Home Thermodynamic properties of liquid Cu–In–Zn alloys
Article
Licensed
Unlicensed Requires Authentication

Thermodynamic properties of liquid Cu–In–Zn alloys

  • Sabine Knott EMAIL logo , C.-J. Chen , Friedrich Gehringer and Adolf Mikula
Published/Copyright: January 12, 2022
Become an author with De Gruyter Brill

Abstract

The partial Gibbs energies of zinc in the liquid Cu– In–Zn system as a function of temperature and concentration were measured in the temperature range between the melting points of the alloys and 1073 K using an EMF method with a liquid electrolyte. The thermodynamic properties were determined for 30 alloys at three different constant ratios of Cu : In of 1 : 2, 1 : 1, and 2 : 1 with zinc added in the concentration range between 5 and 90 at.%. The integral Gibbs free energy and the integral enthalpy of mixing of the ternary system were calculated with the Gibbs Duhem equation.


Sabine Knott Department of Inorganic Chemistry-Materials Chemistry University of Vienna Währingerstr. 42, A-1090 Vienna, Austria Tel.: +43 1 4277 9529 Fax: +43 1 4277 52913

  1. This investigation is a contribution to the European COST 531 on “Lead-free Solder Materials” Financial support of the Austrian Science Foundation (FWF, Project Nr. P 16491-N11) is gratefully acknowledged.

References

[1] www.cdc.govSearch in Google Scholar

[2] R.A. Fournelle: JOM 55 (2003) 49.10.1007/s11837-003-0140-9Search in Google Scholar

[3] S. Karlhuber, K.L. Komarek, A. Mikula: Z. Metallkd. 85 (1994) 307.Search in Google Scholar

[4] S. Karlhuber, A. Mikula, F. Sommer: Met. Mater. Trans. B 27 (1996) 921.10.1007/s11663-996-0005-zSearch in Google Scholar

[5] Y. Xie, H. Schicketanz, A. Mikula: Ber. Bunsen Ges.-Phys.-Chem. 102 (1998) 1334.10.1002/bbpc.19981020946Search in Google Scholar

[6] M. Peng, A. Mikula: J. of Alloys and Compds. 247 (1997) 185.10.1016/S0925-8388(96)02575-3Search in Google Scholar

[7] S. Knott, A. Mikula: Materials Transactions 43 (2002) 1868.10.2320/matertrans.43.1868Search in Google Scholar

[8] R. Geffken, K.L. Komarek, E. Miller: Trans AIME 239 (1967) 1151.Search in Google Scholar

[9] J.F. Elliot, J. Chipman: J. of Physical Chemistry 72 (1950) 2682.Search in Google Scholar

[10] R. Hultgren, P. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley: Selected Values of the Thermodynamic properties of binary Alloys, ASM, Metals Park, OH (1973).Search in Google Scholar

[11] I. Ansara, A.T. Dinsdale, M.H. Rand (Eds.): COST 507 Thermochemical database for light metal alloys, Vol. 2, European Commission DA XII, Luxembourg (1998) 1.Search in Google Scholar

[12] S. Knott, A. Mikula, Calorimetric Investigations of the binary Cu–In system, paper accepted for publication in Z. Metallkde.Search in Google Scholar

[13] M. Kowalski, P.J. Spencer: J. Phase Equil. 14 (1993) 432.10.1007/BF02671961Search in Google Scholar

[14] T. Kang, R. Castanet: J. Less Common Met. 51 (1977) 125.10.1016/0022-5088(77)90180-1Search in Google Scholar

[15] K. Kameda: Mater. Trans. JIM 32 (1991) 345.10.2320/matertrans1989.32.345Search in Google Scholar

[16] O.J. Kleppa: J. Phys. Chem. 60 (1956) 852.10.1021/j150541a005Search in Google Scholar

[17] K. Itagaki, A. Yazawa: J. Jpn. Inst. Met. 35 (1971) 383.10.2320/jinstmet1952.35.4_383Search in Google Scholar

[18] T. Kang, H.V. Kehiaian, R. Castanet: J. Less Common Met. 53 (1977) 153.10.1016/0022-5088(77)90100-XSearch in Google Scholar

[19] B. Predel, U. Schallner: Mater. Sci. Eng. 10 (1972) 249.10.1016/0025-5416(72)90096-1Search in Google Scholar

[20] P.R. Subramanian, D.E. Laughlin, in: P.R. Subramanian, D.J. Chakrabarti, D.E. Laughlin (Eds.), Phase Diagrams of binary copper alloys, Materials Information Society, USA, 1994, pp. 218.Search in Google Scholar

[21] J. Hertz, K.El. Aissaoui, L. Bouirden: J. Phase Equilibria 23 (2002) 473.10.1361/105497102770331163Search in Google Scholar

[22] H.S. Liu, X.J. Liu, Y. Cui, C.P. Wang, I. Ohnuma, R. Kainuma, Z.P. Jin, K. Ishida: J. of Phase Equilibria 23 (2002) 409.10.1361/105497102770331352Search in Google Scholar

[23] A. Schneider, H. Schmid: Z. Elektrochem. 48 (1942) 627.Search in Google Scholar

[24] A. Yazawa, K. Itagaki, T. Azakami: Trans. Jpn. Inst. Met. 16 (1975) 687.10.2320/matertrans1960.16.687Search in Google Scholar

[25] L.H. Everett, P.W.M. Jacobs, J.A. Kitchener: Acta Metall. 5 (1957) 281.10.1016/0001-6160(57)90102-5Search in Google Scholar

[26] W. Leitgebel: Z. anorg. Allgem. Chemie 202 (1931) 305.10.1002/zaac.19312020127Search in Google Scholar

[27] D.B. Downie: Acta Metall. 12 (1964) 875.10.1016/0001-6160(64)90146-4Search in Google Scholar

[28] O.J. Kleppa, C.E. Thalmayer: Z. Physikal. Chemie 63 (1959) 1953.10.1021/j150581a036Search in Google Scholar

[29] U. Gerling, B. Predel: Z. Metallkd. 71 (1980) 158.Search in Google Scholar

[30] W. Seith, W. Krauss: Z. Elektrochem. 44 (1938) 98.Search in Google Scholar

[31] H.O. von Samson-Himmelsternja: Z. Metallkd. 28 (1936) 197.Search in Google Scholar

[32] G.R. Blair, D.B. Downie: Metal Science Journal 4 (1970) 1.10.1179/030634570790444095Search in Google Scholar

[33] K. Parameswaran, G. Healy: Metall. Trans. B 9 (1978) 657.10.1007/BF03257215Search in Google Scholar

[34] P.J. Spencer: Calphad 10 (1986) 175.10.1016/0364-5916(86)90020-9Search in Google Scholar

[35] M. Kowalski, P.J. Spencer: J. Phase Equilibria 14 (1993) 432.10.1007/BF02671961Search in Google Scholar

[36] A.P. Miodownik, in: P.R. Subramanian, D.J. Chakrabarti, D.E. Laughlin: Phase Diagrams of binary copper alloys, Materials Information Society, USA (1994) 487.Search in Google Scholar

[37] W.J. Svirbely, S.M. Read: J. Phys. Chem. 66 (1962) 658.10.1021/j100810a020Search in Google Scholar

[38] O.J. Kleppa: Acta Metall. 6 (1978) 225.10.1016/0001-6160(58)90141-XSearch in Google Scholar

[39] F.E. Wittig, E.Z. Müller: Z. Metallkd. 51 (1960) 226.Search in Google Scholar

[40] C. Naguet, J.M. Fiorani, A. Bourbka, J. Hertz: Z. Metallkd. 88 (1997) 469.Search in Google Scholar

[41] D. Ferro, B.M. Nappi, V. Piacente, P.L. Cignini: High Temperature Science 10 (1978) 131.Search in Google Scholar

[42] B.J. Lee: Calphad 20 (1996) 471.10.1016/S0364-5916(97)00009-6Search in Google Scholar

Received: 2005-04-29
Accepted: 2005-12-22
Published Online: 2022-01-12

© 2006 Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Extended editorial with anecdotes
  3. Anelastic relaxation and structure of ternary Fe–Al–Me alloys with Me = Co, Cr, Ge, Mn, Nb, Si, Ta, Ti, Zr
  4. Kinetic study of the β → α + γ transformation reaction in a CuZnAl alloy
  5. Calorimetric investigation of the binary Cu–In system
  6. Thermodynamic properties of liquid Cu–In–Zn alloys
  7. Comparing the thermodynamic behaviour of Al(l) + ZrO2(4% Y2O3) and Al(l) + Al2O3
  8. Failure-mode dependence of the strengthening effect in Ti3AlC2/10 vol.% Al2O3 composite
  9. Investigation of Cu-graphite composites prepared by electroforming
  10. Neutron diffraction analysis of martensite ageing in high-carbon FeCMnSi steel
  11. Effect of reinforcement size hybridization on the wear properties of SiCp/Cu Composites
  12. Temperature dependence of lattice mismatch and γ′ volume fraction of a fourth-generation monocrystalline nickel-based superalloy
  13. Novel combinatorial microstructures in Ti-6Al-4V alloy achieved by an electric-current-pulse treatment
  14. The Effect of Ti–B and Sr on the mechanical behaviour of the Zinc–Aluminum-based ZA-12 alloy produced by gravity casting
  15. Determination of retained austenite in multiphase steels by magnetic force microscopy
  16. Filtration resistance during pressure filtration tests of liquid aluminium alloys
  17. Microstructure of a Damascene sabre after annealing
  18. Effect of tin added to the zinc bath on the formation and the microstructure of hot-dip galvanized coatings
  19. Personal
  20. Conferences
  21. Contents
  22. Editorial
  23. Extended editorial with anecdotes
  24. Basic
  25. Anelastic relaxation and structure of ternary Fe–Al–Me alloys with Me = Co, Cr, Ge, Mn, Nb, Si, Ta, Ti, Zr
  26. Kinetic study of the β → α + γ transformation reaction in a CuZnAl alloy
  27. Calorimetric investigation of the binary Cu–In system
  28. Thermodynamic properties of liquid Cu–In–Zn alloys
  29. Comparing the thermodynamic behaviour of Al(l) + ZrO2(4% Y2O3) and Al(l) + Al2O3
  30. Failure-mode dependence of the strengthening effect in Ti3AlC2/10 vol.% Al2O3 composite
  31. Investigation of Cu-graphite composites prepared by electroforming
  32. Neutron diffraction analysis of martensite ageing in high-carbon FeCMnSi steel
  33. Applied
  34. Effect of reinforcement size hybridization on the wear properties of SiCp/Cu Composites
  35. Temperature dependence of lattice mismatch and γ′ volume fraction of a fourth-generation monocrystalline nickel-based superalloy
  36. Novel combinatorial microstructures in Ti-6Al-4V alloy achieved by an electric-current-pulse treatment
  37. The Effect of Ti–B and Sr on the mechanical behaviour of the Zinc–Aluminum-based ZA-12 alloy produced by gravity casting
  38. Determination of retained austenite in multiphase steels by magnetic force microscopy
  39. Filtration resistance during pressure filtration tests of liquid aluminium alloys
  40. Microstructure of a Damascene sabre after annealing
  41. Effect of tin added to the zinc bath on the formation and the microstructure of hot-dip galvanized coatings
  42. Notifications
  43. Personal
  44. Conferences
Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2006-0173/html
Scroll to top button