Startseite Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration

  • Yu Li EMAIL logo , Jian-Long Zheng , Jing Feng und Xin-Li Jing
Veröffentlicht/Copyright: 3. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This article provides a brief overview of recent work by the authors’ group as well as related researches reported by others on controlling the morphology and exploring the formation mechanism of typical micro-/nanostructures of polyaniline (PANI) and aniline oligomers through template-free aniline chemical oxidation process. The contents are organised as follows: (i) tuning the morphology of aniline polymerisation products by employing ultrasonic irradiation, mass transfer, and pH profiles; (ii) exploring the formation mechanism of micro-/nanostructures during aniline chemical oxidation through examining the precipitation behaviours of aniline oligomers and polymers in a post-synthetic system; (iii) tailoring PANI micro-/nanostuctures into pre-designed morphology by introducing certain heterogeneous nucleation centres; (iv) application potential of PANI nanofibres in the areas of transparent conductive film, electromagnetic interference-shielding coating and graphene-based electrode materials. This short review concludes with our perspectives on the challenges faced in gaining the exact formation mechanism of PANI micro-/nanostructures and the future research possibility for morphologically precisely controlled PANI micro-/nanostructures.

[1] Ahmed, S. M. (2004). Mechanistic investigation of the oxidative polymerization of aniline hydrochloride in different media. Polymer Degradation and Stability, 85, 605–614. DOI:10.1016/j.polymdegradstab.2004.01.003. http://dx.doi.org/10.1016/j.polymdegradstab.2004.01.00310.1016/j.polymdegradstab.2004.01.003Suche in Google Scholar

[2] Chattopadhyay, D., & Bain, M. K. (2008). Electrically conductive nanocomposites of polyaniline with poly(vinyl alcohol) and methylcellulose. Journal of Applied Polymer Science, 110, 2849–2853. DOI: 10.1002/app.28836. http://dx.doi.org/10.1002/app.2883610.1002/app.28836Suche in Google Scholar

[3] Chiou, N. R., & Epstein, A. J. (2005a). Polyaniline nanofibers prepared by dilute polymerization. Advanced Materials, 17, 1679–1683. DOI:10.1002/adma.200401000. http://dx.doi.org/10.1002/adma.20040100010.1002/adma.200401000Suche in Google Scholar

[4] Chiou, N. R., & Epstein, A. J. (2005b). A simple approach to control the growth of polyaniline nanofibers. Synthetic Metals, 153, 69–72. DOI:10.1016/j.synthmet.2005.07.145. http://dx.doi.org/10.1016/j.synthmet.2005.07.14510.1016/j.synthmet.2005.07.145Suche in Google Scholar

[5] Ćirić-Marjanović, G., Trchová, M., & Stejskal, J. (2008). Theoretical study of the oxidative polymerization of aniline with peroxydisulfate: Tetramer formation. International Journal of Quantum Chemistry, 108, 318–333. DOI: 10.1002/qua.21506. http://dx.doi.org/10.1002/qua.2150610.1002/qua.21506Suche in Google Scholar

[6] Ding, H., Wan, M., & Wei, Y. (2007). Controlling the diameter of polyaniline nanofibers by adjusting the oxidant redox potential. Advanced Materials, 19, 465–469. DOI:10.1002/adma.200600831. http://dx.doi.org/10.1002/adma.20060083110.1002/adma.200600831Suche in Google Scholar

[7] Gizdavic-Nikolaidis, M. R., Stanisavljev, D. R., Easteal, A. J., & Zujovic, Z. D. (2010). A rapid and facile synthesis of nanofibrillar polyaniline using microwave radiation. Macromolecular Rapid Communications, 31, 657–661. DOI:10.1002/marc.200900800. http://dx.doi.org/10.1002/marc.20090080010.1002/marc.200900800Suche in Google Scholar

[8] Gospodinova, N., Terlemezyan, L., Mokreva, P., & Kossev, K. (1993). On the mechanism of oxidative polymerization of aniline. Polymer, 34, 2434–2437. DOI: 10.1016/0032-3861(93)90834-w. http://dx.doi.org/10.1016/0032-3861(93)90834-W10.1016/0032-3861(93)90834-WSuche in Google Scholar

[9] Gospodinova, N., Ivanov, D. A., Anokhin, D. V., Mihai, I., Vidal, L., Brun, S., Romanova, J., & Tadjer, A. (2009). Unprecedented route to ordered polyaniline: Direct synthesis of highly crystalline fibrillar films with strong π — π stacking alignment. Macromolecular Rapid Communications, 30, 29–33. DOI:10.1002/marc.200800434. http://dx.doi.org/10.1002/marc.20080043410.1002/marc.200800434Suche in Google Scholar PubMed

[10] Gribkova, O. L., Nekrasov, A. A., Trchova, M., Ivanov, V. F., Sazikov, V. I., Razova, A. B., Tverskoy, V. A., & Vannikov, A. V. (2011). Chemical synthesis of polyaniline in the presence of poly(amidosulfonic acids) with different rigidity of the polymer chain. Polymer, 52, 2474–2484. DOI:10.1016/j.polymer.2011.04.003. http://dx.doi.org/10.1016/j.polymer.2011.04.00310.1016/j.polymer.2011.04.003Suche in Google Scholar

[11] He, W., Zhang, W., Li, Y., & Jing, X. (2012). A high concentration graphene dispersion stabilized by polyaniline nanofibers. Synthetic Metals, 162, 1107–1113. DOI:10.1016/j.synthmet.2012.04.027. http://dx.doi.org/10.1016/j.synthmet.2012.04.02710.1016/j.synthmet.2012.04.027Suche in Google Scholar

[12] Hopkins, A. R., Lipeles, R. A., & Hwang, S. J. (2008). Morphology characterization of polyaniline nano- and microstructures. Synthetic Metals, 158, 594–601. DOI: 10.1016/j.synthmet.2008.04.018. http://dx.doi.org/10.1016/j.synthmet.2008.04.01810.1016/j.synthmet.2008.04.018Suche in Google Scholar

[13] House, E. H., & Wolfenden, J. H. (1952). The solubility of aniline hydrochloride in water. Journal of the American Chemical Society, 74, 562–563. DOI: 10.1021/ja01122a512. http://dx.doi.org/10.1021/ja01122a51210.1021/ja01122a512Suche in Google Scholar

[14] Huang, L. M., Wang, Z. B., Wang, H. T., Cheng, X. L., Mitra, A., & Yan, Y. S. (2002). Polyaniline nanowires by electropolymerization from liquid crystalline phases. Journal of Materials Chemistry, 12, 388–391. DOI: 10.1039/b107499g. http://dx.doi.org/10.1039/b107499g10.1039/b107499gSuche in Google Scholar

[15] Huang, J. X., Virji, S., Weiller, B. H., & Kaner, R. B. (2003). Polyaniline nanofibers: Facile synthesis and chemical sensors. Journal of the American Chemical Society, 125, 314–315. DOI: 10.1021/ja028371y. http://dx.doi.org/10.1021/ja028371y10.1021/ja028371ySuche in Google Scholar PubMed

[16] Huang, J. X., & Kaner, R. B. (2004). A general chemical route to polyaniline nanofibers. Journal of the American Chemical Society, 126, 851–855. DOI: 10.1021/ja0371754. http://dx.doi.org/10.1021/ja037175410.1021/ja0371754Suche in Google Scholar PubMed

[17] Huang, J. X., & Kaner, R. B. (2006). The intrinsic nanofibrillar morphology of polyaniline. Chemical Communications, 2006, 367–376. DOI: 10.1039/b510956f. http://dx.doi.org/10.1039/b510956f10.1039/B510956FSuche in Google Scholar PubMed

[18] Huang, Y. F., & Lin, C. W. (2009). Introduction of methanol in the formation of polyaniline nanotubes in an acid-free aqueous solution through a self-curling process. Polymer, 50, 775–782. DOI:10.1016/j.polymer.2008.12.016. http://dx.doi.org/10.1016/j.polymer.2008.12.01610.1016/j.polymer.2008.12.016Suche in Google Scholar

[19] Ivanov, V. F., Gribkova, O. L., Cheberyako, K. V., Nekrasov, A. A., Tverskoi, V. A., & Vannikov, A. V. (2004). Template synthesis of polyaniline in the presence of poly-(2-acrylamido-2-methyl-1-propanesulfonic acid). Russian Journal of Electrochemistry, 40, 299–304. DOI:10.1023/b:ruel.0000019668.68527.cc. http://dx.doi.org/10.1023/B:RUEL.0000019668.68527.cc10.1023/B:RUEL.0000019668.68527.ccSuche in Google Scholar

[20] Jing, X. L., Wang, Y. Y., Wu, D., She, L., & Guo, Y. (2006). Polyaniline nanofibers prepared with ultrasonic irradiation. Journal of Polymer Science Part A: Polymer Chemistry, 44, 1014–1019. DOI: 10.1002/pola.21217. http://dx.doi.org/10.1002/pola.2121710.1002/pola.21217Suche in Google Scholar

[21] Jing, X. L., Wang, Y. Y., Wu, D., & Qiang, J. P. (2007). Sonochemical synthesis of polyaniline nanofibers. Ultrasonics Sonochemistry, 14, 75–80. DOI:10.1016/j.ultsonch.2006.02.001. http://dx.doi.org/10.1016/j.ultsonch.2006.02.00110.1016/j.ultsonch.2006.02.001Suche in Google Scholar PubMed

[22] Konyushenko, E. N., Trchová, M., Stejskal, J., & Sapurina, I. (2010). The role of acidity profile in the nanotubular growth of polyaniline. Chemical Papers, 64, 56–64. DOI: 10.2478/s11696-009-0101-z. http://dx.doi.org/10.2478/s11696-009-0101-z10.2478/s11696-009-0101-zSuche in Google Scholar

[23] Kuznetsov, Y. A., & Timoshenko, E. G. (1999). On the conformational structure of a stiff homopolymer. Journal of Chemical Physics, 111, 3744–3752. DOI: 10.1063/1.479655. http://dx.doi.org/10.1063/1.47965510.1063/1.479655Suche in Google Scholar

[24] Laslau, C., Zujovic, Z. D., & Travas-Sejdic, J. (2009a). Polyaniline “nanotube” self-assembly: The stage of granular agglomeration on nanorod templates. Macromolecular Rapid Communications, 30, 1663–1668. DOI:10.1002/marc.200900244. http://dx.doi.org/10.1002/marc.20090024410.1002/marc.200900244Suche in Google Scholar PubMed

[25] Laslau, C., Zujovic, Z. D., Zhang, L., Bowmaker, G. A., & Travas-Sejdic, J. (2009b). Morphological evolution of selfassembled polyaniline nanostuctures obtained by pH-stat chemical oxidation. Chemistry of Materials, 21, 954–962. DOI: 10.1021/cm803447a. http://dx.doi.org/10.1021/cm803447a10.1021/cm803447aSuche in Google Scholar

[26] Laslau, C., Zujovic, Z., & Travas-Sejdic, J. (2010). Theories of polyaniline nanostructure self-assembly: Towards an expanded, comprehensive Multi-Layer Theory (MLT). Progress in Polymer Science, 35, 1403–1419. DOI: 10.1016/j.progpolymsci.2010.08.002. http://dx.doi.org/10.1016/j.progpolymsci.2010.08.00210.1016/j.progpolymsci.2010.08.002Suche in Google Scholar

[27] Laslau, C., Zujovic, Z. D., & Travas-Sejdic, J. (2011). pHstat control and high resolution electron microscopy of multi-layered polyaniline nanofibers and nanosheets. Journal of Advanced Microscopy Research, 6, 35–39. DOI:10.1166/jamr.2011.1051. http://dx.doi.org/10.1166/jamr.2011.105110.1166/jamr.2011.1051Suche in Google Scholar

[28] Li, W. G., & Wang, H. L. (2004). Oligomer-assisted synthesis of chiral polyaniline nanofibers. Journal of the American Chemical Society, 126, 2278–2279. DOI: 10.1021/ja039672q. http://dx.doi.org/10.1021/ja039672q10.1021/ja039672qSuche in Google Scholar PubMed

[29] Li, J., Tang, H. Q., Zhang, A. Q., Shen, X. T., & Zhu, L. H. (2007). A new strategy for the synthesis of polyaniline nanostructures: From nanofibers to nanowires. Macromolecular Rapid Communications, 28, 740–745. DOI: 10.1002/marc.200600810. http://dx.doi.org/10.1002/marc.20060081010.1002/marc.200600810Suche in Google Scholar

[30] Li, G. C., Zhang, C. Q., & Peng, H. R. (2008). Facile synthesis of self-assembled polyaniline nanodisks. Macromolecular Rapid Communications, 29, 63–67. DOI:10.1002/marc.200700584. http://dx.doi.org/10.1002/marc.20070058410.1002/marc.200700584Suche in Google Scholar

[31] Li, Y., & Jing, X. L. (2009). Morphology control of chemically prepared polyaniline nanostructures: Effects of mass transfer. Reactive and Functional Polymers, 69, 797–807. DOI:10.1016/j.reactfunctpolym.2009.06.009. http://dx.doi.org/10.1016/j.reactfunctpolym.2009.06.00910.1016/j.reactfunctpolym.2009.06.009Suche in Google Scholar

[32] Li, C., Bai, H., & Shi, G. (2009a). Conducting polymer nanomaterials: electrosynthesis and applications. Chemical Society Reviews, 38, 2397–2409. DOI: 10.1039/b816681c. http://dx.doi.org/10.1039/b816681c10.1039/b816681cSuche in Google Scholar PubMed

[33] Li, Y., Wang, Y. Y., Wu, D., & Jing, X. L. (2009b). Effects of ultrasonic irradiation on the morphology of chemically prepared polyaniline nanofibers. Journal of Applied Polymer Science, 113, 868–875. DOI: 10.1002/app.29970. http://dx.doi.org/10.1002/app.2997010.1002/app.29970Suche in Google Scholar

[34] Li, Y., Wang, Y., Jing, X. L., & Zhu, R. H. (2011a). Early stage pH profile: the key factor controlling the construction of polyaniline micro/nanostructures. Journal of Polymer Research, 18, 2119–2131. DOI: 10.1007/s10965-011-9622-6. http://dx.doi.org/10.1007/s10965-011-9622-610.1007/s10965-011-9622-6Suche in Google Scholar

[35] Li, G., Li, Y., Li, Y., Peng, H., & Chen, K. (2011b). Polyaniline nanorings and flat hollow capsules synthesized by in situ sacrificial oxidative templates. Macromolecules, 44, 9319–9323. DOI:10.1021/ma2014854. http://dx.doi.org/10.1021/ma201485410.1021/ma2014854Suche in Google Scholar

[36] Li, Y., He, W., Feng, J., & Jing, X. L. (2012). Self-assembly of aniline oligomers in aqueous medium. Colloid and Polymer Science, 290, 817–828. DOI: 10.1007/s00396-012-2597-y. 10.1007/s00396-012-2597-ySuche in Google Scholar

[37] Liu, W., Cholli, A. L., Nagarajan, R., Kumar, J., Tripathy, S., Bruno, F. F., & Samuelson, L. (1999). The role of template in the enzymatic synthesis of conducting polyaniline. Journal of the American Chemical Society, 121, 11345–11355. DOI: 10.1021/ja9926156. http://dx.doi.org/10.1021/ja992615610.1021/ja9926156Suche in Google Scholar

[38] Liu, Z., Zhang, X. Y., Poyraz, S., Surwade, S. P., & Manohar, S. K. (2010). Oxidative template for conducting polymer nanoclips. Journal of the American Chemical Society, 132, 13158–13159. DOI: 10.1021/ja105966c. http://dx.doi.org/10.1021/ja105966c10.1021/ja105966cSuche in Google Scholar PubMed

[39] Lü, Q. F., & Cheng, X. S. (2009). Preparation of highyield polyaniline nanofibers via an unstirred polymerization. e-polymers, 2009, 084. Suche in Google Scholar

[40] Ma, H. Y., Gao, Y., Li, Y. H., Gong, J., Li, X., Fan, B., & Deng, Y. L. (2009). Ice-templating synthesis of polyaniline microflakes stacked by one-dimensional nanofibers. Journal of Physical Chemistry C, 113, 9047–9052. DOI: 10.1021/jp8112683. http://dx.doi.org/10.1021/jp811268310.1021/jp8112683Suche in Google Scholar

[41] Mallick, K., Witcomb, M. J., Dinsmore, A., & Scurrell, M. S. (2006). Polymerization of aniline by cupric sulfate: A facile synthetic route for producing polyaniline. Journal of Polymer Research, 13, 397–401. DOI: 10.1007/s10965-006-9057-7. http://dx.doi.org/10.1007/s10965-006-9057-710.1007/s10965-006-9057-7Suche in Google Scholar

[42] Martin, C. R. (1996). Membrane-based synthesis of nanomaterials. Chemistry of Materials, 8, 1739–1746. DOI: 10.1021/cm960166s. http://dx.doi.org/10.1021/cm960166s10.1021/cm960166sSuche in Google Scholar

[43] Mi, H. Y., Zhang, X. G., Yang, S. D., Ye, X. G., & Luo, J. M. (2008). Polyaniline nanofibers as the electrode material for supercapacitors. Materials Chemistry and Physics, 112, 127–131. DOI:10.1016/j.matchemphys.2008.05.022. http://dx.doi.org/10.1016/j.matchemphys.2008.05.02210.1016/j.matchemphys.2008.05.022Suche in Google Scholar

[44] Nemzer, L. R., Schwartz, A., & Epstein, A. J. (2010). Enzyme entrapment in reprecipitated polyaniline nanoand microparticles. Macromolecules, 43, 4324–4330. DOI: 10.1021/ma100112g. http://dx.doi.org/10.1021/ma100112g10.1021/ma100112gSuche in Google Scholar

[45] Nickels, P., Dittmer, W. U., Beyer, S., Kotthaus, J. P., & Simmel, F. C. (2004). Polyaniline nanowire synthesis templated by DNA. Nanotechnology, 15, 1524–1529. DOI: 10.1088/0957-4484/15/11/026. http://dx.doi.org/10.1088/0957-4484/15/11/02610.1088/0957-4484/15/11/026Suche in Google Scholar

[46] Olad, A., Ilghami, F., & Nosrati, R. (2012). Surfactant-assisted synthesis of polyaniline nanofibres without shaking and stirring: effect of conditions on morphology and conductivity. Chemical Papers, 66, 757–764. DOI: 10.2478/s11696-012-0197-4. http://dx.doi.org/10.2478/s11696-012-0197-410.2478/s11696-012-0197-4Suche in Google Scholar

[47] Pelesko, J. A. (2007). Self assembly: The science of things that put themselves together. Boca Raton, FL, USA: Chapman & Hall. http://dx.doi.org/10.1201/978158488688410.1201/9781584886884Suche in Google Scholar

[48] Pillalamarri, S. K., Blum, F. D., Tokuhiro, A. T., Story, J. G., & Bertino, M. F. (2005). Radiolytic synthesis of polyaniline nanofibers: A new templateless pathway. Chemistry of Materials, 17, 227–229. DOI: 10.1021/cm0488478. http://dx.doi.org/10.1021/cm048847810.1021/cm0488478Suche in Google Scholar

[49] Przybyłek, M., & Gaca, J. (2012). Reaction of aniline with ammonium persulphate and concentrated hydrochloric acid: Experimental and DFT studies. Chemical Papers, 66, 699–708. DOI: 10.2478/s11696-012-0163-1. http://dx.doi.org/10.2478/s11696-012-0163-110.2478/s11696-012-0163-1Suche in Google Scholar

[50] Sapurina, I., & Stejskal, J. (2008). The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polymer International, 57, 1295–1325. DOI: 10.1002/pi.2476. http://dx.doi.org/10.1002/pi.247610.1002/pi.2476Suche in Google Scholar

[51] Song, S. Y., Pan, L. J., Li, Y., Shi, Y., Pu, L., Zhang, R., & Zheng, Y. D. (2008). Self-assembly of polyaniline: Mechanism study. Chinese Journal of Chemical Physics, 21, 187–192. DOI: 10.1088/1674-0068/21/02/187-192. http://dx.doi.org/10.1088/1674-0068/21/02/187-19210.1088/1674-0068/21/02/187-192Suche in Google Scholar

[52] Stejskal, J., Spirkova, M., Riede, A., Helmstedt, M., Mokreva, P., & Prokes, J. (1999). Polyaniline dispersions 8. The control of particle morphology. Polymer, 40, 2487–2492. DOI: 10.1016/s0032-3861(98)00478-9. http://dx.doi.org/10.1016/S0032-3861(98)00478-910.1016/S0032-3861(98)00478-9Suche in Google Scholar

[53] Stejskal, J., & Sapurina, I. (2004). On the origin of colloidal particles in the dispersion polymerization of aniline. Journal of Colloid and Interface Science, 274, 489–495. DOI:10.1016/j.jcis.2004.02.053. http://dx.doi.org/10.1016/j.jcis.2004.02.05310.1016/j.jcis.2004.02.053Suche in Google Scholar PubMed

[54] Stejskal, J., Sapurina, I., Trchova, M., & Konyushenko, E. N. (2008). Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules, 41, 3530–3536. DOI: 10.1021/ma702601q. http://dx.doi.org/10.1021/ma702601q10.1021/ma702601qSuche in Google Scholar

[55] Stejskal, J., Sapurina, I., & Trchová, M. (2010). Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science, 35, 1420–1481. DOI:10.1016/j.progpolymsci.2010.07.006. http://dx.doi.org/10.1016/j.progpolymsci.2010.07.00610.1016/j.progpolymsci.2010.07.006Suche in Google Scholar

[56] Stejskal, J., & Trchová, M. (2012). Aniline oligomers versus polyaniline. Polymer International, 61, 240–251. DOI: 10.1002/pi.3179. http://dx.doi.org/10.1002/pi.317910.1002/pi.3179Suche in Google Scholar

[57] Sun, H. Z., Wei, H. T., Zhang, H., Ning, Y., Tang, Y., Zhai, F., & Yang, B. (2011). Self-assembly of CdTe nanoparticles into dendrite structure: A microsensor to Hg2+. Langmuir, 27, 1136–1142. DOI: 10.1021/la104325s. http://dx.doi.org/10.1021/la104325s10.1021/la104325sSuche in Google Scholar PubMed

[58] Surwade, S. P., Dua, V., Manohar, N., Manohar, S. K., Beck, E., & Ferraris, J. P. (2009a). Oligoaniline intermediates in the aniline-peroxydisulfate system. Synthetic Metals, 159, 445–455. DOI:10.1016/j.synthmet.2008.11.002. http://dx.doi.org/10.1016/j.synthmet.2008.11.00210.1016/j.synthmet.2008.11.002Suche in Google Scholar

[59] Surwade, S. P., Manohar, N., & Manohar, S. K. (2009b). Origin of bulk nanoscale morphology in conducting polymers. Macromolecules, 42, 1792–1795. DOI: 10.1021/Ma900141g. http://dx.doi.org/10.1021/ma900141g10.1021/ma900141gSuche in Google Scholar

[60] Surwade, S. P., Agnihotra, S. R., Dua, V., Manohar, N., Jain, S., Ammu, S., & Manohar, S. K. (2009c). Catalyst-free synthesis of oligoanilines and polyaniline nanofibers using H2O2. Journal of the American Chemical Society, 131, 12528–12529. DOI: 10.1021/ja905014e. http://dx.doi.org/10.1021/ja905014e10.1021/ja905014eSuche in Google Scholar PubMed

[61] Tang, Z. Y., Kotov, N. A., & Giersig, M. (2002). Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science, 297, 237–240. DOI: 10.1126/science.1072086. http://dx.doi.org/10.1126/science.107208610.1126/science.1072086Suche in Google Scholar PubMed

[62] Tran, H. D., Norris, I., D’Arcy, J. M., Tsang, H., Wang, Y., Mattes, B. R., & Kaner, R. B. (2008a). Substituted polyaniline nanofibers produced via rapid initiated polymerization. Macromolecules, 41, 7405–7410. DOI: 10.1021/ma800122d. http://dx.doi.org/10.1021/ma800122d10.1021/ma800122dSuche in Google Scholar

[63] Tran, H. D., Wang, Y., D’Arcy, J. M., & Kaner, R. B. (2008b). Toward an understanding of the formation of conducting polymer nanofibers. ACS Nano, 2, 1841–1848. DOI: 10.1021/nn800272z. http://dx.doi.org/10.1021/nn800272z10.1021/nn800272zSuche in Google Scholar PubMed

[64] Tran, H. D., D’Arcy, J. M., Wang, Y., Beltramo, P. J., Strong, V. A., & Kaner, R. B. (2011). The oxidation of aniline to produce “polyaniline”: a process yielding many different nanoscale structures. Journal of Materials Chemistry, 21, 3534–3550. DOI: 10.1039/c0jm02699a. http://dx.doi.org/10.1039/c0jm02699a10.1039/C0JM02699ASuche in Google Scholar

[65] Trchová, M., Morávková, Z., Šědenková, I., & Stejskal, J. (2012). Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline. Chemical Papers, 66, 415–445. DOI: 10.2478/s11696-012-0142-6. http://dx.doi.org/10.2478/s11696-012-0142-610.2478/s11696-012-0142-6Suche in Google Scholar

[66] Venancio, E. C., Wang, P. C., & MacDiarmid, A. G. (2006). The azanes: A class of material incorporating nano/micro self-assembled hollow spheres obtained by aqueous oxidative polymerization of aniline. Synthetic Metals, 156, 357–369. DOI:10.1016/j.synthmet.2005.08.035. http://dx.doi.org/10.1016/j.synthmet.2005.08.03510.1016/j.synthmet.2005.08.035Suche in Google Scholar

[67] Wan, M. X. (2009). Some issues related to polyaniline micro-/nanostructures. Macromolecular Rapid Communications, 30, 963–975. DOI:10.1002/marc.200800817. http://dx.doi.org/10.1002/marc.20080081710.1002/marc.200800817Suche in Google Scholar PubMed

[68] Wang, Y. (2007). Syntheses and applications of polyaniline nanofibers. Doctor of Engineering Science thesis, Xi’an Jiaotong University, Xi’an, China. Suche in Google Scholar

[69] Wang, X., Liu, N., Yan, X., Zhang, W. J., & Wei, Y. (2005a). Alkali-guided synthesis of polyaniline hollow microspheres. Chemistry Letters, 34, 42–43. DOI:10.1246/cl.2005.42. http://dx.doi.org/10.1246/cl.2005.4210.1246/cl.2005.42Suche in Google Scholar

[70] Wang, Y., Liu, Z. M., Han, B.X., Sun, Z. Y., Huang, Y., & Yang, G. Y. (2005b). Facile synthesis of polyaniline nanofibers using chloroaurate acid as the oxidant. Langmuir, 21, 833–836. DOI: 10.1021/la047442z. http://dx.doi.org/10.1021/la047442z10.1021/la047442zSuche in Google Scholar PubMed

[71] Wang, Y. Y., & Jing, X. L. (2007). Transparent conductive thin films based on polyaniline nanofibers. Materials Science and Engineering: B, 138, 95–100. DOI:10.1016/j.mseb.2006.12. 016. http://dx.doi.org/10.1016/j.mseb.2006.12.016Suche in Google Scholar

[72] Wang, Y. Y., Jing, X. L., & Kong, J. H. (2007a). Polyaniline nanofibers prepared with hydrogen peroxide as oxidant. Synthetic Metals, 157, 269–275. DOI:10.1016/j.synthmet.2007. 03.007. http://dx.doi.org/10.1016/j.synthmet.2007.03.00710.1016/j.synthmet.2007.03.007Suche in Google Scholar

[73] Wang, J. X., Wang, J. S., Zhang, X. Y., & Wang, Z. (2007b). Assembly of polyaniline nanostructures. Macromolecular Rapid Communications, 28, 84–87. DOI:10.1002/marc.200600557. http://dx.doi.org/10.1002/marc.20060055710.1002/marc.200600557Suche in Google Scholar

[74] Wang, Y. Y., & Jing, X. L. (2008). Formation of polyaniline nanofibers: A morphological study. Journal of Physical Chemistry B, 112, 1157–1162. DOI: 10.1021/jp076112v. http://dx.doi.org/10.1021/jp076112v10.1021/jp076112vSuche in Google Scholar PubMed

[75] Wang, Y., Tran, H. D., Liao, L., Duan, X. F., & Kaner, R. B. (2010). Nanoscale morphology, dimensional control, and electrical properties of oligoanilines. Journal of the American Chemical Society, 132, 10365–10373. DOI: 10.1021/ja1014184. http://dx.doi.org/10.1021/ja101418410.1021/ja1014184Suche in Google Scholar PubMed PubMed Central

[76] Wang, Y., Liu, J. L., Tran, H. D., Mecklenburg, M., Guan, X. N., Stieg, A. Z., Regan, B. C., Martin, D. C., & Kaner, R. B. (2012). Morphological and dimensional control via hierarchical assembly of doped oligoaniline single crystals. Journal of the American Chemical Society, 134, 9251–9262 DOI: 10.1021/ja301061a. http://dx.doi.org/10.1021/ja301061a10.1021/ja301061aSuche in Google Scholar PubMed

[77] Wei, Y., Tang, X., Sun, Y., & Focke, W. W. (1989). A study of the mechanism of aniline polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 27, 2385–2396. DOI:10.1002/pola.1989.080270720. http://dx.doi.org/10.1002/pola.1989.08027072010.1002/pola.1989.080270720Suche in Google Scholar

[78] Wu, J. H., Tang, Q. W., Li, Q. H., & Lin, J. M. (2008). Self-assembly growth of oriented polyaniline arrays: A morphology and structure study. Polymer, 49, 5262–5267. DOI:10.1016/j.polymer.2008.09.044. http://dx.doi.org/10.1016/j.polymer.2008.09.04410.1016/j.polymer.2008.09.044Suche in Google Scholar

[79] Wu, Q., Xu, Y. X., Yao, Z. Y., Liu, A., & Shi, G. Q. (2010). Supercapacitors based on flexible graphene/polyaniline nano-fiber composite films. ACS Nano, 4, 1963–1970. DOI: 10.1021 /nn1000035. http://dx.doi.org/10.1021/nn100003510.1021/nn1000035Suche in Google Scholar PubMed

[80] Xu, A. W. (2009). Soft chemistry route to synthesis of onedimensional nanostructures and their properties. In Y. Zhou (Ed.), One-dimensional nanostructures concepts, applications and perspectives (pp. 220–272). Hefei, China: University of Science and Technology of China Press. (in Chinese) Suche in Google Scholar

[81] Xu, J. J., Wang, K., Zu, S. Z., Han, B. H., & Wei, Z. X. (2010). Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano, 4, 5019–5026. DOI: 10.1021/nn1006539. http://dx.doi.org/10.1021/nn100653910.1021/nn1006539Suche in Google Scholar PubMed

[82] Zhang, X. Y., Goux, W. J., & Manohar, S. K. (2004). Synthesis of polyaniline nanofibers by “nanofiber seeding”. Journal of the American Chemical Society, 126, 4502–4503. DOI: 10.1021/ja031867a. http://dx.doi.org/10.1021/ja031867a10.1021/ja031867aSuche in Google Scholar PubMed

[83] Zhang, D. H., & Wang, Y. Y. (2006). Synthesis and applications of one-dimensional nano-structured polyaniline: An overview. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 134, 9–19. DOI:10.1016/j.mseb.2006.07.037. http://dx.doi.org/10.1016/j.mseb.2006.07.03710.1016/j.mseb.2006.07.037Suche in Google Scholar

[84] Zhang, L. J., Zujovic, Z. D., Peng, H., Bowmaker, G. A., Kilmartin, P. A., & Travas-Sejdic, J. (2008). Structural characteristics of polyaniline nanotubes synthesized from different buffer solutions. Macromolecules, 41, 8877–8884. DOI: 10.1021/ma801728j. http://dx.doi.org/10.1021/ma801728j10.1021/ma801728jSuche in Google Scholar

[85] Zhang, K. Q., & Jing, X. L. (2009). Preparation and characterization of polyaniline with high electrical conductivity. Polymers for Advanced Technologies, 20, 689–695. DOI: 10.1002/pat.1333. http://dx.doi.org/10.1002/pat.133310.1002/pat.1333Suche in Google Scholar

[86] Zhang, Z. M., Deng, J. Y., & Wan, M. X. (2009a). Highly crystalline and thin polyaniline nanofibers oxidized by ferric chloride. Materials Chemistry and Physics, 115, 275–279. DOI:10.1016/j.matchemphys.2008.12.005. http://dx.doi.org/10.1016/j.matchemphys.2008.12.00510.1016/j.matchemphys.2008.12.005Suche in Google Scholar

[87] Zhang, H. B., Wang, J. X., Wang, Z., Zhang, F. B., & Wang, S. C. (2009b). A novel strategy for the synthesis of sheetlike polyaniline. Macromolecular Rapid Communications, 30, 1577–1582. DOI:10.1002/marc.200900228. http://dx.doi.org/10.1002/marc.20090022810.1002/marc.200900228Suche in Google Scholar PubMed

[88] Zhang, K. Q., & Li, Y. (2011). Electrical conductivity enhancement of polyaniline by refluxing. Polymers for Advanced Technologies, 22, 2084–2090. DOI: 10.1002/pat.1725. http://dx.doi.org/10.1002/pat.172510.1002/pat.1725Suche in Google Scholar

[89] Zhang, X., Zhu, J. H., Haldolaarachchige, N., Ryu, J., Young, D. P., Wei, S. Y., & Guo, Z. H. (2012). Synthetic process engineered polyaniline nanostructures with tunable morphol ogy and physical properties. Polymer, 53, 2109–2120. DOI:10.1016/j.polymer.2012.02.042. http://dx.doi.org/10.1016/j.polymer.2012.02.04210.1016/j.polymer.2012.02.042Suche in Google Scholar

[90] Zhou, Y. C., Geng, J. X., Li, G., Zhou, E. L., Chen, L., & Zhang, W. J. (2006). Crystal structure and morphology of phenyl-capped tetraaniline in the leucoemeraldine oxidation state. Journal of Polymer Science Part B: Polymer Physics, 44, 764–769. DOI:10.1002/polb.20700. http://dx.doi.org/10.1002/polb.2070010.1002/polb.20700Suche in Google Scholar

[91] Zhou, C. Q., Han, J., & Guo, R. (2008). Controllable synthesis of polyaniline multidimensional architectures: From plate-like structures to flower-like superstructures. Macromolecules, 41, 6473–6479. DOI: 10.1021/ma800500u. http://dx.doi.org/10.1021/ma800500u10.1021/ma800500uSuche in Google Scholar

[92] Zujovic, Z. D., Laslau, C., Bowmaker, G. A., Kilmartin, P. A., Webber, A. L., Brown, S. P., & Travas-Sejdic, J. (2010). Role of aniline oligomeric nanosheets in the formation of polyaniline nanotubes. Macromolecules, 43, 662–670. DOI: 10.1021/ma902109r. http://dx.doi.org/10.1021/ma902109r10.1021/ma902109rSuche in Google Scholar

[93] Zujovic, Z. D., Laslau, C., & Travas-Sejdic, J. (2011a). Lamellarstructured nanoflakes comprised of stacked oligoaniline nanosheets. Chemistry — An Asian Journal, 6, 791–796. DOI:10.1002/asia.201000703. http://dx.doi.org/10.1002/asia.20100070310.1002/asia.201000703Suche in Google Scholar PubMed

[94] Zujovic, Z. D., Wang, Y., Bowmaker, G. A., & Kaner, R. B. (2011b). Structure of ultralong polyaniline nanofibers using initiators. Macromolecules, 44, 2735–2742. DOI: 10.1021/ma102772t. http://dx.doi.org/10.1021/ma102772t10.1021/ma102772tSuche in Google Scholar

Published Online: 2013-5-3
Published in Print: 2013-8-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Recent trends and progress in research into structure and properties of polyaniline and polypyrrole — Topical Issue
  2. Printing polyaniline for sensor applications
  3. Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials
  4. Conducting polymer-silver composites
  5. Electrorheological response of polyaniline and its hybrids
  6. Effect of PPy/PEG conducting polymer film on electrochemical performance of LiFePO4 cathode material for Li-ion batteries
  7. Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration
  8. Self-assembly of aniline oligomers and their induced polyaniline supra-molecular structures
  9. Self-organization of polyaniline during oxidative polymerization: formation of granular structure
  10. Influence of ethanol on the chain-ordering of carbonised polyaniline
  11. X-ray absorption spectroscopy of nanostructured polyanilines
  12. Effect of cations on polyaniline morphology
  13. Preparation of polyaniline in the presence of polymeric sulfonic acids mixtures: the role of intermolecular interactions between polyacids
  14. Chemical degradation of polyaniline by reaction with Fenton’s reagent — a spectroelectrochemical study
  15. Thin mesoporous polyaniline films manifesting a water-promoted photovoltaic effect
  16. Polyamide grafted with polypyrrole: formation, properties, and stability
  17. Effect of ionic liquid on polyaniline chemically synthesised under falling-pH conditions
  18. Polyaniline doped with poly(acrylamidomethylpropanesulphonic acid): electrochemical behaviour and conductive properties in neutral solutions
  19. Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles
  20. Bi-hybrid coatings: polyaniline-montmorillonite filler in organic-inorganic polymer matrix
  21. Preparation of aqueous polyaniline-vesicle suspensions with class III peroxidases. Comparison between horseradish peroxidase isoenzyme C and soybean peroxidase
  22. Preparation, characterisation, and dielectric properties of polypyrrole-clay composites
  23. Multi-wall carbon nanotubes with nitrogen-containing carbon coating
  24. Conducting poly(o-anisidine)-coated steel electrodes for supercapacitors
  25. Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations
  26. Preparation of a miniaturised iodide ion selective sensor using polypyrrole and pencil lead: effect of double-coating, electropolymerisation time, and current density
  27. Role of polyaniline morphology in Pd particles dispersion. Hydrogenation of alkynes in the presence of Pd-polyaniline catalysts
  28. Nanostructured polyaniline-coated anode for improving microbial fuel cell power output
  29. Antibacterial properties of polyaniline-silver films
  30. Effect of compression pressure on mechanical and electrical properties of polyaniline pellets
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0347-3/pdf?lang=de
Button zum nach oben scrollen