Temperature dependence of lattice mismatch and γ′ volume fraction of a fourth-generation monocrystalline nickel-based superalloy
-
Frédéric Diologent
, Pierre Caron
Abstract
The strain distribution in a new generation nickel-based single crystal superalloy has been determined in the temperature range 293 K– 1598 K. Measurements have been performed using diffraction of high energy synchrotron radiation (150 keV, λ = 0.008 nm) to determine the variations with temperature of the γ/γ′ lattice mismatch and of the γ′ volume fraction. The chemical segregation at the dendrite scale and the internal stress induce a large range of values for the lattice mismatch. The measurements of the γ′ volume fraction determined by X-ray diffraction are in agreement with those obtained by atom probe tomography, image analysis or computation.
This work was partially funded by Snecma under Contract N° 670002. The authors would like to thank A. Schnell from Alstom Power for having provided with JMat Pro data and the ESRF for the beam time allocation.
References
[1] P. Caron, in: T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S.L. Olson, J.J. Schirra (Eds.), Superalloys 2000, TMS, Warrendale, PA, USA (2000) 737.10.7449/2000/Superalloys_2000_737_746Search in Google Scholar
[2] H. Biermann, M. Strehler, H. Mughrabi: Met. Mater. Trans. A 27 (1996) 1003.10.1007/BF02649768Search in Google Scholar
[3] G. Bruno, B. Schönfeld, G. Kostorz: Z. Metallkd. 94 (2003) 12.10.3139/146.030012Search in Google Scholar
[4] F. Pyczak, B. Devrient, H. Mughrabi, in: K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, S.Walston (Eds.), Superalloys 2004, TMS, Warrendale, PA, USA (2004) 827.10.7449/2004/Superalloys_2004_827_836Search in Google Scholar
[5] D. Bellet, P. Bastie: Phil. Mag. B 64 (1991) 135.10.1080/13642819108207609Search in Google Scholar
[6] L. Müller, T. Link, M. Feller-Kniepmeier: Scripta metall. mater. 26 (1992) 1297.10.1016/0956-716X(92)90580-8Search in Google Scholar
[7] U. Glatzel, A. Müller: Scripta metall. mater. 31 (1994) 285.10.1016/0956-716X(94)90284-4Search in Google Scholar
[8] U. Glatzel: Scripta metall. mater. 31 (1994) 291.10.1016/0956-716X(94)90285-2Search in Google Scholar
[9] A. Royer, P. Bastie, in: R.D. Kissinger, D.J. Deye, D.L. Anton, A.D. Cetel, M.V. Nathal, T.M. Pollock, D.A. Woodford (Eds.), Superalloys 1996, TMS, Warrendale, PA, USA (1996) 221.10.7449/1996/Superalloys_1996_221_228Search in Google Scholar
[10] A Royer, P. Bastie, M. Véron: Acta Mater. 46 (1998) 5357.10.1016/S1359-6454(98)00206-7Search in Google Scholar
[11] R. Gilles, D. Mukherji, D.M. Többens, P. Strunz, B. Barbier, J. Rösler, H. Fuess: Appl. Phys. A 74 [Suppl.] (2002) 1446.10.1007/s003390201742Search in Google Scholar
[12] U. Brückner, A. Epishin, T. Link: Acta Mater. 45 (1997) 5223.10.1016/S1359-6454(97)00163-8Search in Google Scholar
[13] H. Biermann, B. Von Grossman, T. Ungar S. Mechsner, A. Souvorov, M. Drakopoulos, A. Snigirev, H. Mughrabi: Acta Mater. 48 (2000) 2221.10.1016/S1359-6454(00)00038-0Search in Google Scholar
[14] R. Völkl, U. Glatzel, M. Feller-Kniepmeier: Acta Mater. 46 (1998) 4395.10.1016/S1359-6454(98)00085-8Search in Google Scholar
[15] C. Schulze, M. Feller-Kniepmeier: Mater. Sci. Engng. A 281 (2000) 204.10.1016/S0921-5093(99)00713-3Search in Google Scholar
[16] K. Ohno, H. Harada, T. Yamagata, M. Yamazaki, K. Ohsumi, in: C.S. Barret, J.V. Gilfrich, R. Jenkins, T.C. Huang, P.K. Predecki (Eds.), 37th Annual Conf. on Applications of X-Ray Analysis, Plenum Press, New York, NY, vol 32 (1989) 36510.1007/978-1-4757-9110-5_45Search in Google Scholar
[17] A. Royer, P. Bastie: Scripta Mater. 36 (1997) 1151.10.1016/S1359-6462(97)00012-2Search in Google Scholar
[18] D. Blavette, E. Cadel, B. Deconihout: Mater. Charact. 44 (2000) 133.10.1016/S1044-5803(99)00050-9Search in Google Scholar
[19] http://www.esrf.fr/computing/scientific/xop/xplot/Search in Google Scholar
[20] R. Schmidt, M. Feller-Kniepmeier: Scripta metall. mater. 26 (1992) 1919.10.1016/0956-716X(92)90059-NSearch in Google Scholar
[21] S. Duval, S. Chambreland, P. Caron, D. Blavette: Acta metall. mater. 42 (1994) 185.10.1016/0956-7151(94)90061-2Search in Google Scholar
[22] F. Diologent, Thesis n° 7014, Université Paris XI, France (2002).Search in Google Scholar
[23] N. Saunders, Z. Guo, X. Li, AP. Miodownik, J-Ph. Schillé: JOM, December (2003) 60.10.1007/s11837-003-0013-2Search in Google Scholar
[24] U. Hemmersmeier, M. Feller-Kniepmeier: Mater. Sci. Engng. A 248 (1998) 87.10.1016/S0921-5093(98)00516-4Search in Google Scholar
[25] G.E. Fuchs: Mater. Sci. Engng. A 300 (2001) 52.10.1016/S0921-5093(00)01776-7Search in Google Scholar
[26] R. Bürgel, J. Grossmann, O. Lüsebrink, H. Mughrabi, F. Pyczak, R.F. Singer, A. Volek, in: K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, S. Walston (Eds.), Superalloys 2004, TMS, Warrendale, PA, USA (2004) 25.10.7449/2004/Superalloys_2004_25_34Search in Google Scholar
[27] A. Müller, T. Gnäupel-Herol, W. Reimers: Phys. stat. sol. (a) 156 (1996) 375.10.1002/pssa.2211560215Search in Google Scholar
[28] T. Grosdidier, A. Hazotte, A. Simon: Scripta metall. mater. 30 (1994) 1257.10.1016/0956-716X(94)90255-0Search in Google Scholar
[29] R.C. Reed, A.C. Yeh, S. Tin, S.S. Babu, M.K. Miller: Scripta Mater. 51 (2004) 327.10.1016/j.scriptamat.2004.04.019Search in Google Scholar
[30] T. Yokokawa, M. Osawa, K. Nishida, Y. Koizumi, T. Kobayashi, H. Harada: J. Japan Inst. Metals. 68 (2004) 138.10.2320/jinstmet.68.138Search in Google Scholar
[31] A. Volek, F. Pyczak, R.F. Singer, H. Mughrabi: Scripta Mater. 52 (2005) 141.10.1016/j.scriptamat.2004.09.013Search in Google Scholar
[32] P. Nash: Bull. Alloy Phase Diagrams. 7 (1986) 130.10.1007/BF02881548Search in Google Scholar
[33] Y. Mishima, S. Ochiai, T. Suzuki: Acta metall. 33 (1985) 1161.10.1016/0001-6160(85)90211-1Search in Google Scholar
[34] J.X. Zhang, Y. Koizumi, H. Harada: Mater. Sci. For. 475–479 (2005) 623.10.4028/www.scientific.net/MSF.475-479.623Search in Google Scholar
[35] R. Roebuck, D. Cox, R. Reed: Scripta Mater. 44 (2001) 917.10.1016/S1359-6462(00)00662-XSearch in Google Scholar
© 2006 Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Extended editorial with anecdotes
- Anelastic relaxation and structure of ternary Fe–Al–Me alloys with Me = Co, Cr, Ge, Mn, Nb, Si, Ta, Ti, Zr
- Kinetic study of the β → α + γ transformation reaction in a CuZnAl alloy
- Calorimetric investigation of the binary Cu–In system
- Thermodynamic properties of liquid Cu–In–Zn alloys
- Comparing the thermodynamic behaviour of Al(l) + ZrO2(4% Y2O3) and Al(l) + Al2O3
- Failure-mode dependence of the strengthening effect in Ti3AlC2/10 vol.% Al2O3 composite
- Investigation of Cu-graphite composites prepared by electroforming
- Neutron diffraction analysis of martensite ageing in high-carbon FeCMnSi steel
- Effect of reinforcement size hybridization on the wear properties of SiCp/Cu Composites
- Temperature dependence of lattice mismatch and γ′ volume fraction of a fourth-generation monocrystalline nickel-based superalloy
- Novel combinatorial microstructures in Ti-6Al-4V alloy achieved by an electric-current-pulse treatment
- The Effect of Ti–B and Sr on the mechanical behaviour of the Zinc–Aluminum-based ZA-12 alloy produced by gravity casting
- Determination of retained austenite in multiphase steels by magnetic force microscopy
- Filtration resistance during pressure filtration tests of liquid aluminium alloys
- Microstructure of a Damascene sabre after annealing
- Effect of tin added to the zinc bath on the formation and the microstructure of hot-dip galvanized coatings
- Personal
- Conferences
- Contents
- Editorial
- Extended editorial with anecdotes
- Basic
- Anelastic relaxation and structure of ternary Fe–Al–Me alloys with Me = Co, Cr, Ge, Mn, Nb, Si, Ta, Ti, Zr
- Kinetic study of the β → α + γ transformation reaction in a CuZnAl alloy
- Calorimetric investigation of the binary Cu–In system
- Thermodynamic properties of liquid Cu–In–Zn alloys
- Comparing the thermodynamic behaviour of Al(l) + ZrO2(4% Y2O3) and Al(l) + Al2O3
- Failure-mode dependence of the strengthening effect in Ti3AlC2/10 vol.% Al2O3 composite
- Investigation of Cu-graphite composites prepared by electroforming
- Neutron diffraction analysis of martensite ageing in high-carbon FeCMnSi steel
- Applied
- Effect of reinforcement size hybridization on the wear properties of SiCp/Cu Composites
- Temperature dependence of lattice mismatch and γ′ volume fraction of a fourth-generation monocrystalline nickel-based superalloy
- Novel combinatorial microstructures in Ti-6Al-4V alloy achieved by an electric-current-pulse treatment
- The Effect of Ti–B and Sr on the mechanical behaviour of the Zinc–Aluminum-based ZA-12 alloy produced by gravity casting
- Determination of retained austenite in multiphase steels by magnetic force microscopy
- Filtration resistance during pressure filtration tests of liquid aluminium alloys
- Microstructure of a Damascene sabre after annealing
- Effect of tin added to the zinc bath on the formation and the microstructure of hot-dip galvanized coatings
- Notifications
- Personal
- Conferences
Articles in the same Issue
- Contents
- Extended editorial with anecdotes
- Anelastic relaxation and structure of ternary Fe–Al–Me alloys with Me = Co, Cr, Ge, Mn, Nb, Si, Ta, Ti, Zr
- Kinetic study of the β → α + γ transformation reaction in a CuZnAl alloy
- Calorimetric investigation of the binary Cu–In system
- Thermodynamic properties of liquid Cu–In–Zn alloys
- Comparing the thermodynamic behaviour of Al(l) + ZrO2(4% Y2O3) and Al(l) + Al2O3
- Failure-mode dependence of the strengthening effect in Ti3AlC2/10 vol.% Al2O3 composite
- Investigation of Cu-graphite composites prepared by electroforming
- Neutron diffraction analysis of martensite ageing in high-carbon FeCMnSi steel
- Effect of reinforcement size hybridization on the wear properties of SiCp/Cu Composites
- Temperature dependence of lattice mismatch and γ′ volume fraction of a fourth-generation monocrystalline nickel-based superalloy
- Novel combinatorial microstructures in Ti-6Al-4V alloy achieved by an electric-current-pulse treatment
- The Effect of Ti–B and Sr on the mechanical behaviour of the Zinc–Aluminum-based ZA-12 alloy produced by gravity casting
- Determination of retained austenite in multiphase steels by magnetic force microscopy
- Filtration resistance during pressure filtration tests of liquid aluminium alloys
- Microstructure of a Damascene sabre after annealing
- Effect of tin added to the zinc bath on the formation and the microstructure of hot-dip galvanized coatings
- Personal
- Conferences
- Contents
- Editorial
- Extended editorial with anecdotes
- Basic
- Anelastic relaxation and structure of ternary Fe–Al–Me alloys with Me = Co, Cr, Ge, Mn, Nb, Si, Ta, Ti, Zr
- Kinetic study of the β → α + γ transformation reaction in a CuZnAl alloy
- Calorimetric investigation of the binary Cu–In system
- Thermodynamic properties of liquid Cu–In–Zn alloys
- Comparing the thermodynamic behaviour of Al(l) + ZrO2(4% Y2O3) and Al(l) + Al2O3
- Failure-mode dependence of the strengthening effect in Ti3AlC2/10 vol.% Al2O3 composite
- Investigation of Cu-graphite composites prepared by electroforming
- Neutron diffraction analysis of martensite ageing in high-carbon FeCMnSi steel
- Applied
- Effect of reinforcement size hybridization on the wear properties of SiCp/Cu Composites
- Temperature dependence of lattice mismatch and γ′ volume fraction of a fourth-generation monocrystalline nickel-based superalloy
- Novel combinatorial microstructures in Ti-6Al-4V alloy achieved by an electric-current-pulse treatment
- The Effect of Ti–B and Sr on the mechanical behaviour of the Zinc–Aluminum-based ZA-12 alloy produced by gravity casting
- Determination of retained austenite in multiphase steels by magnetic force microscopy
- Filtration resistance during pressure filtration tests of liquid aluminium alloys
- Microstructure of a Damascene sabre after annealing
- Effect of tin added to the zinc bath on the formation and the microstructure of hot-dip galvanized coatings
- Notifications
- Personal
- Conferences