Home Temperature dependence of lattice mismatch and γ′ volume fraction of a fourth-generation monocrystalline nickel-based superalloy
Article
Licensed
Unlicensed Requires Authentication

Temperature dependence of lattice mismatch and γ′ volume fraction of a fourth-generation monocrystalline nickel-based superalloy

  • Frédéric Diologent EMAIL logo , Pierre Caron , Thierry d’Almeida , Sylvain Chambreland , Alain Jacques and Pierre Bastie
Published/Copyright: January 12, 2022
Become an author with De Gruyter Brill

Abstract

The strain distribution in a new generation nickel-based single crystal superalloy has been determined in the temperature range 293 K– 1598 K. Measurements have been performed using diffraction of high energy synchrotron radiation (150 keV, λ = 0.008 nm) to determine the variations with temperature of the γ/γ′ lattice mismatch and of the γ′ volume fraction. The chemical segregation at the dendrite scale and the internal stress induce a large range of values for the lattice mismatch. The measurements of the γ′ volume fraction determined by X-ray diffraction are in agreement with those obtained by atom probe tomography, image analysis or computation.


Dr. Frédéric Diologent Laboratoire de métallurgie mécanique, Ecole Polytechnique Fédérale de Lausanne CH-1015 Lausanne, Switzerland Tel.: +41 21 693 48 57 Fax: +41 21 693 46 64

  1. This work was partially funded by Snecma under Contract N° 670002. The authors would like to thank A. Schnell from Alstom Power for having provided with JMat Pro data and the ESRF for the beam time allocation.

References

[1] P. Caron, in: T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S.L. Olson, J.J. Schirra (Eds.), Superalloys 2000, TMS, Warrendale, PA, USA (2000) 737.10.7449/2000/Superalloys_2000_737_746Search in Google Scholar

[2] H. Biermann, M. Strehler, H. Mughrabi: Met. Mater. Trans. A 27 (1996) 1003.10.1007/BF02649768Search in Google Scholar

[3] G. Bruno, B. Schönfeld, G. Kostorz: Z. Metallkd. 94 (2003) 12.10.3139/146.030012Search in Google Scholar

[4] F. Pyczak, B. Devrient, H. Mughrabi, in: K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, S.Walston (Eds.), Superalloys 2004, TMS, Warrendale, PA, USA (2004) 827.10.7449/2004/Superalloys_2004_827_836Search in Google Scholar

[5] D. Bellet, P. Bastie: Phil. Mag. B 64 (1991) 135.10.1080/13642819108207609Search in Google Scholar

[6] L. Müller, T. Link, M. Feller-Kniepmeier: Scripta metall. mater. 26 (1992) 1297.10.1016/0956-716X(92)90580-8Search in Google Scholar

[7] U. Glatzel, A. Müller: Scripta metall. mater. 31 (1994) 285.10.1016/0956-716X(94)90284-4Search in Google Scholar

[8] U. Glatzel: Scripta metall. mater. 31 (1994) 291.10.1016/0956-716X(94)90285-2Search in Google Scholar

[9] A. Royer, P. Bastie, in: R.D. Kissinger, D.J. Deye, D.L. Anton, A.D. Cetel, M.V. Nathal, T.M. Pollock, D.A. Woodford (Eds.), Superalloys 1996, TMS, Warrendale, PA, USA (1996) 221.10.7449/1996/Superalloys_1996_221_228Search in Google Scholar

[10] A Royer, P. Bastie, M. Véron: Acta Mater. 46 (1998) 5357.10.1016/S1359-6454(98)00206-7Search in Google Scholar

[11] R. Gilles, D. Mukherji, D.M. Többens, P. Strunz, B. Barbier, J. Rösler, H. Fuess: Appl. Phys. A 74 [Suppl.] (2002) 1446.10.1007/s003390201742Search in Google Scholar

[12] U. Brückner, A. Epishin, T. Link: Acta Mater. 45 (1997) 5223.10.1016/S1359-6454(97)00163-8Search in Google Scholar

[13] H. Biermann, B. Von Grossman, T. Ungar S. Mechsner, A. Souvorov, M. Drakopoulos, A. Snigirev, H. Mughrabi: Acta Mater. 48 (2000) 2221.10.1016/S1359-6454(00)00038-0Search in Google Scholar

[14] R. Völkl, U. Glatzel, M. Feller-Kniepmeier: Acta Mater. 46 (1998) 4395.10.1016/S1359-6454(98)00085-8Search in Google Scholar

[15] C. Schulze, M. Feller-Kniepmeier: Mater. Sci. Engng. A 281 (2000) 204.10.1016/S0921-5093(99)00713-3Search in Google Scholar

[16] K. Ohno, H. Harada, T. Yamagata, M. Yamazaki, K. Ohsumi, in: C.S. Barret, J.V. Gilfrich, R. Jenkins, T.C. Huang, P.K. Predecki (Eds.), 37th Annual Conf. on Applications of X-Ray Analysis, Plenum Press, New York, NY, vol 32 (1989) 36510.1007/978-1-4757-9110-5_45Search in Google Scholar

[17] A. Royer, P. Bastie: Scripta Mater. 36 (1997) 1151.10.1016/S1359-6462(97)00012-2Search in Google Scholar

[18] D. Blavette, E. Cadel, B. Deconihout: Mater. Charact. 44 (2000) 133.10.1016/S1044-5803(99)00050-9Search in Google Scholar

[19] http://www.esrf.fr/computing/scientific/xop/xplot/Search in Google Scholar

[20] R. Schmidt, M. Feller-Kniepmeier: Scripta metall. mater. 26 (1992) 1919.10.1016/0956-716X(92)90059-NSearch in Google Scholar

[21] S. Duval, S. Chambreland, P. Caron, D. Blavette: Acta metall. mater. 42 (1994) 185.10.1016/0956-7151(94)90061-2Search in Google Scholar

[22] F. Diologent, Thesis n° 7014, Université Paris XI, France (2002).Search in Google Scholar

[23] N. Saunders, Z. Guo, X. Li, AP. Miodownik, J-Ph. Schillé: JOM, December (2003) 60.10.1007/s11837-003-0013-2Search in Google Scholar

[24] U. Hemmersmeier, M. Feller-Kniepmeier: Mater. Sci. Engng. A 248 (1998) 87.10.1016/S0921-5093(98)00516-4Search in Google Scholar

[25] G.E. Fuchs: Mater. Sci. Engng. A 300 (2001) 52.10.1016/S0921-5093(00)01776-7Search in Google Scholar

[26] R. Bürgel, J. Grossmann, O. Lüsebrink, H. Mughrabi, F. Pyczak, R.F. Singer, A. Volek, in: K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, S. Walston (Eds.), Superalloys 2004, TMS, Warrendale, PA, USA (2004) 25.10.7449/2004/Superalloys_2004_25_34Search in Google Scholar

[27] A. Müller, T. Gnäupel-Herol, W. Reimers: Phys. stat. sol. (a) 156 (1996) 375.10.1002/pssa.2211560215Search in Google Scholar

[28] T. Grosdidier, A. Hazotte, A. Simon: Scripta metall. mater. 30 (1994) 1257.10.1016/0956-716X(94)90255-0Search in Google Scholar

[29] R.C. Reed, A.C. Yeh, S. Tin, S.S. Babu, M.K. Miller: Scripta Mater. 51 (2004) 327.10.1016/j.scriptamat.2004.04.019Search in Google Scholar

[30] T. Yokokawa, M. Osawa, K. Nishida, Y. Koizumi, T. Kobayashi, H. Harada: J. Japan Inst. Metals. 68 (2004) 138.10.2320/jinstmet.68.138Search in Google Scholar

[31] A. Volek, F. Pyczak, R.F. Singer, H. Mughrabi: Scripta Mater. 52 (2005) 141.10.1016/j.scriptamat.2004.09.013Search in Google Scholar

[32] P. Nash: Bull. Alloy Phase Diagrams. 7 (1986) 130.10.1007/BF02881548Search in Google Scholar

[33] Y. Mishima, S. Ochiai, T. Suzuki: Acta metall. 33 (1985) 1161.10.1016/0001-6160(85)90211-1Search in Google Scholar

[34] J.X. Zhang, Y. Koizumi, H. Harada: Mater. Sci. For. 475–479 (2005) 623.10.4028/www.scientific.net/MSF.475-479.623Search in Google Scholar

[35] R. Roebuck, D. Cox, R. Reed: Scripta Mater. 44 (2001) 917.10.1016/S1359-6462(00)00662-XSearch in Google Scholar

Received: 2005-09-05
Accepted: 2006-02-24
Published Online: 2022-01-12

© 2006 Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Extended editorial with anecdotes
  3. Anelastic relaxation and structure of ternary Fe–Al–Me alloys with Me = Co, Cr, Ge, Mn, Nb, Si, Ta, Ti, Zr
  4. Kinetic study of the β → α + γ transformation reaction in a CuZnAl alloy
  5. Calorimetric investigation of the binary Cu–In system
  6. Thermodynamic properties of liquid Cu–In–Zn alloys
  7. Comparing the thermodynamic behaviour of Al(l) + ZrO2(4% Y2O3) and Al(l) + Al2O3
  8. Failure-mode dependence of the strengthening effect in Ti3AlC2/10 vol.% Al2O3 composite
  9. Investigation of Cu-graphite composites prepared by electroforming
  10. Neutron diffraction analysis of martensite ageing in high-carbon FeCMnSi steel
  11. Effect of reinforcement size hybridization on the wear properties of SiCp/Cu Composites
  12. Temperature dependence of lattice mismatch and γ′ volume fraction of a fourth-generation monocrystalline nickel-based superalloy
  13. Novel combinatorial microstructures in Ti-6Al-4V alloy achieved by an electric-current-pulse treatment
  14. The Effect of Ti–B and Sr on the mechanical behaviour of the Zinc–Aluminum-based ZA-12 alloy produced by gravity casting
  15. Determination of retained austenite in multiphase steels by magnetic force microscopy
  16. Filtration resistance during pressure filtration tests of liquid aluminium alloys
  17. Microstructure of a Damascene sabre after annealing
  18. Effect of tin added to the zinc bath on the formation and the microstructure of hot-dip galvanized coatings
  19. Personal
  20. Conferences
  21. Contents
  22. Editorial
  23. Extended editorial with anecdotes
  24. Basic
  25. Anelastic relaxation and structure of ternary Fe–Al–Me alloys with Me = Co, Cr, Ge, Mn, Nb, Si, Ta, Ti, Zr
  26. Kinetic study of the β → α + γ transformation reaction in a CuZnAl alloy
  27. Calorimetric investigation of the binary Cu–In system
  28. Thermodynamic properties of liquid Cu–In–Zn alloys
  29. Comparing the thermodynamic behaviour of Al(l) + ZrO2(4% Y2O3) and Al(l) + Al2O3
  30. Failure-mode dependence of the strengthening effect in Ti3AlC2/10 vol.% Al2O3 composite
  31. Investigation of Cu-graphite composites prepared by electroforming
  32. Neutron diffraction analysis of martensite ageing in high-carbon FeCMnSi steel
  33. Applied
  34. Effect of reinforcement size hybridization on the wear properties of SiCp/Cu Composites
  35. Temperature dependence of lattice mismatch and γ′ volume fraction of a fourth-generation monocrystalline nickel-based superalloy
  36. Novel combinatorial microstructures in Ti-6Al-4V alloy achieved by an electric-current-pulse treatment
  37. The Effect of Ti–B and Sr on the mechanical behaviour of the Zinc–Aluminum-based ZA-12 alloy produced by gravity casting
  38. Determination of retained austenite in multiphase steels by magnetic force microscopy
  39. Filtration resistance during pressure filtration tests of liquid aluminium alloys
  40. Microstructure of a Damascene sabre after annealing
  41. Effect of tin added to the zinc bath on the formation and the microstructure of hot-dip galvanized coatings
  42. Notifications
  43. Personal
  44. Conferences
Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2006-0179/html
Scroll to top button