Abstract
Rechargeable lithium-ion batteries (LIBs) have been the most commonly used batteries in the portable electronics market for many years. Polypyrrole (PPy) was now investigated as a conducting addition agent to enhance the cathode and anode materials performance in LIBs. Actual development in the synthesis and modification of the most promising cathode materials, LiFePO4, is described in this mini-review. The main aim of this mini-review is to highlight the effect of PPy based conducting polymer films on the electrochemical efficiency of LiFePO4 based cathode materials for LIBs summarizing our own research. Influence of the polyethylene glycol (PEG) additive in the PPy coating layer was evaluated. The improved electrochemical performance can be attributed to the enhanced electronic conductivity, higher solubility of ions originating from the electrolyte, higher movability of dissolved Li+ ions, and improved structural flexibility resulting from the incorporation of the PPy or PPy/PEG conducting polymer layer. The stabilizing effect of PEG in PPy was reflected in lowered cross-linking and reduced structural defects and, in consequence, in higher specific capacity of PPy/PEG-LiFePO4 cathodes compared to that of PPy-LiFePO4 cathodes and bare LiFePO4 cathodes.
[1] Ait Salah, A., Mauger, A., Zaghib, K., Goodenough, J. B., Ravet, N., Gauthier, M., Gendron, F., & Julien, C. M. (2006). Reduction Fe3+ of impurities in LiFePO4 from pyrolysis of organic precursor used for carbon deposition. Journal of the Electrochemical Society, 153, A1692–A1701. DOI: 10.1149/1.2213527. http://dx.doi.org/10.1149/1.221352710.1149/1.2213527Suche in Google Scholar
[2] Andersson, A. S., Thomas, J. O., Kalska, B., & Häggström, L. (2000). Thermal stability of LiFePO4-based cathodes. Electrochemical and Solid-State Letters, 3, 66–68. DOI: 10.1149/1.1390960. http://dx.doi.org/10.1149/1.139096010.1149/1.1390960Suche in Google Scholar
[3] Andersson, A. S., & Thomas, J. O. (2001). The source of first-cycle capacity loss in LiFePO4. Journal of Power Sources, 97–98, 498–502. DOI: 10.1016/s0378-7753(01)00633-4. http://dx.doi.org/10.1016/S0378-7753(01)00633-410.1016/S0378-7753(01)00633-4Suche in Google Scholar
[4] Armand, M. (1994). The history of polymer electrolytes. Solid State Ionics, 69, 309–319. DOI: 10.1016/0167-2738(94)90419-7. http://dx.doi.org/10.1016/0167-2738(94)90419-710.1016/0167-2738(94)90419-7Suche in Google Scholar
[5] Arnold, G., Garche, J., Hemmer, R., Ströbele, S., Vogler, C., & Wohlfahrt-Mehrens, M. (2003). Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique. Journal of Power Sources, 119-121, 247–251. DOI: 10.1016/s0378-7753(03)00241-6. http://dx.doi.org/10.1016/S0378-7753(03)00241-610.1016/S0378-7753(03)00241-6Suche in Google Scholar
[6] Baker, J., Saidi, M. Y., & Swoyer, J. L. (2003). Lithium iron(II) phospho-olivines prepared by a novel carbothermal reduction method. Electrochemical and Solid-State Letters, 6, A53–A55. DOI: 10.1149/1.1544211. http://dx.doi.org/10.1149/1.154421110.1149/1.1544211Suche in Google Scholar
[7] Burgmayer, P., & Murray, R. W. (1986). Ionic conductivity of polypyrrole. In T. A. Skotheim (Ed.), Handbook of conducting polymers (pp. 507–523). New York, NY, USA: Marcel Dekker. Suche in Google Scholar
[8] Chen, C. H., Liu, J., & Amine, K. (2001). Symmetric cell approach and impedance spectroscopy of high power lithiumion batteries. Journal of Power Sources, 96, 321–328. DOI: 10.1016/s0378-7753(00)00666-2. http://dx.doi.org/10.1016/S0378-7753(00)00666-210.1016/S0378-7753(00)00666-2Suche in Google Scholar
[9] Chen, Z. H., & Dahn, J. R. (2002). Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density. Journal of the Electrochemical Society, 149, A1184–A1189. DOI: 10.1149/1.1498255. http://dx.doi.org/10.1149/1.149825510.1149/1.1498255Suche in Google Scholar
[10] Cho, T. H., & Chung, H. T. (2004). Synthesis of olivinetype LiFePO4 by emulsion-drying method. Journal of Power Sources, 133, 272–276. DOI: 10.1016/j.jpowsour.2004.02.015. http://dx.doi.org/10.1016/j.jpowsour.2004.02.01510.1016/j.jpowsour.2004.02.015Suche in Google Scholar
[11] Chung, S. Y., Bloking, J. T., & Chiang, Y. M. (2002). Electronically conductive phospho-olivines as lithium storage electrodes. Nature Materials, 1, 123–128. DOI: 10.1038/nmat732. http://dx.doi.org/10.1038/nmat73210.1038/nmat732Suche in Google Scholar PubMed
[12] Croce, F., D’Epifanio, A., Hassoun, J., Deptula, A., Olczac, T., & Scrosati, B. (2002). A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochemical and Solid-State Letters, 5, A47–A50. DOI: 10.1149/1.1449302. http://dx.doi.org/10.1149/1.144930210.1149/1.1449302Suche in Google Scholar
[13] Croce, F., D’Epifanio, A., Reale, P., Settimi, L., & Scrosati, B. (2003). Ruthenium oxide-added quartz iron phosphate as a new intercalation electrode in rechargeable lithium cells. Journal of the Electrochemical Society, 150, A576–A581. DOI: 10.1149/1.1562933. http://dx.doi.org/10.1149/1.156293310.1149/1.1562933Suche in Google Scholar
[14] da Cruz, A. G. B., Wardell, J. L., & Rocco, A. M. (2006). A novel material obtained by electropolymerization of polypyrrole doped with [Sn(dmit)3]2−, [tris(1,3-dithiole-2-thione-4,5-dithiolato)-stannate]2−. Synthetic Metals, 156, 396–404. DOI: 10.1016/j.synthmet.2005.12.026. http://dx.doi.org/10.1016/j.synthmet.2005.12.02610.1016/j.synthmet.2005.12.026Suche in Google Scholar
[15] Dias, H. V. R., Fianchini, M., & Rajapakse, R. M. G. (2006). Greener method for high-quality polypyrrole. Polymer, 47, 7349–7354. DOI: 10.1016/j.polymer.2006.08.033. http://dx.doi.org/10.1016/j.polymer.2006.08.03310.1016/j.polymer.2006.08.033Suche in Google Scholar
[16] Fedorková, A., Wiemhöfer, H. D., Oriňáková, R., Oriňák, A., Stan, M. C., Winter, M., Kaniansky, D., & Nacher Alejos, A. (2009). Improved lithium exchange at LiFePO4 cathode particles by coating with composite polypyrrole-polyethylene glycol layers. Journal of Solid State Electrochemistry, 13, 1867–1872. DOI: 10.1007/s10008-008-0756-3. http://dx.doi.org/10.1007/s10008-008-0756-310.1007/s10008-008-0756-3Suche in Google Scholar
[17] Fedorková, A., Nacher-Alejos, A., Gómez-Romero, P., Oriňáková, R., & Kaniansky, D. (2010a). Structural and electrochemical studies of PPy/PEG-LiFePO4 cathode material for Li-ion batteries. Electrochimica Acta, 55, 943–947. DOI: 10.1016/j.electacta.2009.09.060. http://dx.doi.org/10.1016/j.electacta.2009.09.06010.1016/j.electacta.2009.09.060Suche in Google Scholar
[18] Fedorková, A., Oriňáková, R., Oriňák, A., Talian, I., Heile, A., Wiemhöfer, H. D., Kaniansky, D., & Arlinghaus, H. F. (2010b). PPy doped PEG conducting polymer films synthesized on LiFePO4 particles. Journal of Power Sources, 195, 3907–3912. DOI: 10.1016/j.jpowsour.2010.01.003. http://dx.doi.org/10.1016/j.jpowsour.2010.01.00310.1016/j.jpowsour.2010.01.003Suche in Google Scholar
[19] Fedorková, A., Oriňáková, R., Oriňák, A., Wiemhöfer, H. D., Kaniansky, D., & Winter, M. (2010c). Surface treatment of LiFePO4 cathode material with PPy/PEG conductive layer. Journal of Solid State Electrochemistry, 14, 2173–2178. DOI: 10.1007/s10008-009-0967-2. http://dx.doi.org/10.1007/s10008-009-0967-210.1007/s10008-009-0967-2Suche in Google Scholar
[20] Fedorková, A., Wiemhöfer, H. D., Oriňáková, R., Oriňák, A., & Kaniansky, D. (2010d). Surface modification of FePO4 particles with conductive layer of polypyrrole. Solid State Sciences, 12, 924–928. DOI: 10.1016/j.solidstatesciences.2010.01.030. http://dx.doi.org/10.1016/j.solidstatesciences.2010.01.03010.1016/j.solidstatesciences.2010.01.030Suche in Google Scholar
[21] Fedorková, A., Oriňáková, R., Oriňák, A., Heile, A., Wiemhöfer, H. D., & Arlinghaus, H. F. (2011). Electrochemical and TOFSIMS investigation of PPy/PEG modified LiFePO4 composite electrodes for Li-ion batteries. Solid State Sciences, 13, 824–830. DOI: 10.1016/j.solidstatesciences.2011.03.015. http://dx.doi.org/10.1016/j.solidstatesciences.2011.03.01510.1016/j.solidstatesciences.2011.03.015Suche in Google Scholar
[22] Fedorková, A., Oriňáková, R., Oriňák, A., Kupková, M., Wiemhöfer, H. D., Audinot, J. N., & Guillot, J. (2012a). Electrochemical and XPS study of LiFePO4 cathode nanocomposite with PPy/PEG conductive network. Solid State Sciences, 14, 1238–1243. DOI: 10.1016/j.solidstatesciences.2012.06.010. http://dx.doi.org/10.1016/j.solidstatesciences.2012.06.01010.1016/j.solidstatesciences.2012.06.010Suche in Google Scholar
[23] Fedorková, A., Oriňáková, R., Oriňák, A., Wiemhöfer, H. D., Audinot, J. N., & Guillot, J. (2012b). LiFePO4 cathode nanocomposite with PPy/PEG conductive network. ECS Transactions, 40, 107–115. DOI: 10.1149/1.4729093. http://dx.doi.org/10.1149/1.472909310.1149/1.4729093Suche in Google Scholar
[24] Franger, S., Le Cras, F., Bourbon, C., & Rouault, H. (2002). LiFePO4 synthesis routes for enhanced electrochemical performance. Electrochemical and Solid-State Letters, 5, A231–A233. DOI: 10.1149/1.1506962. http://dx.doi.org/10.1149/1.150696210.1149/1.1506962Suche in Google Scholar
[25] Franger, S., Le Cras, F., Bourbon, C., & Rouault, H. (2003). Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties. Journal of Power Sources, 119-121, 252–257. DOI: 10.1016/s0378-7753(03)00242-8. http://dx.doi.org/10.1016/S0378-7753(03)00242-810.1016/S0378-7753(03)00242-8Suche in Google Scholar
[26] Gaberscek, M., Moskon, J., Erjavec, B., Dominko, R., & Jamnik, J. (2008). The importance of interphase contacts in Li ion electrodes: The meaning of the high-frequency impedance arc. Electrochemical and Solid-State Letters, 11, A170–A174. DOI: 10.1149/1.2964220. http://dx.doi.org/10.1149/1.296422010.1149/1.2964220Suche in Google Scholar
[27] Gauthier, M., Michot, C., Ravet, N., Duchesneau, M., Dufour, J., Liang, G., Wontcheu, J., Gauthier, L., & McNeil, D. D. (2010). Melt casting LiFePO4: I. Synthesis and characterization. Journal of the Electrochemical Society, 157, A453–A462. DOI: 10.1149/1.3284505. http://dx.doi.org/10.1149/1.328450510.1149/1.3284505Suche in Google Scholar
[28] Guo, Z. P., Wang, J. Z., Liu, H. K., & Dou, S. X. (2005). Study of silicon/polypyrrole composite as anode materials for Liion batteries. Journal of Power Sources, 146, 448–451. DOI: 10.1016/j.jpowsour.2005.03.112. http://dx.doi.org/10.1016/j.jpowsour.2005.03.11210.1016/j.jpowsour.2005.03.112Suche in Google Scholar
[29] Huang, H., Yin, S. C., & Nazar, L. F. (2001). Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochemical and Solid-State Letters, 4, A170–A172. DOI: 10.1149/1.1396695. http://dx.doi.org/10.1149/1.139669510.1149/1.1396695Suche in Google Scholar
[30] Huang, Y. H., Park, K. S., & Goodenough, J. B. (2006). Improving lithium batteries by tethering carbon-coated LiFePO4 to polypyrrole. Journal of the Electrochemical Society, 153, A2282–A2286. DOI: 10.1149/1.2360769. http://dx.doi.org/10.1149/1.236076910.1149/1.2360769Suche in Google Scholar
[31] Julien, C. M., Mauger, A., & Zaghib, K. (2011). Surface effects on electrochemical properties of nano-sized LiFePO4. Journal of Materials Chemistry, 21, 9955–9968. DOI: 10.1039/c0jm04190d. http://dx.doi.org/10.1039/c0jm04190d10.1039/c0jm04190dSuche in Google Scholar
[32] Kang, H. C., & Geckeler, K. E. (2000). Enhanced electrical conductivity of polypyrrole prepared by chemical oxidative polymerization: effect of the preparation technique and polymer additive. Polymer, 41, 6931–6934. DOI: 10.1016/s0032-3861(00)00116-6. http://dx.doi.org/10.1016/S0032-3861(00)00116-610.1016/S0032-3861(00)00116-6Suche in Google Scholar
[33] Kang, S. H., Abraham, D. P., Xiao, A., & Lucht, B. L. (2008). Investigating the solid electrolyte interphase using binderfree graphite electrodes. Journal of Power Sources, 175, 526–532. DOI: 10.1016/j.jpowsour.2007.08.112. http://dx.doi.org/10.1016/j.jpowsour.2007.08.11210.1016/j.jpowsour.2007.08.112Suche in Google Scholar
[34] Kassim, A., Ekarmul Mahmud, H. N. M., Yee, L. M., & Hanipah, N. (2006). Electrochemical preparation and characterization of polypyrrole-polyethylene glycol conducting polymer composite films. Pacific Journal of Science and Technology, 7, 103–107. Suche in Google Scholar
[35] Kim, D. H., & Kim, J. K. (2006). Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochemical and Solid-State Letters, 9, A439–A442. DOI: 10.1149/1.2218308. http://dx.doi.org/10.1149/1.221830810.1149/1.2218308Suche in Google Scholar
[36] Kuwabata, S., Masui, S., & Yoneyama, H. (1999). Charge-discharge properties of composites of LiMn2O4 and polypyrrole as positive electrode materials for 4 V class of rechargeable Li batteries. Electrochimica Acta, 44, 4593–4600. DOI: 10.1016/s0013-4686(99)00178-4. http://dx.doi.org/10.1016/S0013-4686(99)00178-410.1016/S0013-4686(99)00178-4Suche in Google Scholar
[37] Kwon, S. J., Kim, C. W., Jeong, W. T., & Lee, K. S. (2004). Synthesis and electrochemical properties of olivine LiFePO4 as a cathode material prepared by mechanical alloying. Journal of Power Sources, 137, 93–99. DOI: 10.1016/j.jpowsour.2004.05.048. http://dx.doi.org/10.1016/j.jpowsour.2004.05.04810.1016/j.jpowsour.2004.05.048Suche in Google Scholar
[38] Lai, C. Y., Xu, Q. J., Ge, H. H., Zhou, G. D., & Xie, J. Y. (2008). Improved electrochemical performance of LiFePO4/C for lithium-ion batteries with two kinds of carbon sources. Solid State Ionics, 179, 1736–1739. DOI: 10.1016/j.ssi.2008.03.042. http://dx.doi.org/10.1016/j.ssi.2008.03.04210.1016/j.ssi.2008.03.042Suche in Google Scholar
[39] Lepage, D., Michot, C., Liang, G. X., Gauthier, M., & Schougaard, S. B. (2011). A soft chemistry approach to coating of LiFePO4 with a conducting polymer. Angewandte Chemie International Edition, 50, 6884–6887. DOI: 10.1002/anie.201101661. http://dx.doi.org/10.1002/anie.20110166110.1002/anie.201101661Suche in Google Scholar PubMed
[40] Li, Z. H., Zhang, D. M., & Yang, F. X. (2009). Developments of lithium-ion batteries and challenges of LiFePO4 as one promising cathode material. Journal of Materials Science, 44, 2435–2443. DOI: 10.1007/s10853-009-3316-z. http://dx.doi.org/10.1007/s10853-009-3316-z10.1007/s10853-009-3316-zSuche in Google Scholar
[41] Li, J. L., Daniel, C., & Wood, D. (2011). Materials processing for lithium-ion batteries. Journal of Power Sources, 196, 2452–2460. DOI: 10.1016/j.jpowsour.2010.11.001. http://dx.doi.org/10.1016/j.jpowsour.2010.11.00110.1016/j.jpowsour.2010.11.001Suche in Google Scholar
[42] Liu, L., Tian, F. H., Wang, X. Y., Yang, Z. H., Zhou, M., & Wang, X. Y. (2012). Porous polythiophene as a cathode material for lithium batteries with high capacity and good cycling stability. Reactive and Functional Polymers, 72, 45–49. DOI: 10.1016/j.reactfunctpolym.2011.10.006. http://dx.doi.org/10.1016/j.reactfunctpolym.2011.10.00610.1016/j.reactfunctpolym.2011.10.006Suche in Google Scholar
[43] Marco, J. F., Gancedo, J. R., Nguyen Cong, H., del Canto, M., & Gautier, J. L. (2006). Characterization of Cu1.4Mn1.6O4/PPy composite electrodes. Solid State Ionics, 177, 1381–1388. DOI: 10.1016/j.ssi.2006.06.007. http://dx.doi.org/10.1016/j.ssi.2006.06.00710.1016/j.ssi.2006.06.007Suche in Google Scholar
[44] Meetong, N., Huang, H. Y. S., Speakman, S., Carter, W. C., & Chiang, Y. M. (2007). Strain accommodation during phase transformations in olivine-based cathodes as a materials selection criterion for high-power rechargeable batteries. Advanced Functional Materials, 17, 1115–1123. DOI: 10.1002/adfm.200600938. http://dx.doi.org/10.1002/adfm.20060093810.1002/adfm.200600938Suche in Google Scholar
[45] Nabid, M. R., & Entenzami, A. A. (2003). Enzymatic synthesis and characterization of a water-soluble, conducting poly(otoluidine). European Polymer Journal, 39, 1169–1175. DOI: 10.1016/s0014-3057(02)00379-8. http://dx.doi.org/10.1016/S0014-3057(02)00379-810.1016/S0014-3057(02)00379-8Suche in Google Scholar
[46] Osaka, T., Momma, T., Nishimura, K., Kakuda, S., & Ishii, T. (1994). Application of solid polymer electrolyte to lithium/polypyrrole secondary battery system. Journal of the Electrochemical Society, 141, 1994–1998. DOI: 10.1149/1.2055048. http://dx.doi.org/10.1149/1.205504810.1149/1.2055048Suche in Google Scholar
[47] Padhi, A. K., Nanjundaswamy, K. S., & Goodenough, J. B. (1997a). Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Journal of the Electrochemical Society, 144, 1188–1194. DOI: 10.1149/1.1837571. http://dx.doi.org/10.1149/1.183757110.1149/1.1837571Suche in Google Scholar
[48] Padhi, A. K., Nanjundaswamy, K. S., Masquelier, C., Okada, S., & Goodenough, J. B. (1997b). Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. Journal of the Electrochemical Society, 144, 1609–1613. DOI: 10.1149/1.1837649. http://dx.doi.org/10.1149/1.183764910.1149/1.1837649Suche in Google Scholar
[49] Park, K. S., Kang, K. T., Lee, S. B., Kim, G. Y., Park, Y. J., & Kim, H. G. (2004a). Synthesis of LiFePO4 with fine particle by co-precipitation method. Materials Research Bulletin, 39, 1803–1810. DOI: 10.1016/j.materresbull.2004.07.003. http://dx.doi.org/10.1016/j.materresbull.2004.07.00310.1016/j.materresbull.2004.07.003Suche in Google Scholar
[50] Park, K. S., Son, J. T., Chung, H. T., Kim, S. J., Lee, C. H., Kang, K. T., & Kim, H. G. (2004b). Surface modification by silver coating for improving electrochemical properties of LiFePO4. Solid State Communications, 129, 311–314. DOI: 10.1016/j.ssc.2003.10.015. http://dx.doi.org/10.1016/j.ssc.2003.10.01510.1016/j.ssc.2003.10.015Suche in Google Scholar
[51] Prosini, P. P., Zane, D., & Pasquali, M. (2001). Improved electrochemical performance of a LiFePO4-based composite cathode. Electrochimica Acta, 46, 3517–3523. DOI: 10.1016/s0013-4686(01)00631-4. http://dx.doi.org/10.1016/S0013-4686(01)00631-410.1016/S0013-4686(01)00631-4Suche in Google Scholar
[52] Ravet, N., Chouinard, Y., Magnan, J. F., Besner, S., Gauthier, M., & Armand, M. (2001). Electroactivity of natural and synthetic triphylite. Journal of Power Sources, 97–98, 503–507. DOI: 10.1016/s0378-7753(01)00727-3. http://dx.doi.org/10.1016/S0378-7753(01)00727-310.1016/S0378-7753(01)00727-3Suche in Google Scholar
[53] Ravet, N., Gauthier, M., Zaghib, K., Goodenough, J. B., Mauger, A., Gendron, F., & Julien, C. M. (2007). Mechanism of the Fe3+ reduction at low temperature for LiFePO4 synthesis from a polymeric additive. Chemistry of Materials, 19, 2595–2602. DOI: 10.1021/cm070485r. http://dx.doi.org/10.1021/cm070485r10.1021/cm070485rSuche in Google Scholar
[54] Schrebler, R., Cury, P., Gómez, H., Córdova, R., & Gassa, L. M. (2002). Electrochemical behaviour of polypyrrol/polyethylenglycol composites. Boletín de la Sociedad Chilena de Química, 47, 537–545. DOI: 10.4067/s0366-16442002000400026. http://dx.doi.org/10.4067/S0366-1644200200040002610.4067/S0366-16442002000400026Suche in Google Scholar
[55] Swathi, S. K., Jeevananda, T., & Ramamurthy, P. C. (2010). Fabrication of device quality films of high loaded PPy/MWCNT nanocomposites using pulsed laser deposition. Organic Electronics, 11, 1489–1499. DOI: 10.1016/j.orgel.2010.06.013. http://dx.doi.org/10.1016/j.orgel.2010.06.01310.1016/j.orgel.2010.06.013Suche in Google Scholar
[56] Takahashi, M., Tobishima, S. i., Takei, K., & Sakurai, Y. (2002). Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries. Solid State Ionics, 148, 283–289. DOI: 10.1016/s0167-2738(02)00064-4. http://dx.doi.org/10.1016/S0167-2738(02)00064-410.1016/S0167-2738(02)00064-4Suche in Google Scholar
[57] Tallman, D. E., Vang, C., Wallace, G. G., & Bierwagen, G. P. (2002). Direct electrodeposition of polypyrrole on aluminum and aluminum alloy by electron transfer mediation. Journal of the Electrochemical Society, 149, C173–C179. DOI: 10.1149/1.1448820. http://dx.doi.org/10.1149/1.144882010.1149/1.1448820Suche in Google Scholar
[58] Toshima, N., & Ihata, O. (1996). Catalytic synthesis of conductive polypyrrole using iron (III) catalyst and molecular oxygen. Synthetic Metals, 79, 165–172. DOI: 10.1016/0379-6779(96)80186-x. http://dx.doi.org/10.1016/0379-6779(96)80186-X10.1016/0379-6779(96)80186-XSuche in Google Scholar
[59] Wang, G. X., Bewlay, S. L., Konstantinov, K., Liu, H. K., Dou, S. X., & Ahn, J. H. (2004). Physical and electrochemical properties of doped lithium iron phosphate electrodes. Electrochimica Acta, 50, 443–447. DOI: 10.1016/j.electacta.2004.04.047. http://dx.doi.org/10.1016/j.electacta.2004.04.04710.1016/j.electacta.2004.04.047Suche in Google Scholar
[60] Wang, G. X., Yang, L., Chen, Y., Wang, J. Z., Bewlay, S., & Liu, H. K. (2005). An investigation of polypyrrole-LiFePO4 composite cathode materials for lithium-ion batteries. Electrochimica Acta, 50, 4649–4654. DOI: 10.1016/j.electacta.2005.02.026 http://dx.doi.org/10.1016/j.electacta.2005.02.02610.1016/j.electacta.2005.02.026Suche in Google Scholar
[61] Wang, L. N., Zhang, Z. G., & Zhang, K. L. (2007). A simple, cheap soft synthesis routine for LiFePO4 using iron(III) raw material. Journal of Power Sources, 167, 200–205. DOI: 10.1016/j.jpowsour.2007.02.002. http://dx.doi.org/10.1016/j.jpowsour.2007.02.00210.1016/j.jpowsour.2007.02.002Suche in Google Scholar
[62] Wang, Y., & Cao, G. Z. (2008). Developments in nanostructured cathode materials for high-performance lithiumion batteries. Advanced Materials, 20, 2251–2269. DOI: 10.1002/adma.200702242. http://dx.doi.org/10.1002/adma.20070224210.1002/adma.200702242Suche in Google Scholar
[63] Xie, Q. J., Kuwabata, S., & Yoneyama, H. (1997). EQCM studies on polypyrrole in aqueous solutions. Journal of Electroanalytical Chemistry, 420, 219–225. DOI: 10.1016/s0022-0728(96)04777-8. http://dx.doi.org/10.1016/S0022-0728(96)04777-810.1016/S0022-0728(96)04777-8Suche in Google Scholar
[64] Yamada, A., Chung, S. C., & Hinokuma, K. (2001). Optimized LiFePO4 for lithium battery cathodes. Journal of the Electrochemical Society, 148, A224–A229. DOI: 10.1149/1.1348257. http://dx.doi.org/10.1149/1.134825710.1149/1.1348257Suche in Google Scholar
[65] Yang, S. F., Song, Y. N., Zavalij, P. Y., & Whittingham, M. S. (2002). Reactivity, stability, and electrochemical behavior of lithium iron phosphates. Electrochemistry Communications, 4, 239–244. DOI: 10.1016/s1388-2481(01)00298-3. 10.1016/S1388-2481(01)00298-3Suche in Google Scholar
[66] Zaghib, K., Mauger, A., Gendron, F., & Julien, C. M. (2008). Surface effects on the physical and electrochemical properties of thin LiFePO4 particles. Chemistry of Materials, 20, 462–469. DOI: 10.1021/cm7027993. http://dx.doi.org/10.1021/cm702799310.1021/cm7027993Suche in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Recent trends and progress in research into structure and properties of polyaniline and polypyrrole — Topical Issue
- Printing polyaniline for sensor applications
- Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials
- Conducting polymer-silver composites
- Electrorheological response of polyaniline and its hybrids
- Effect of PPy/PEG conducting polymer film on electrochemical performance of LiFePO4 cathode material for Li-ion batteries
- Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration
- Self-assembly of aniline oligomers and their induced polyaniline supra-molecular structures
- Self-organization of polyaniline during oxidative polymerization: formation of granular structure
- Influence of ethanol on the chain-ordering of carbonised polyaniline
- X-ray absorption spectroscopy of nanostructured polyanilines
- Effect of cations on polyaniline morphology
- Preparation of polyaniline in the presence of polymeric sulfonic acids mixtures: the role of intermolecular interactions between polyacids
- Chemical degradation of polyaniline by reaction with Fenton’s reagent — a spectroelectrochemical study
- Thin mesoporous polyaniline films manifesting a water-promoted photovoltaic effect
- Polyamide grafted with polypyrrole: formation, properties, and stability
- Effect of ionic liquid on polyaniline chemically synthesised under falling-pH conditions
- Polyaniline doped with poly(acrylamidomethylpropanesulphonic acid): electrochemical behaviour and conductive properties in neutral solutions
- Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles
- Bi-hybrid coatings: polyaniline-montmorillonite filler in organic-inorganic polymer matrix
- Preparation of aqueous polyaniline-vesicle suspensions with class III peroxidases. Comparison between horseradish peroxidase isoenzyme C and soybean peroxidase
- Preparation, characterisation, and dielectric properties of polypyrrole-clay composites
- Multi-wall carbon nanotubes with nitrogen-containing carbon coating
- Conducting poly(o-anisidine)-coated steel electrodes for supercapacitors
- Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations
- Preparation of a miniaturised iodide ion selective sensor using polypyrrole and pencil lead: effect of double-coating, electropolymerisation time, and current density
- Role of polyaniline morphology in Pd particles dispersion. Hydrogenation of alkynes in the presence of Pd-polyaniline catalysts
- Nanostructured polyaniline-coated anode for improving microbial fuel cell power output
- Antibacterial properties of polyaniline-silver films
- Effect of compression pressure on mechanical and electrical properties of polyaniline pellets
Artikel in diesem Heft
- Recent trends and progress in research into structure and properties of polyaniline and polypyrrole — Topical Issue
- Printing polyaniline for sensor applications
- Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials
- Conducting polymer-silver composites
- Electrorheological response of polyaniline and its hybrids
- Effect of PPy/PEG conducting polymer film on electrochemical performance of LiFePO4 cathode material for Li-ion batteries
- Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration
- Self-assembly of aniline oligomers and their induced polyaniline supra-molecular structures
- Self-organization of polyaniline during oxidative polymerization: formation of granular structure
- Influence of ethanol on the chain-ordering of carbonised polyaniline
- X-ray absorption spectroscopy of nanostructured polyanilines
- Effect of cations on polyaniline morphology
- Preparation of polyaniline in the presence of polymeric sulfonic acids mixtures: the role of intermolecular interactions between polyacids
- Chemical degradation of polyaniline by reaction with Fenton’s reagent — a spectroelectrochemical study
- Thin mesoporous polyaniline films manifesting a water-promoted photovoltaic effect
- Polyamide grafted with polypyrrole: formation, properties, and stability
- Effect of ionic liquid on polyaniline chemically synthesised under falling-pH conditions
- Polyaniline doped with poly(acrylamidomethylpropanesulphonic acid): electrochemical behaviour and conductive properties in neutral solutions
- Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles
- Bi-hybrid coatings: polyaniline-montmorillonite filler in organic-inorganic polymer matrix
- Preparation of aqueous polyaniline-vesicle suspensions with class III peroxidases. Comparison between horseradish peroxidase isoenzyme C and soybean peroxidase
- Preparation, characterisation, and dielectric properties of polypyrrole-clay composites
- Multi-wall carbon nanotubes with nitrogen-containing carbon coating
- Conducting poly(o-anisidine)-coated steel electrodes for supercapacitors
- Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations
- Preparation of a miniaturised iodide ion selective sensor using polypyrrole and pencil lead: effect of double-coating, electropolymerisation time, and current density
- Role of polyaniline morphology in Pd particles dispersion. Hydrogenation of alkynes in the presence of Pd-polyaniline catalysts
- Nanostructured polyaniline-coated anode for improving microbial fuel cell power output
- Antibacterial properties of polyaniline-silver films
- Effect of compression pressure on mechanical and electrical properties of polyaniline pellets