Solid-State 17O NMR studies on Yttria-stabilized zirconia
-
Tillmann Viefhaus
Abstract
Variable temperature 17O NMR measurements, covering a temperature range from room temperature to 973K, were conducted on various samples from 17O enriched yttria-stabilized zirconia for the first time. It is shown that spin-lattice (T1) relaxation exhibits a strong temperature dependence originating from the motional displacements of the oxygen ions, and which is almost independent of the actual sample constitution. In addition, large temperature effects are found for the 17O NMR line widths (i.e. spin-spin relaxation) which – as the spin-lattice relaxation data – reflect the onset of the oxygen ion mobility. It is anticipated that the NMR line width effects are caused by motions on a length-scale which is different from that examined by spin-lattice relaxation.
References
[1] T.H.Etsell, S.N.Flengas: Chem. Rev.70 (3) (1970) 339.10.1021/cr60265a003Search in Google Scholar
[2] G.Adachi, N.Imanaka, S.Tamura: Chem. Rev.102 (2002) 2405.10.1021/cr0103064Search in Google Scholar
[3] T.Ishihara, H.Matsuda, Y.Takita: J. Am. Chem. Soc.116 (1994) 3801.10.1021/ja00088a016Search in Google Scholar
[4] H.Näfe: Solid State Ionics13 (1983) 255.Search in Google Scholar
[5] J.R.Macdonald: Impedance Spectroscopy emphasizing solid Materials and Systems, Wiley, New York (1987).Search in Google Scholar
[6] A.K.Jonscher: J. Mater. Sci.13 (1978) 553.10.1007/BF00541805Search in Google Scholar
[7] P.Abelard, J.F.Baumard: Phys. Rev. B16 (1981) 1005.Search in Google Scholar
[8] K.V.Kale, K.M.Jadhav, G.K.Bichile: J. Mater. Sci. Lett.18 (1999) 9.10.1023/A:1006652705028Search in Google Scholar
[9] Y.Madier, D.Descorme, A.M.Le Govic, D.Duprez: J. Phys. Chem. B103 (1999) 10999.10.1021/jp991270aSearch in Google Scholar
[10] M.Kilo, C.Argirusis, G.Borchardt, R.A.Jackson: Phys. Chem. Chem. Phys.5 (2003) 2219.10.1039/b300151mSearch in Google Scholar
[11] J.H.Strange: Cryst. Latt. Def. and Amorph. Mat.14 (1987) 183.Search in Google Scholar
[12] P.Heitjans, S.Indris: J. Phys. Condens. Matter15 (2003) R1257.10.1088/0953-8984/15/30/202Search in Google Scholar
[13] K.Fuda, K.Kishio, S.Yamauchi: J. Phys. Chem. Solids45 (1984) 1253.10.1016/0022-3697(84)90024-6Search in Google Scholar
[14] K.Fuda, K.Kishio, S.Yamauchi: J. Phys. Chem. Solids46 (1985) 1141.10.1016/0022-3697(85)90142-8Search in Google Scholar
[15] S.B.Adler, J.W.Smith, J.A.Reimer: J. Chem. Phys.98 (1993) 7613.10.1063/1.464701Search in Google Scholar
[16] K.Fuda, K.Kishio, S.Yamauchi: Solid State Comm.53 (1985) 83.10.1016/0038-1098(85)90690-8Search in Google Scholar
[17] P.S.Fiske, J.F.Stebbins, I.Farnan: Phys. Chem. Minerals20 (1994) 587.10.1007/BF00211854Search in Google Scholar
[18] J.Emery, D.Massiot, P.Lacorre, Y.Laligant, K.Conder: Magn. Reson. Chem.43 (2005) 366.10.1002/mrc.1555Search in Google Scholar
[19] N.Kim, R.-N.Vannier, C.P.Grey: Chem. Mater.17 (2005) 1952.10.1021/cm048388aSearch in Google Scholar
[20] N.Kim, C.P.Grey: Dalton Trans. (2004) 3048.10.1039/b402068pSearch in Google Scholar
[21] M.R.Hampson, J.S.O.Evans, P.Hodgkinson: J. Am. Chem. Soc.127 (2005) 15175.10.1021/ja054063zSearch in Google Scholar
[22] N.Kim, C.P.Grey: Science297 (2002) 1317.Search in Google Scholar
[23] S.B.Adler, J.A.Reimer, J.Baltisberger, U.Werner: J. Am. Chem. Soc.116 (1994) 675.10.1021/ja00081a031Search in Google Scholar
[24] Y.-M.Chiang, E.B.Lavik, I.Kosacki, H.L.Tuller: J. Electroceramics1 (1) (1997) 7.10.1023/A:1009958625841Search in Google Scholar
[25] H.L.Tuller: Solid State Ionics131 (2000) 143.10.1016/S0167-2738(00)00629-9Search in Google Scholar
[26] A.Tschöpe: Solid State Ionics139 (2001) 267.10.1016/S0167-2738(01)00677-4Search in Google Scholar
[27] A.Tschöpe, E.Sommer, R.Birringer: Solid State Ionics139 (2001) 255.10.1016/S0167-2738(01)00678-6Search in Google Scholar
[28] U.Brossmann, R.Würschum, K.Södervall, H.-E.Schaefer: J. Appl. Phys.85 (1999) 7646.10.1063/1.370567Search in Google Scholar
[29] G.Knöner, K.Reimann, R.Röwer, K.Södervall, H.-E.Schaefer: PNAS100 (2003) 3870.10.1073/pnas.0730783100Search in Google Scholar
[30] A.Szökefalvi-Nagy, H.D.Carstanjen, G.Knöner, F.Leis, H.-E.Schaefer, submitted.Search in Google Scholar
[31] X.Guo, W.Sigle, J.Fleig, J.Maier: Solid State Ionics154–155 (2002) 555.10.1016/S0167-2738(02)00491-5Search in Google Scholar
[32] S.Kim, J.Maier: J. Electrochem. Soc.149 (2002) J73.10.1149/1.1507597Search in Google Scholar
[33] A.Bielecki, D.P.Burum: J. Magn. Reson. A116 (1995) 215.10.1006/jmra.1995.0010Search in Google Scholar
[34] G.Neue, C.Dybowski: Solid StateNMR7 (1997) 333.Search in Google Scholar
[35] T.J.Bastow, S.N.Stuart: Chem. Phys.143 (1990) 459.10.1016/0301-0104(90)87025-7Search in Google Scholar
[36] N.Bloembergen, E.M.Purcell, R.V.Pound: Phys. Rev.73 (1948) 679.10.1103/PhysRev.73.679Search in Google Scholar
© 2006, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial
- Basic
- Three-dimensional printing of TiAl3/Al2O3 composites
- Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
- Solid-State 17O NMR studies on Yttria-stabilized zirconia
- Twinning in ultrathin silicon nanowires
- Re-optimization of the Mg–Sb system under topological constraints
- Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
- The In–Pt–Sb phase diagram
- Thermodynamic evaluation of the Al–Cr–C system
- Thermodynamic description of the Ni–Si–Ti ternary system
- Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
- Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
- Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
- Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
- Implications of linear relationships between local and macroscopic flow stresses in the composite model
- Applied
- Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
- Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
- The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
- Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
- High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
- Nanopowder dispersion and spray-drying process: the case of Cr2O3
- Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
- The role of chemisorbed anions in the aqueous processing of AlN powder
- The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
- Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
- The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
- Infrared properties of sintered α-MnSe
- Quasi-equilibrium sintering of particle clusters containing Bernal holes
- Design of metal ceramic composites
- Notifications
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial
- Basic
- Three-dimensional printing of TiAl3/Al2O3 composites
- Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
- Solid-State 17O NMR studies on Yttria-stabilized zirconia
- Twinning in ultrathin silicon nanowires
- Re-optimization of the Mg–Sb system under topological constraints
- Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
- The In–Pt–Sb phase diagram
- Thermodynamic evaluation of the Al–Cr–C system
- Thermodynamic description of the Ni–Si–Ti ternary system
- Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
- Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
- Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
- Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
- Implications of linear relationships between local and macroscopic flow stresses in the composite model
- Applied
- Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
- Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
- The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
- Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
- High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
- Nanopowder dispersion and spray-drying process: the case of Cr2O3
- Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
- The role of chemisorbed anions in the aqueous processing of AlN powder
- The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
- Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
- The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
- Infrared properties of sintered α-MnSe
- Quasi-equilibrium sintering of particle clusters containing Bernal holes
- Design of metal ceramic composites
- Notifications
- DGM News