellow with the Fund for Scientific Research – Flanders (Belgium) (F.W.O.-Vlaanderen).


References

[1] M. De Meyer, D. Vanderschueren, B.C. De Cooman: Iron & Steelmaker 27, No. 2 (2000) 55.10.1179/030192300677372Suche in Google Scholar

[2] L. Barbé, K. Conlon, B.C. De Cooman: Z. Metallkd. 93 (2002) 1217.10.3139/146.021217Suche in Google Scholar

[3] S. Nagakura, Y. Hirotsu, M. Kusunoki, T. Suzuki, Y. Nakamura: Metall. Trans. A 14 (1983) 1025.10.1007/BF02659851Suche in Google Scholar

[4] E.J. Mittemeijer, L. Cheng, P.J. van der Schaaf, C.M. Brakman, B.M. Korevaar: Metall. Trans. A 19 (1988) 926.10.1007/BF02628377Suche in Google Scholar

[5] O.N.C. Uwakweh, J.Ph. Bauer, J.-M.R. Génin: Metall. Trans. A 21 (1990) 589.10.1007/BF02671931Suche in Google Scholar

[6] Y. Hirotsu, S. Nagakura: Acta Metall. 20 (1972) 645.10.1016/0001-6160(72)90020-XSuche in Google Scholar

[7] K.H. Jack: J. Iron Steel Institute (1951) 26.Suche in Google Scholar

[8] C.-B. Ma, T. Ando, D.L. Williamson, G. Krauss: Metall. Trans. A 14 (1983) 1033.10.1007/BF02659852Suche in Google Scholar

[9] M. Sarikaya, A.K. Jhingan, G.Thomas: Metall. Trans. A 14 (1983) 1121.10.1007/BF02659860Suche in Google Scholar

[10] R. Kaplow, M. Ron, N. DeCristofaro: Metall. Trans. A 14 (1983) 1135.10.1007/BF02659861Suche in Google Scholar

[11] P.C. Chen, P.G. Winchell: Metall. Trans. A 11 (1980) 1333.10.1007/BF02653487Suche in Google Scholar

[12] G.B. Olson, M. Cohen: Metall. Trans. A 14 (1983) 1057.10.1007/BF02659854Suche in Google Scholar

[13] T. Waterschoot, K. Conlon, S. Vandeputte, B.C. De Cooman: Z. Metallkd. 94 (2003) 424.10.3139/146.030424Suche in Google Scholar

[14] B.D. Cullity, Elements of X-Ray diffraction, 2nd edition, Addison-Wesley Publishing Co., Inc. (1978) p. 508.Suche in Google Scholar

[15] T. Waterschoot, K. Verbeken, B.C. De Cooman: ISIJ 46 (2006) 138.10.2355/isijinternational.46.138Suche in Google Scholar

[16] J.B. Nelson, D.P. Riley: Proc. Phys. Soc., London 57 (1945) 160.10.1088/0959-5309/57/3/302Suche in Google Scholar

[17] Z. Nishiyama: Martensite Transformation, Maruzen, Tokyo (1979) p. 13.Suche in Google Scholar

[18] M. Onink, C.M. Brakman, F.D. Tichelaar, E.J. Mittemeijer, S. van der Zwaag, J.H. Root, N.B. Konyer: Scripta Metall. et Mater. 29 (1993) 1011.10.1016/0956-716X(93)90169-SSuche in Google Scholar

[19] M. Onink, F.D. Tichelaar, C.M. Brakman, E.J. Mittemeijer, S. van der Zwaag: Z. Metallkd. 87 (1996) 24.10.1515/ijmr-1996-870104Suche in Google Scholar

[20] A.T. Gorton, G. Bitsianes, T.L. Joseph: Trans AIME 233 (1965) 1519.Suche in Google Scholar

[21] R. Kohlhaas, Ph. Dünner, N. Schmitz-Pranghe: Z. Angew. Phys. 23 (1967) 245.Suche in Google Scholar

[22] H.J. Goldschmidt, Advanced X-ray Analysis, Plenum Press, New York, Vol. 5, 1962.Suche in Google Scholar

[23] Z.S. Basinski, W. Hume-Rothery, F.R.S. Sutton, A.L. Sutton: Proc. Roy. Soc., London, A 229 (1955) 459.10.1098/rspa.1955.0102Suche in Google Scholar

[24] K. Shimizu, Z. Nishiyama: Metall. Trans. 3 (1972) 1055.10.1007/BF02642437Suche in Google Scholar

[25] Y. Ohmori: Trans. Jpn. Inst. Metals 13 (1972) 119.10.2320/matertrans1960.13.119Suche in Google Scholar

[26] A. Koreeda, K. Shimizu, in: T. Imura, H. Hashimoto (Eds.), Proceedings 5th Intern. Conf. High Voltage Electron Microscopy, Kyoto, Japan (1977) p. 611.Suche in Google Scholar

Received: 2005-07-05
Accepted: 2006-01-26
Published Online: 2022-01-12

© 2006 Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Extended editorial with anecdotes
  3. Anelastic relaxation and structure of ternary Fe–Al–Me alloys with Me = Co, Cr, Ge, Mn, Nb, Si, Ta, Ti, Zr
  4. Kinetic study of the β → α + γ transformation reaction in a CuZnAl alloy
  5. Calorimetric investigation of the binary Cu–In system
  6. Thermodynamic properties of liquid Cu–In–Zn alloys
  7. Comparing the thermodynamic behaviour of Al(l) + ZrO2(4% Y2O3) and Al(l) + Al2O3
  8. Failure-mode dependence of the strengthening effect in Ti3AlC2/10 vol.% Al2O3 composite
  9. Investigation of Cu-graphite composites prepared by electroforming
  10. Neutron diffraction analysis of martensite ageing in high-carbon FeCMnSi steel
  11. Effect of reinforcement size hybridization on the wear properties of SiCp/Cu Composites
  12. Temperature dependence of lattice mismatch and γ′ volume fraction of a fourth-generation monocrystalline nickel-based superalloy
  13. Novel combinatorial microstructures in Ti-6Al-4V alloy achieved by an electric-current-pulse treatment
  14. The Effect of Ti–B and Sr on the mechanical behaviour of the Zinc–Aluminum-based ZA-12 alloy produced by gravity casting
  15. Determination of retained austenite in multiphase steels by magnetic force microscopy
  16. Filtration resistance during pressure filtration tests of liquid aluminium alloys
  17. Microstructure of a Damascene sabre after annealing
  18. Effect of tin added to the zinc bath on the formation and the microstructure of hot-dip galvanized coatings
  19. Personal
  20. Conferences
  21. Contents
  22. Editorial
  23. Extended editorial with anecdotes
  24. Basic
  25. Anelastic relaxation and structure of ternary Fe–Al–Me alloys with Me = Co, Cr, Ge, Mn, Nb, Si, Ta, Ti, Zr
  26. Kinetic study of the β → α + γ transformation reaction in a CuZnAl alloy
  27. Calorimetric investigation of the binary Cu–In system
  28. Thermodynamic properties of liquid Cu–In–Zn alloys
  29. Comparing the thermodynamic behaviour of Al(l) + ZrO2(4% Y2O3) and Al(l) + Al2O3
  30. Failure-mode dependence of the strengthening effect in Ti3AlC2/10 vol.% Al2O3 composite
  31. Investigation of Cu-graphite composites prepared by electroforming
  32. Neutron diffraction analysis of martensite ageing in high-carbon FeCMnSi steel
  33. Applied
  34. Effect of reinforcement size hybridization on the wear properties of SiCp/Cu Composites
  35. Temperature dependence of lattice mismatch and γ′ volume fraction of a fourth-generation monocrystalline nickel-based superalloy
  36. Novel combinatorial microstructures in Ti-6Al-4V alloy achieved by an electric-current-pulse treatment
  37. The Effect of Ti–B and Sr on the mechanical behaviour of the Zinc–Aluminum-based ZA-12 alloy produced by gravity casting
  38. Determination of retained austenite in multiphase steels by magnetic force microscopy
  39. Filtration resistance during pressure filtration tests of liquid aluminium alloys
  40. Microstructure of a Damascene sabre after annealing
  41. Effect of tin added to the zinc bath on the formation and the microstructure of hot-dip galvanized coatings
  42. Notifications
  43. Personal
  44. Conferences
Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2006-0177/html
Button zum nach oben scrollen