Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
-
Victor T. Witusiewicz
Abstract
The enthalpies of formation of β and γ alloys of the Ag–Cu–Zn system were determined by dissolution calorimetry. The melting and solid-state transformation temperatures as well as the enthalpies of the order/disorder and β/χ transformations were measured by differential scanning calorimetry. Thermodynamic descriptions are presented for the binary Ag–Zn system and for the ternary Ag–Cu–Zn system in the entire composition ranges. The thermodynamic model parameters of the constituent binaries Ag–Cu and Cu–Zn are taken from earlier assessments. Those for Ag–Zn and the Ag–Cu–Zn system are established based on relevant experimental data available in the literature completed with experimental data obtained in the present work. Several vertical and isothermal sections as well as the liquidus surface and thermodynamic properties are calculated using the evaluated parameters and show reasonably good agreement with experimental data available.
References
[1] T.-M.Korhonen: Ag–Cu–Zn system, private communication.Search in Google Scholar
[2] K.J.Rönkä, F.J.J.van Loo, J.K.Kivilahti: Z. Metallkd.88 (1997) 9.Search in Google Scholar
[3] H.Liang, Y.A.Chang: J. Phase Equil.19 (1998) 25.10.1361/105497198770342724Search in Google Scholar
[4] V.T.Witusiewicz, U.Hecht, S.G.Fries, S.Rex: J. Alloys Comp.385 (2004) 133.Search in Google Scholar
[5] T.Gómez-Acebo: CALPHAD22 (1998) 203.10.1016/S0364-5916(98)00024-8Search in Google Scholar
[6] M.Kowalski, P.J.Spencer: J. Phase Diagrams14 (1993) 432.10.1007/BF02671961Search in Google Scholar
[7] B.J.Lee: Ag-Zn system. Landolt-Börnstein, New series, Group IV, Physical chemistry, Vol. 19, Subvolume B. Part 1. Berlin: Springer-Verlag (2001).Search in Google Scholar
[8] J.Miettinen: CALPHAD26 (2002) 119.10.1016/S0364-5916(02)00028-7Search in Google Scholar
[9] J.Miettinen: CALPHAD27 (2003) 263.10.1016/j.calphad.2003.09.002Search in Google Scholar
[10] M.Jiang, C.P.Wang, X.J.Liu, I.Ohnuma, R.Kainuma, G.P.Vassilev, K.Ishida: J. Phys. Chem. Solids66 (2005) 246.10.1016/j.jpcs.2004.08.039Search in Google Scholar
[11] J.Miettinen: CALPHAD28 (2004) 313.10.1016/j.calphad.2004.09.003Search in Google Scholar
[12] V.T.Witusiewicz, U.Hecht, S.G.Fries, S.Rex: J. Alloys Comp.387 (2005) 217.10.1016/j.jallcom.2004.06.078Search in Google Scholar
[13] V.T.Witusiewicz, U.Hecht, S.Rex, F.Sommer: J. Alloys Comp.337 (2002) 189.10.1016/S0925-8388(01)01954-5Search in Google Scholar
[14] E.Gebhard, G.Petzow, W.Krauß: Z. Metallkd.53 (1962) 372.Search in Google Scholar
[15] V.T.Witusiewicz, F.Sommer, E.J.Mittemeijer: Metal. Trans.B34 (2003) 209.Search in Google Scholar
[16] A.T.Dinsdale: CALPHAD15 (1991) 317.10.1016/0364-5916(91)90030-NSearch in Google Scholar
[17] S.Ueno: Mem. Coll. Sci. Kyoto Imp. Univ.12 (1929) 347.10.2307/331355Search in Google Scholar
[18] M.Keinert: Z. Phys. Chem.160A (1932) 15.10.1515/zpch-1932-16004Search in Google Scholar
[19] K.M.Weigert: Trans AIME200 (1954) 233.10.1007/BF03398004Search in Google Scholar
[20] K.M.Weigert: Trans AIME200 (1954) 1325.Search in Google Scholar
[21] N.Nakanishi, H.Takehora, Y.Murakami, Y.Senda, H.Sugiyama, S.Kashi: Jpn. J. Appl. Phys.67 (1967) 1341.10.1143/JJAP.6.1341Search in Google Scholar
[22] M.Yono, H.Asano, N.Nakanishi, S.Kashi: Trans. JIM8 (1967) 277.Search in Google Scholar
[23] Y.Murakami, N.Nakanishi, S.Kashi: Acta Met.19 (1971) 93.10.1016/0001-6160(71)90121-0Search in Google Scholar
[24] Y.Matsuo: Trans. JIM21 (1980) 174.10.2320/matertrans1960.21.174Search in Google Scholar
[25] Y.Murakami, N.Nakanishi: J. Jpn. Inst. Met.47 (1983) 470.Search in Google Scholar
[26] Y.Murakami, S.Kashi, N.Nakanishi: Acta Met.32 (1984) 629.10.1016/0001-6160(84)90136-6Search in Google Scholar
[27] Y.Matsuo, Y.Torii: J. Jpn. Inst. Met.51 (1987) 31.Search in Google Scholar
[28] M.Hillert, L.-I.Staffansson: Acta Chem. Scand.24 (1970) 3618.10.3891/acta.chem.scand.24-3618Search in Google Scholar
[29] T.Massalaski (Ed.): Binary Phase Diagrams. ASM International, Metals Park, Ohio (1990).Search in Google Scholar
[30] W.B.Pearson: A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, Oxford (1967).Search in Google Scholar
[31] P.Villars, L.D.Calvert: Pearson's Handbook of Crystallographic Data for Intermetallic Phases, 2nd Edition, ASM International, Materials Park, Ohio (1991).Search in Google Scholar
[32] K.Moeller: Z. Metallkd.35 (1943) 27.10.1515/ijmr-1943-350106Search in Google Scholar
[33] J.Miettinen: CALPHAD27 (2003) 147.10.1016/j.calphad.2003.08.003Search in Google Scholar
[34] J.Miettinen: CALPHAD29 (2005) 40–48.10.1016/j.calphad.2005.02.002Search in Google Scholar
[35] J.Miettinen: CALPHAD29 (2005) 212.10.1016/j.calphad.2005.08.001Search in Google Scholar
[36] O.Redlich, A.T.Kister: Ind. Eng. Chem.40 (1948) 345.10.1021/ie50458a036Search in Google Scholar
[37] M.Muggianu, M.Gambino, J.P.Bros: J. Chim. Phys.72 (1975) 83.Search in Google Scholar
[38] B.Sundman, J.Ågren: J. Phys. Chem. Solids, 42 (1981) 297.10.1016/0022-3697(81)90144-XSearch in Google Scholar
[39] N.Dupin, I.Ansara: Z. Metallkd.90 (1999) 76.Search in Google Scholar
[40] A.Kusoffsky: Acta Mater.50 (2002) 5139.10.1016/S1359-6454(02)00382-8Search in Google Scholar
[41] B.Sundman, B.Jansson, J.-O.Andersson: CALPHAD9 (1985) 153.10.1016/0364-5916(85)90021-5Search in Google Scholar
[42] I.Ansara, A.T.Dinsdale, M.H.Rand (Ed.): COST 507-Thermochemical database for light metal alloys, Volume 2, European Communities, Belgium (1998).Search in Google Scholar
[43] A.Kusoffsky, N.Dupin, B.Sundman: CALPHAD25 (2001) 549.10.1016/S0364-5916(02)00007-XSearch in Google Scholar
[44] K.W.Andrews, H.E.Davies, W.Hume-Rothery, C.R.Oswin: Proc. Roy. Soc. (London)177A (1941) 149.Search in Google Scholar
[45] A.Wiedebach-Nostiz: Z. Metallkd.37 (1946) 56.10.1515/ijmr-1946-371-212Search in Google Scholar
[46] F.E.Wittig, F.Huber: Z. Elektrochemie63 (1959) 994.Search in Google Scholar
[47] D.B.Downie. J.F.Martin: J. Chem. Thermodyn.17 (1985) 927.10.1016/0021-9614(85)90005-9Search in Google Scholar
[48] C.E.Birchenall, C.H.Cheng: Metals Trans.185 (1949) 428.Search in Google Scholar
[49] E.E.Underwood, B.L.Averbach: J. Metals3 (1951) 1198.Search in Google Scholar
[50] J.L.Straalsund, B.Masson: Trans. AIME242 (1968) 190.Search in Google Scholar
[51] D.B.Mason, J.L.Sheu: Met. Trans.1 (1970) 3005.10.1007/BF02643424Search in Google Scholar
[52] A.Yazawa, A.Gubcova: Trans. JIM11 (1970) 419.Search in Google Scholar
[53] U.Gerling, M.J.Pool, B.Predel: Z. Metallkd.70 (1979) 224.Search in Google Scholar
[54] K.Kameda: Trans. JIM28 (1987) 41.10.2320/matertrans1960.28.41Search in Google Scholar
[55] G.R.Blair, D.B.Downie: Metal Sci. J.4 (1970) 1.10.1016/0036-9748(70)90130-4Search in Google Scholar
[56] F.Körber, W.Oelsen: Mitt. K.W.I. Eisenforsch.19 (1937) 209.Search in Google Scholar
[57] Z.Weibke: Z. Anorg. Chem.323 (1937) 289.10.1002/zaac.19372320311Search in Google Scholar
[58] R.Hultgren, P.D.Desai, D.T.Hawkins, M.Gleiser, K.K.Kelley: Selected Values of Thermodynamic Properties of Binary Alloys. ASM, Metals Park, Ohio (1973).Search in Google Scholar
© 2006, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial
- Basic
- Three-dimensional printing of TiAl3/Al2O3 composites
- Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
- Solid-State 17O NMR studies on Yttria-stabilized zirconia
- Twinning in ultrathin silicon nanowires
- Re-optimization of the Mg–Sb system under topological constraints
- Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
- The In–Pt–Sb phase diagram
- Thermodynamic evaluation of the Al–Cr–C system
- Thermodynamic description of the Ni–Si–Ti ternary system
- Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
- Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
- Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
- Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
- Implications of linear relationships between local and macroscopic flow stresses in the composite model
- Applied
- Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
- Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
- The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
- Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
- High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
- Nanopowder dispersion and spray-drying process: the case of Cr2O3
- Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
- The role of chemisorbed anions in the aqueous processing of AlN powder
- The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
- Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
- The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
- Infrared properties of sintered α-MnSe
- Quasi-equilibrium sintering of particle clusters containing Bernal holes
- Design of metal ceramic composites
- Notifications
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial
- Basic
- Three-dimensional printing of TiAl3/Al2O3 composites
- Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
- Solid-State 17O NMR studies on Yttria-stabilized zirconia
- Twinning in ultrathin silicon nanowires
- Re-optimization of the Mg–Sb system under topological constraints
- Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
- The In–Pt–Sb phase diagram
- Thermodynamic evaluation of the Al–Cr–C system
- Thermodynamic description of the Ni–Si–Ti ternary system
- Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
- Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
- Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
- Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
- Implications of linear relationships between local and macroscopic flow stresses in the composite model
- Applied
- Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
- Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
- The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
- Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
- High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
- Nanopowder dispersion and spray-drying process: the case of Cr2O3
- Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
- The role of chemisorbed anions in the aqueous processing of AlN powder
- The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
- Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
- The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
- Infrared properties of sintered α-MnSe
- Quasi-equilibrium sintering of particle clusters containing Bernal holes
- Design of metal ceramic composites
- Notifications
- DGM News