Home Solid-State 17O NMR studies on Yttria-stabilized zirconia
Article
Licensed
Unlicensed Requires Authentication

Solid-State 17O NMR studies on Yttria-stabilized zirconia

  • Tillmann Viefhaus and Klaus Müller
Published/Copyright: May 31, 2013
Become an author with De Gruyter Brill

Abstract

Variable temperature 17O NMR measurements, covering a temperature range from room temperature to 973K, were conducted on various samples from 17O enriched yttria-stabilized zirconia for the first time. It is shown that spin-lattice (T1) relaxation exhibits a strong temperature dependence originating from the motional displacements of the oxygen ions, and which is almost independent of the actual sample constitution. In addition, large temperature effects are found for the 17O NMR line widths (i.e. spin-spin relaxation) which – as the spin-lattice relaxation data – reflect the onset of the oxygen ion mobility. It is anticipated that the NMR line width effects are caused by motions on a length-scale which is different from that examined by spin-lattice relaxation.


* Correspondence address: Prof. Klaus Müller, Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany, Tel.: +497116854470, Fax: +497116854467. E-mail:

Dedicated to Professor Dr. Fritz Aldinger on the occasion of his 65th birthday


References

[1] T.H.Etsell, S.N.Flengas: Chem. Rev.70 (3) (1970) 339.10.1021/cr60265a003Search in Google Scholar

[2] G.Adachi, N.Imanaka, S.Tamura: Chem. Rev.102 (2002) 2405.10.1021/cr0103064Search in Google Scholar

[3] T.Ishihara, H.Matsuda, Y.Takita: J. Am. Chem. Soc.116 (1994) 3801.10.1021/ja00088a016Search in Google Scholar

[4] H.Näfe: Solid State Ionics13 (1983) 255.Search in Google Scholar

[5] J.R.Macdonald: Impedance Spectroscopy emphasizing solid Materials and Systems, Wiley, New York (1987).Search in Google Scholar

[6] A.K.Jonscher: J. Mater. Sci.13 (1978) 553.10.1007/BF00541805Search in Google Scholar

[7] P.Abelard, J.F.Baumard: Phys. Rev. B16 (1981) 1005.Search in Google Scholar

[8] K.V.Kale, K.M.Jadhav, G.K.Bichile: J. Mater. Sci. Lett.18 (1999) 9.10.1023/A:1006652705028Search in Google Scholar

[9] Y.Madier, D.Descorme, A.M.Le Govic, D.Duprez: J. Phys. Chem. B103 (1999) 10999.10.1021/jp991270aSearch in Google Scholar

[10] M.Kilo, C.Argirusis, G.Borchardt, R.A.Jackson: Phys. Chem. Chem. Phys.5 (2003) 2219.10.1039/b300151mSearch in Google Scholar

[11] J.H.Strange: Cryst. Latt. Def. and Amorph. Mat.14 (1987) 183.Search in Google Scholar

[12] P.Heitjans, S.Indris: J. Phys. Condens. Matter15 (2003) R1257.10.1088/0953-8984/15/30/202Search in Google Scholar

[13] K.Fuda, K.Kishio, S.Yamauchi: J. Phys. Chem. Solids45 (1984) 1253.10.1016/0022-3697(84)90024-6Search in Google Scholar

[14] K.Fuda, K.Kishio, S.Yamauchi: J. Phys. Chem. Solids46 (1985) 1141.10.1016/0022-3697(85)90142-8Search in Google Scholar

[15] S.B.Adler, J.W.Smith, J.A.Reimer: J. Chem. Phys.98 (1993) 7613.10.1063/1.464701Search in Google Scholar

[16] K.Fuda, K.Kishio, S.Yamauchi: Solid State Comm.53 (1985) 83.10.1016/0038-1098(85)90690-8Search in Google Scholar

[17] P.S.Fiske, J.F.Stebbins, I.Farnan: Phys. Chem. Minerals20 (1994) 587.10.1007/BF00211854Search in Google Scholar

[18] J.Emery, D.Massiot, P.Lacorre, Y.Laligant, K.Conder: Magn. Reson. Chem.43 (2005) 366.10.1002/mrc.1555Search in Google Scholar

[19] N.Kim, R.-N.Vannier, C.P.Grey: Chem. Mater.17 (2005) 1952.10.1021/cm048388aSearch in Google Scholar

[20] N.Kim, C.P.Grey: Dalton Trans. (2004) 3048.10.1039/b402068pSearch in Google Scholar

[21] M.R.Hampson, J.S.O.Evans, P.Hodgkinson: J. Am. Chem. Soc.127 (2005) 15175.10.1021/ja054063zSearch in Google Scholar

[22] N.Kim, C.P.Grey: Science297 (2002) 1317.Search in Google Scholar

[23] S.B.Adler, J.A.Reimer, J.Baltisberger, U.Werner: J. Am. Chem. Soc.116 (1994) 675.10.1021/ja00081a031Search in Google Scholar

[24] Y.-M.Chiang, E.B.Lavik, I.Kosacki, H.L.Tuller: J. Electroceramics1 (1) (1997) 7.10.1023/A:1009958625841Search in Google Scholar

[25] H.L.Tuller: Solid State Ionics131 (2000) 143.10.1016/S0167-2738(00)00629-9Search in Google Scholar

[26] A.Tschöpe: Solid State Ionics139 (2001) 267.10.1016/S0167-2738(01)00677-4Search in Google Scholar

[27] A.Tschöpe, E.Sommer, R.Birringer: Solid State Ionics139 (2001) 255.10.1016/S0167-2738(01)00678-6Search in Google Scholar

[28] U.Brossmann, R.Würschum, K.Södervall, H.-E.Schaefer: J. Appl. Phys.85 (1999) 7646.10.1063/1.370567Search in Google Scholar

[29] G.Knöner, K.Reimann, R.Röwer, K.Södervall, H.-E.Schaefer: PNAS100 (2003) 3870.10.1073/pnas.0730783100Search in Google Scholar

[30] A.Szökefalvi-Nagy, H.D.Carstanjen, G.Knöner, F.Leis, H.-E.Schaefer, submitted.Search in Google Scholar

[31] X.Guo, W.Sigle, J.Fleig, J.Maier: Solid State Ionics154–155 (2002) 555.10.1016/S0167-2738(02)00491-5Search in Google Scholar

[32] S.Kim, J.Maier: J. Electrochem. Soc.149 (2002) J73.10.1149/1.1507597Search in Google Scholar

[33] A.Bielecki, D.P.Burum: J. Magn. Reson. A116 (1995) 215.10.1006/jmra.1995.0010Search in Google Scholar

[34] G.Neue, C.Dybowski: Solid StateNMR7 (1997) 333.Search in Google Scholar

[35] T.J.Bastow, S.N.Stuart: Chem. Phys.143 (1990) 459.10.1016/0301-0104(90)87025-7Search in Google Scholar

[36] N.Bloembergen, E.M.Purcell, R.V.Pound: Phys. Rev.73 (1948) 679.10.1103/PhysRev.73.679Search in Google Scholar

Received: 2006-1-2
Accepted: 2006-2-15
Published Online: 2013-05-31
Published in Print: 2006-05-01

© 2006, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Editorial
  5. Basic
  6. Three-dimensional printing of TiAl3/Al2O3 composites
  7. Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
  8. Solid-State 17O NMR studies on Yttria-stabilized zirconia
  9. Twinning in ultrathin silicon nanowires
  10. Re-optimization of the Mg–Sb system under topological constraints
  11. Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
  12. The In–Pt–Sb phase diagram
  13. Thermodynamic evaluation of the Al–Cr–C system
  14. Thermodynamic description of the Ni–Si–Ti ternary system
  15. Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
  16. Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
  17. Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
  18. Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
  19. Implications of linear relationships between local and macroscopic flow stresses in the composite model
  20. Applied
  21. Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
  22. Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
  23. The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
  24. Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
  25. High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
  26. Nanopowder dispersion and spray-drying process: the case of Cr2O3
  27. Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
  28. The role of chemisorbed anions in the aqueous processing of AlN powder
  29. The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
  30. Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
  31. The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
  32. Infrared properties of sintered α-MnSe
  33. Quasi-equilibrium sintering of particle clusters containing Bernal holes
  34. Design of metal ceramic composites
  35. Notifications
  36. DGM News
Downloaded on 1.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.101265/html?lang=en
Scroll to top button