Abstract
In this paper, X-ray absorption near edge spectroscopy at the nitrogen K edge (N K XANES) data of polyaniline (PANI) and its derivatives were revisited and expanded. The N K XANES spectra of PANI nanocomposites and PANI nanofibers were also investigated. The analysis of N K XANES spectra were done by the deconvolution of bands and the 1s → π* and 1s → σ* transitions were assigned by a correlation with the N K XANES spectra of smaller organic compounds. The “free” forms of PANI were dominated by bands from 397.7 eV to 399.1 eV attributed to imine and radical cation nitrogen atoms, respectively. Nitrogen bonded to phenazine-like rings can also be seen, mainly for PANI prepared at pH higher than 3.0. The spectra of nanocomposites show sharper bands than the “free” polymers as well as new bands at 398.8 eV and 405–406 eV. These new bands were assigned to phenazine-like rings and azo bonds in the structure of the polymers (polyaniline, polybenzidine, and poly(p-phenylediamine)) within the galleries of the montmorillonite clay. PANI nanofibers doped with HCl or HClO4 show bands related to phenazine-like rings and/or dication segments of PANI, indicating that these segments are important in the formation of PANI nanofibers.
[1] Abruña, H. D. (1989). X ray as probes of electrochemical interfaces. In J. O’M. Bockris, R. E. White, & B. E. Conway (Eds.), Modern aspects of electrochemistry (pp. 265–326). New York, NY, USA: Plenum Press. Suche in Google Scholar
[2] Atkins, P. W. (1994). Physical chemistry. Oxford, London, UK: Oxford University Press. Suche in Google Scholar
[3] Bianconi, A. (1980). Surface X-ray absorption spectroscopy: Surface EXAFS and surface XANES. Applications of Surface Science, 6, 392–418. DOI: 10.1016/0378-5963(80)90024-0. http://dx.doi.org/10.1016/0378-5963(80)90024-010.1016/0378-5963(80)90024-0Suche in Google Scholar
[4] Bianconi, A. (1988). Xanes spectroscopy. In D. C. Koningsberger, & R. Prins (Eds.), X-ray absorption (pp. 573–662). New York, NY, USA: Wiley. Suche in Google Scholar
[5] Bilderback, D. H., Elleaume, P., & Weckert, E. (2005). Review of third and next generation synchrotron light sources. Journal of Physics B: Atomic, Molecular and Optical Physics, 38, S773–S797. DOI: 10.1088/0953-4075/38/9/022. http://dx.doi.org/10.1088/0953-4075/38/9/02210.1088/0953-4075/38/9/022Suche in Google Scholar
[6] do Nascimento, G. M., Constantino, V. R. L., & Temperini, M. L. A. (2002a). Spectroscopic characterization of a new type of conducting polymer-clay nanocomposite. Macromolecules, 35, 7535–7537. DOI: 10.1021/ma025571l. http://dx.doi.org/10.1021/ma025571l10.1021/ma025571lSuche in Google Scholar
[7] do Nascimento, G.M., da Silva, J. E. P., de Torresi, S. I. C., Santos, P. S., & Temperini, M. L. A. (2002b). Spectroscopic characterization of the inclusion compound formed by polyaniline and β-cyclodextrin. Molecular Crystals and Liquid Crystals, 374, 53–58. DOI: 10.1080/10587250210439. http://dx.doi.org/10.1080/1058725021043910.1080/10587250210439Suche in Google Scholar
[8] do Nascimento, G. M., Pereira da Silva, J. E., Córdoba de Torresi, S. I., & Temperini, M. L. A. (2002c). Comparison of secondary doping and thermal treatment in poly(diphenylamine) and polyaniline monitored by resonance Raman spectroscopy. Macromolecules, 35, 121–125. DOI: 10.1021/ma010920h. http://dx.doi.org/10.1021/ma010920h10.1021/ma010920hSuche in Google Scholar
[9] do Nascimento G. M., Constantino, V. R. L., Landers, R., & Temperini, M. L. A. (2004a). Aniline polymerization into montmorillonite clay: A spectroscopic investigation of the intercalated conducting polymer. Macromolecules, 37, 9373–9385. DOI: 10.1021/ma049054+. http://dx.doi.org/10.1021/ma049054+10.1021/ma049054+Suche in Google Scholar
[10] do Nascimento G. M., Constantino, V. R. L., & Temperini, M. L. A. (2004b). Spectroscopic characterization of doped poly(benzidine) and its nanocomposite with cationic clay. The Journal of Physical Chemistry B, 108, 5564–5571. DOI: 10.1021/jp037262i. http://dx.doi.org/10.1021/jp037262i10.1021/jp037262iSuche in Google Scholar
[11] do Nascimento, G. M., & Temperini, M. L. A. (2006). Nitrogen oxidation states elucidated by X-ray absorption nitrogen K-edge spectroscopy. Química Nova, 29, 823–828. DOI: 10.1590/s0100-40422006000400033. http://dx.doi.org/10.1590/S0100-4042200600040003310.1590/S0100-40422006000400033Suche in Google Scholar
[12] do Nascimento, G. M., Constantino, V. R. L., Landers, L., & Temperini, M. L. A. (2006a). Spectroscopic characterization of polyaniline formed in the presence of montmorillonite clay. Polymer, 47, 6131–6139. DOI: 10.1016/j.polymer.2006.06.036. http://dx.doi.org/10.1016/j.polymer.2006.06.03610.1016/j.polymer.2006.06.036Suche in Google Scholar
[13] do Nascimento, G. M., Silva, C. H. B., & Temperini, M. L. A. (2006b). Electronic structure and doping behavior of PANI-NSA nanofibers investigated by resonance Raman spectroscopy. Macromolecular Rapid Communications, 27, 255–259. DOI: 10.1002/marc.200500690. http://dx.doi.org/10.1002/marc.20050069010.1002/marc.200500690Suche in Google Scholar
[14] do Nascimento, G. M., Kobata, P. Y. G., Millen, R. P., & Temperini, M. L. A. (2007). Raman dispersion in polyaniline base forms. Synthetic Metals, 157, 247–251. DOI: 10.1016/j.synthmet.2007.02.003. http://dx.doi.org/10.1016/j.synthmet.2007.02.00310.1016/j.synthmet.2007.02.003Suche in Google Scholar
[15] do Nascimento, G. M., & Temperini, M. L. A. (2008a). Structure of polyaniline formed in different inorganic porous materials: A spectroscopic study. European Polymer Journal, 44, 3501–3511. DOI: 10.1016/j.eurpolymj.2008.08.038. http://dx.doi.org/10.1016/j.eurpolymj.2008.08.03810.1016/j.eurpolymj.2008.08.038Suche in Google Scholar
[16] do Nascimento, G. M., & Temperini, M. L. A. (2008b). Studies on the resonance Raman spectra of polyaniline obtained with near-IR excitation. Journal of Raman Spectroscopy, 39, 772–778. DOI: 10.1002/jrs.1841. http://dx.doi.org/10.1002/jrs.184110.1002/jrs.1841Suche in Google Scholar
[17] do Nascimento, G. M., Kobata, P. Y. G., & Temperini, M. L. A. (2008a). Structural and vibrational characterization of polyaniline nanofibers prepared from interfacial polymerization. The Journal of Physical Chemistry B, 112, 11551–11557. DOI: 10.1021/jp804154k. http://dx.doi.org/10.1021/jp804154k10.1021/jp804154kSuche in Google Scholar
[18] do Nascimento, G. M., Padilha, A. C. M., Constantino, V. R. L., & Temperini, M. L. A. (2008b). Oxidation of anilinium ions intercalated in montmorillonite clay by electrochemical route. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 318, 245–253. DOI: 10.1016/j.colsurfa.2007.12.042. http://dx.doi.org/10.1016/j.colsurfa.2007.12.04210.1016/j.colsurfa.2007.12.042Suche in Google Scholar
[19] do Nascimento, G. M., Silva, C. H. B., Izumi, C. M. S., & Temperini, M. L. A. (2008c). The role of cross-linking structures to the formation of one-dimensional nano-organized polyaniline and their Raman fingerprint. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71, 869–875. DOI: 10.1016/j.saa.2008.02.009. http://dx.doi.org/10.1016/j.saa.2008.02.00910.1016/j.saa.2008.02.009Suche in Google Scholar
[20] do Nascimento, G. M., Sestrem, R. H., & Temperini, M. L. A. (2010). Structural characterization of poly-paraphenylenediamine-montmorillonite clay nanocomposites. Synthetic Metals, 160, 2397–2403. DOI: 10.1016/j.synthmet.2010.09.016. http://dx.doi.org/10.1016/j.synthmet.2010.09.01610.1016/j.synthmet.2010.09.016Suche in Google Scholar
[21] Francis, J. T., & Hitchcock, A. P. (1992). Inner-shell spectroscopy of p-benzoquinone, hydroquinone, and phenol: distinguishing quinoid and benzenoid structures. The Journal of Physical Chemistry, 96, 6598–6610. DOI: 10.1021/j100195a018. http://dx.doi.org/10.1021/j100195a01810.1021/j100195a018Suche in Google Scholar
[22] Gelius, U., Hedén, P. F., Hedman, J., Lindberg, B. J., Manne, R., Nordberg, R., Nordling, C., & Siegbahn, K. (1970). Spectroscopy by means of esca. III. Carbon compounds. Physica Scripta, 2, 70–80. DOI: 10.1088/0031-8949/2/1-2/014. http://dx.doi.org/10.1088/0031-8949/2/1-2/01410.1088/0031-8949/2/1-2/014Suche in Google Scholar
[23] Heald, S. M. (1988). Design of an exafs experiment. In D. C. Koningsberger, & R. Prins (Eds.), X-ray absorption (pp. 87–118). New York, NY, USA: Wiley. Suche in Google Scholar
[24] Hennig, C., Hallmeier, K. H., Bach, A., Bender, S., Franke, R., Hormes, J., & Szargan, R. (1996). Influence of substituents on the N K X-ray absorption near-edge structure of pyrrole derivatives. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 52, 1079–1083. DOI: 10.1016/0584-8539(95)01649-x. http://dx.doi.org/10.1016/0584-8539(95)01649-X10.1016/0584-8539(95)01649-XSuche in Google Scholar
[25] Hennig, C., Hallmeier, K. H., & Szargan, R. (1998). XANES investigation of chemical states of nitrogen in polyaniline. Synthetic Metals, 92, 161–166. DOI: 10.1016/s0379-6779(98)80106-9. http://dx.doi.org/10.1016/S0379-6779(98)80106-910.1016/S0379-6779(98)80106-9Suche in Google Scholar
[26] Huang, J., & Wan, M. X. (1999). Polyaniline doped with different sulfonic acids by in situ doping polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 37, 1277–1284. DOI: 10.1002/(sici)1099-0518(19990501)37:9〈1277::aid-pola7〉3.0.co;2-a. http://dx.doi.org/10.1002/(SICI)1099-0518(19990501)37:9<1277::AID-POLA7>3.0.CO;2-A10.1002/(SICI)1099-0518(19990501)37:9<1277::AID-POLA7>3.0.CO;2-ASuche in Google Scholar
[27] Huang, J. X., & Kaner, R. B. (2004a). Nanofiber formation in the chemical polymerization of aniline: A mechanistic study. Angewandte Chemie International Edition, 43, 5817–5821. DOI: 10.1002/anie.200460616. http://dx.doi.org/10.1002/anie.20046061610.1002/anie.200460616Suche in Google Scholar
[28] Huang, J. X., & Kaner, R. B. (2004b). A general chemical route to polyaniline nanofibers. Journal of the American Chemical Society, 126, 851–855. DOI: 10.1021/ja0371754. http://dx.doi.org/10.1021/ja037175410.1021/ja0371754Suche in Google Scholar
[29] Lee, P. A., Citrin, P. H., Eisenberger, P., & Kincaid, B. M. (1981). Extended X-ray absorption fine-structure — its strenghts and limitations as a structural tool. Reviews of Modern Physics, 53, 769–806. DOI: 10.1103/revmodphys.53.769. http://dx.doi.org/10.1103/RevModPhys.53.76910.1103/RevModPhys.53.769Suche in Google Scholar
[30] Li, D., Bancroft, G. M., Fleet, M. E., & Feng, X. H. (1995). Silicon K-edge xanes spectra of silicate minerals. Physics & Chemistry of Minerals, 22, 115–122. DOI: 10.1007/bf00202471. 10.1007/BF00202471Suche in Google Scholar
[31] MacDiarmid, A. G., Chiang, J. C., Richter, A. F., & Sonosiri, N. L. D. (1987). The polyanilines. In L. Alcácer (Ed.), Conducting polymers (pp. 105–120). Dordrecht, The Netherlands: Reidel Publications. http://dx.doi.org/10.1007/978-94-009-3907-3_910.1007/978-94-009-3907-3_9Suche in Google Scholar
[32] MacDiarmid, A. G., & Epstein, A. J. (1989). Polyanilines: a novel class of conducting polymers. Faraday Discussions of the Chemical Society, 88, 317–332. DOI: 10.1039/dc9898800317. http://dx.doi.org/10.1039/dc989880031710.1039/dc9898800317Suche in Google Scholar
[33] MacDiarmid, A. G. (2001). “Synthetic metals”: A novel role for organic polymers. Angewandte Chemie International Edition, 40, 2581–2590. DOI: 10.1002/1521-3773(20010716)40:14〈2581::aid-anie2581〉3.0.co;2-2. http://dx.doi.org/10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-210.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2Suche in Google Scholar
[34] Manne, R., & Åberg, T. (1970). Koopmans’ theorem for inner-shell ionization. Chemical Physics Letters, 7, 282–284. DOI: 10.1016/0009-2614(70)80309-8. http://dx.doi.org/10.1016/0009-2614(70)80309-810.1016/0009-2614(70)80309-8Suche in Google Scholar
[35] Margaritondo, G. (1988). Introduction to synchrotron radiation. New York, NY, USA: Oxford University Press. Suche in Google Scholar
[36] Margaritondo, G. (2002). Elements of synchrotron light: For biology, chemistry and medical research. New York, NY, USA: Oxford University Press. Suche in Google Scholar
[37] Parsons, J. G., Aldrich, M. V., & Gardea-Torresdey, J. L. (2002). Environmental and biological applications of extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) spectroscopies. Applied Spectroscopy Reviews, 37, 187–222. DOI: 10.1081/asr-120006044. http://dx.doi.org/10.1081/ASR-12000604410.1081/ASR-120006044Suche in Google Scholar
[38] Pavlychev, A. A., Hallmeier, K. H., Hennig, C., Hennig, L., & Szargan, R. (1995). Nitrogen K-shell excitations in complex molecules and polypyrrole. Chemical Physics, 201, 547–555. DOI: 10.1016/0301-0104(95)00287-1. http://dx.doi.org/10.1016/0301-0104(95)00287-110.1016/0301-0104(95)00287-1Suche in Google Scholar
[39] Rodrigues, F., do Nascimento, G. M., & Santos, P. S. (2007a). Dissolution and doping of polyaniline emeraldine base in imidazolium ionic liquids investigated by spectroscopic techniques. Macromolecular Rapid Communications, 28, 666–669. DOI: 10.1002/marc.200600635. http://dx.doi.org/10.1002/marc.20060063510.1002/marc.200600635Suche in Google Scholar
[40] Rodrigues, F., do Nascimento, G. M., & Santos, P. S. (2007b). Studies of ionic liquid solutions by soft X-ray absorption spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 155, 148–154. DOI: 10.1016/j.elspec.2006.12.010. http://dx.doi.org/10.1016/j.elspec.2006.12.01010.1016/j.elspec.2006.12.010Suche in Google Scholar
[41] Rodrigues, F., Galante, D., do Nascimento, G. M., & Santos, P. S. (2012). Interionic interactions in imidazolic ionic liquids probed by soft X-ray absorption spectroscopy. The Journal of Physical Chemistry B, 116, 1491–1498. DOI: 10.1021/jp208094p. http://dx.doi.org/10.1021/jp208094p10.1021/jp208094pSuche in Google Scholar PubMed
[42] Schwartz, N. N., & Blumbergs, J. H. (1964). Epoxidations with m-chloroperbenzoic acid. The Journal of Organic Chemistry, 29, 1976–1979. DOI: 10.1021/jo01030a078. http://dx.doi.org/10.1021/jo01030a07810.1021/jo01030a078Suche in Google Scholar
[43] SPSS (1995). PeakFit 4.06 [computer software]. Florence, OR, USA: SPSS software. Suche in Google Scholar
[44] Stejskal, J., Sapurina, I., Trchová, M., Konyushenko, E. N., & Holler, P. (2006). The genesis of polyaniline nanotubes. Polymer, 47, 8253–8262. DOI: 10.1016/j.polymer.2006.10.007. http://dx.doi.org/10.1016/j.polymer.2006.10.00710.1016/j.polymer.2006.10.007Suche in Google Scholar
[45] Stejskal, J., Sapurina, I., Trchová, M., & Konyushenko, E. N. (2008). Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules, 41, 3530–3536. DOI: 10.1021/ma702601q. http://dx.doi.org/10.1021/ma702601q10.1021/ma702601qSuche in Google Scholar
[46] Stejskal, J., Sapurina, I., & Trchová, M. (2010). Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science, 35, 1420–1481 DOI: 10.1016/j.progpolymsci.2010.07.006. http://dx.doi.org/10.1016/j.progpolymsci.2010.07.00610.1016/j.progpolymsci.2010.07.006Suche in Google Scholar
[47] Stern, E. A. (1988). Theory of EXAFS. In D. C. Koningsberger, & R. Prins (Eds.), X-ray absorption (pp. 3–52). New York, NY, USA: Wiley. Suche in Google Scholar
[48] Sun, Y., MacDiarmid, A. G., & Epstein, A. J. (1990). Polyaniline: synthesis and characterization of pernigraniline base. Journal of the Chemical Society, Chemical Communications, 7, 529–531. DOI: 10.1039/c39900000529. http://dx.doi.org/10.1039/c3990000052910.1039/c39900000529Suche in Google Scholar
[49] Thompson, A. C., & Kortright, J. B. (2009). X-ray emissionenergies. In A. C. Thompson (Ed.), X-Ray data booklet (pp. 1–2, 1–8). Berkeley, CA, USA: Lawrence Berkeley National Laboratory. Suche in Google Scholar
[50] Trchová, M., Morávková, Z., Šeděnková, I., & Stejskal, J. (2012). Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline. Chemical Papers, 66, 415–445. DOI: 10.2478/s11696-012-0142-6. http://dx.doi.org/10.2478/s11696-012-0142-610.2478/s11696-012-0142-6Suche in Google Scholar
[51] Vinogradov, A. S., & Akimov, V. N. (1998). X-ray absorption study of the spectrum of free electronic states in a KNO3 crystal. Optics & Spectroscopy, 85, 53–59. Suche in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Recent trends and progress in research into structure and properties of polyaniline and polypyrrole — Topical Issue
- Printing polyaniline for sensor applications
- Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials
- Conducting polymer-silver composites
- Electrorheological response of polyaniline and its hybrids
- Effect of PPy/PEG conducting polymer film on electrochemical performance of LiFePO4 cathode material for Li-ion batteries
- Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration
- Self-assembly of aniline oligomers and their induced polyaniline supra-molecular structures
- Self-organization of polyaniline during oxidative polymerization: formation of granular structure
- Influence of ethanol on the chain-ordering of carbonised polyaniline
- X-ray absorption spectroscopy of nanostructured polyanilines
- Effect of cations on polyaniline morphology
- Preparation of polyaniline in the presence of polymeric sulfonic acids mixtures: the role of intermolecular interactions between polyacids
- Chemical degradation of polyaniline by reaction with Fenton’s reagent — a spectroelectrochemical study
- Thin mesoporous polyaniline films manifesting a water-promoted photovoltaic effect
- Polyamide grafted with polypyrrole: formation, properties, and stability
- Effect of ionic liquid on polyaniline chemically synthesised under falling-pH conditions
- Polyaniline doped with poly(acrylamidomethylpropanesulphonic acid): electrochemical behaviour and conductive properties in neutral solutions
- Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles
- Bi-hybrid coatings: polyaniline-montmorillonite filler in organic-inorganic polymer matrix
- Preparation of aqueous polyaniline-vesicle suspensions with class III peroxidases. Comparison between horseradish peroxidase isoenzyme C and soybean peroxidase
- Preparation, characterisation, and dielectric properties of polypyrrole-clay composites
- Multi-wall carbon nanotubes with nitrogen-containing carbon coating
- Conducting poly(o-anisidine)-coated steel electrodes for supercapacitors
- Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations
- Preparation of a miniaturised iodide ion selective sensor using polypyrrole and pencil lead: effect of double-coating, electropolymerisation time, and current density
- Role of polyaniline morphology in Pd particles dispersion. Hydrogenation of alkynes in the presence of Pd-polyaniline catalysts
- Nanostructured polyaniline-coated anode for improving microbial fuel cell power output
- Antibacterial properties of polyaniline-silver films
- Effect of compression pressure on mechanical and electrical properties of polyaniline pellets
Artikel in diesem Heft
- Recent trends and progress in research into structure and properties of polyaniline and polypyrrole — Topical Issue
- Printing polyaniline for sensor applications
- Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials
- Conducting polymer-silver composites
- Electrorheological response of polyaniline and its hybrids
- Effect of PPy/PEG conducting polymer film on electrochemical performance of LiFePO4 cathode material for Li-ion batteries
- Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration
- Self-assembly of aniline oligomers and their induced polyaniline supra-molecular structures
- Self-organization of polyaniline during oxidative polymerization: formation of granular structure
- Influence of ethanol on the chain-ordering of carbonised polyaniline
- X-ray absorption spectroscopy of nanostructured polyanilines
- Effect of cations on polyaniline morphology
- Preparation of polyaniline in the presence of polymeric sulfonic acids mixtures: the role of intermolecular interactions between polyacids
- Chemical degradation of polyaniline by reaction with Fenton’s reagent — a spectroelectrochemical study
- Thin mesoporous polyaniline films manifesting a water-promoted photovoltaic effect
- Polyamide grafted with polypyrrole: formation, properties, and stability
- Effect of ionic liquid on polyaniline chemically synthesised under falling-pH conditions
- Polyaniline doped with poly(acrylamidomethylpropanesulphonic acid): electrochemical behaviour and conductive properties in neutral solutions
- Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles
- Bi-hybrid coatings: polyaniline-montmorillonite filler in organic-inorganic polymer matrix
- Preparation of aqueous polyaniline-vesicle suspensions with class III peroxidases. Comparison between horseradish peroxidase isoenzyme C and soybean peroxidase
- Preparation, characterisation, and dielectric properties of polypyrrole-clay composites
- Multi-wall carbon nanotubes with nitrogen-containing carbon coating
- Conducting poly(o-anisidine)-coated steel electrodes for supercapacitors
- Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations
- Preparation of a miniaturised iodide ion selective sensor using polypyrrole and pencil lead: effect of double-coating, electropolymerisation time, and current density
- Role of polyaniline morphology in Pd particles dispersion. Hydrogenation of alkynes in the presence of Pd-polyaniline catalysts
- Nanostructured polyaniline-coated anode for improving microbial fuel cell power output
- Antibacterial properties of polyaniline-silver films
- Effect of compression pressure on mechanical and electrical properties of polyaniline pellets