Abstract
An approach for improving the power generation of a dual-chamber microbial fuel cell by using a nanostructured polyaniline (PANI)-modified glassy carbon anode was investigated. Modification of the glassy carbon anode was achieved by the electrochemical polymerisation of aniline in 1 M H2SO4 solution. The MFC reactor showed power densities of 0.082 mW cm−2 and 0.031 mW cm−2 for the nano- and microstructured PANI anode, respectively. The results from electron microscopy scanning confirmed formation of the nanostructured PANI film on the anode surface and the results from electrochemical experiments confirmed that the electrochemical activity of the anode was significantly enhanced after modification by nanostructured PANI. Electrochemical impedance spectroscopic results proved that the charge transfer would be facilitated after anode modification with nanostructured PANI.
[1] Aelterman, P., Versichele, M., Marzorati, M., Boon, N., & Verstraete, W. (2008). Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes. Bioresource Technology, 99, 8895–8902. DOI: 10.1016/j.biortech.2008.04.061. http://dx.doi.org/10.1016/j.biortech.2008.04.06110.1016/j.biortech.2008.04.061Search in Google Scholar PubMed
[2] Cao, X. X., Huang, X., Liang, P., Xiao, K., Zhou, Y. J., Zhang, X. Y., & Logan, B. E. (2009). A new method for water desalination using microbial desalination cells. Environmental Scienceand & Technology, 43, 7148–7152. DOI: 10.1021/es901950j. http://dx.doi.org/10.1021/es901950j10.1021/es901950jSearch in Google Scholar PubMed
[3] Clauwaert, P., Rabaey, K., Aelterman, P., De Schamhelaire, L., Pham, T. H., Boeckx, P., Boon, N., & Verstraete, W. (2007). Biological denitrification in microbial fuel cells. Environmental Scienceand & Technology, 41, 3354–3360. DOI: 10.1021/es062580r. http://dx.doi.org/10.1021/es062580r10.1021/es062580rSearch in Google Scholar PubMed
[4] Dumas, C., Mollica, A., Féron, D., Basséguy, R., Etcheverry, L., & Bergel, A. (2007). Marine microbial fuel cell: Use of stainless steel electrodes as anode and cathode materials. Electrochimica Acta, 53, 468–473. DOI: 10.1016/j.electacta.2007.06.069. http://dx.doi.org/10.1016/j.electacta.2007.06.06910.1016/j.electacta.2007.06.069Search in Google Scholar
[5] Findlay, R. H., King, G. M., & Watling, L. (1989). Efficacy of phospholipid analysis in determining microbial biomass in sediments. Applied and Environmental Microbiology, 55, 2888–2893. 10.1128/aem.55.11.2888-2893.1989Search in Google Scholar PubMed PubMed Central
[6] Gao, Y., Shan, D., Cao, F., Gong, J., Li, X., Ma, H. Y., Su, Z. M., & Qu, L. Y. (2009). Silver/polyaniline composite nanotubes: One-step synthesis and electrocatalytic activity for neurotransmitter dopamine. Journal of Phyical Chemistry C, 113, 15175–15181. DOI: 10.1021/jp904788d. http://dx.doi.org/10.1021/jp904788d10.1021/jp904788dSearch in Google Scholar
[7] Gupta, V., & Miura, N. (2005). Large-area network of polyaniline nanowires prepared by potentiostatic deposition process. Electrochemistry Communications, 7, 995–999. DOI: 10.1016/j.elecom.2005.07.008. http://dx.doi.org/10.1016/j.elecom.2005.07.00810.1016/j.elecom.2005.07.008Search in Google Scholar
[8] Hou, J. X., Liu, Z. L., & Zhang, P. Y. (2013). A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes. Journal of Power Sources, 224, 139–144. DOI: 10.1016/j.jpowsour.2012.09.091. http://dx.doi.org/10.1016/j.jpowsour.2012.09.09110.1016/j.jpowsour.2012.09.091Search in Google Scholar
[9] Jacobson, K. S., Drew, D. M., & He, Z. (2011). Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode. Bioresource Technology, 102, 376–380. DOI: 10.1016/j.biortech.2010.06.030. http://dx.doi.org/10.1016/j.biortech.2010.06.03010.1016/j.biortech.2010.06.030Search in Google Scholar PubMed
[10] Kim, B. H., Chang, I. S., Gil, G. C., Park, H. S., & Kim, H. J. (2003). Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnology Letter, 25, 541–545. DOI: 10.1023/a:1022891231369. http://dx.doi.org/10.1023/A:102289123136910.1023/A:1022891231369Search in Google Scholar
[11] Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science & Technology, 40, 5181–5192. DOI: 10.1021/es0605016. http://dx.doi.org/10.1021/es060501610.1021/es0605016Search in Google Scholar PubMed
[12] Logan, B. E. (2007). Microbial fuel cells. New York, NY, USA: Wiley. http://dx.doi.org/10.1002/978047025859010.1002/9780470258590Search in Google Scholar
[13] Lovley, D. R. (2006). Bug juice: harvesting electricity with microorganisms. Nature Reviews Microbiology, 4, 497–508. DOI: 10.1038/nrmicro1442. http://dx.doi.org/10.1038/nrmicro144210.1038/nrmicro1442Search in Google Scholar PubMed
[14] Min, B., & Logan, B. E. (2004). Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environmental Science and Technology, 38, 5809–5814. DOI: 10.1021/es0491026. http://dx.doi.org/10.1021/es049102610.1021/es0491026Search in Google Scholar PubMed
[15] Min, B., Kim, J. R., Oh, S. E., Regan, J. M., & Logan, B. E. (2005). Electricity generation from swine wastewater using microbial fuel cells. Water Research, 39, 4961–4968. DOI: 10.1016/j.watres.2005.09.039. http://dx.doi.org/10.1016/j.watres.2005.09.03910.1016/j.watres.2005.09.039Search in Google Scholar PubMed
[16] Niessen, J., Schröder, U., Rosenbaum, M., & Scholz, F. (2004). Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells. Electrochemistry Commununication, 6, 571–575. DOI: 10.1016/j.elecom.2004.04.006. http://dx.doi.org/10.1016/j.elecom.2004.04.00610.1016/j.elecom.2004.04.006Search in Google Scholar
[17] Qiao, Y., Li, C. M., Bao, S. J., & Bao, Q. L. (2007). Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. Journal of Power Sources, 170, 79–84. DOI: 10.1016/j.jpowsour.2007.03.048. http://dx.doi.org/10.1016/j.jpowsour.2007.03.04810.1016/j.jpowsour.2007.03.048Search in Google Scholar
[18] Qiao, Y., Bao, S. J., Li, C. M., Cui, X. Q., Lu, Z. S., & Guo, J. (2008). Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells. ACS Nano, 2, 113–119. DOI: 10.1021/nn700102s. http://dx.doi.org/10.1021/nn700102s10.1021/nn700102sSearch in Google Scholar PubMed
[19] Rabaey, K., & Verstraete, W. (2005). Microbial fuel cells: novel biotechnology for energy generation. Trends in Biotechnology, 23, 291–298. DOI: 10.1016/j.tibtech.2005.04.008. http://dx.doi.org/10.1016/j.tibtech.2005.04.00810.1016/j.tibtech.2005.04.008Search in Google Scholar PubMed
[20] Rabaey, K., Clauwaert, P., Aelterman, P., & Verstraete, W. (2005). Tubular microbial fuel cells for efficient electricity generation. Environmental Science & Technolgy, 39, 8077–8082. DOI: 10.1021/es050986i. http://dx.doi.org/10.1021/es050986i10.1021/es050986iSearch in Google Scholar PubMed
[21] Rismani-Yazdi, H., Carver, S. M., Christy, A. D., & Tuovinen, O. H. (2008). Cathodic limitations in microbial fuel cells: An overview. Journal of Power Sources, 180, 683–694. DOI: 10.1016/j.jpowsour.2008.02.074. http://dx.doi.org/10.1016/j.jpowsour.2008.02.07410.1016/j.jpowsour.2008.02.074Search in Google Scholar
[22] Schröder, U., Nießen, J., & Scholz, F. (2003). A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angewandte Chemie International Edition, 42, 2880–2883. DOI: 10.1002/anie.200350918. http://dx.doi.org/10.1002/anie.20035091810.1002/anie.200350918Search in Google Scholar PubMed
[23] Schröder, U. (2007). Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Physical Chemistry Chemical Physics, 9, 2619–2629. DOI: 10.1039/b703627m. http://dx.doi.org/10.1039/b703627m10.1039/B703627MSearch in Google Scholar PubMed
[24] Schwarz, F., Sculean, A., Wieland, M., Horn, N., Nuesry, E., Bube, C., & Becker, J. (2007). Effects of hydrophilicity and microtopography of titanium implant surfaces on initial supragingival plaque biofilm formation. A pilot study. Mund, Kiefer, und Gesichtschirurgie, 11, 333–338. DOI: 10.1007/s10006-007-0079-z. http://dx.doi.org/10.1007/s10006-007-0079-z10.1007/s10006-007-0079-zSearch in Google Scholar PubMed
[25] Sun, M., Sheng, G. P., Zhang, L., Xia, C. R., Mu, Z. X., Liu, X. W., Wang, H. L., Yu, H. Q., Qi, R., Yu, T., & Yang, M. (2008). An MEC-MFC-coupled system for biohydrogen production from acetate. Environmental Science & Technology, 42, 8095–8100. DOI: 10.1021/es801513c. http://dx.doi.org/10.1021/es801513c10.1021/es801513cSearch in Google Scholar PubMed
[26] Virdis, B., Read, S. T., Rabaey, K., Rozendal, R. A., Yuan, Z. G., & Keller, J. (2011). Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode. Bioresource Technology, 102, 334–341. DOI: 10.1016/j.biortech.2010.06.155. http://dx.doi.org/10.1016/j.biortech.2010.06.15510.1016/j.biortech.2010.06.155Search in Google Scholar PubMed
[27] Wang, Y. Q., Li, B., Zeng, L. Z., Cui, D., Xiang, X. D., & Li, W. H. (2013). Polyaniline/mesoporous tungsten trioxide composite as anode electrocatalyst for high-performance microbial fuel cells. Biosensors and Bioelectronics, 41, 582–588. DOI: 10.1016/j.bios.2012.09.054. http://dx.doi.org/10.1016/j.bios.2012.09.05410.1016/j.bios.2012.09.054Search in Google Scholar PubMed
[28] Zamora, G., Arurault, L., Winterton, P., & Bes, R. (2011). Impact of the type of anodic film formed and deposition time on the characteristics of porous anodic aluminium oxide films containing Ni metal. Chemical Papers, 65, 460–468. DOI: 10.2478/s11696-011-0039-9. http://dx.doi.org/10.2478/s11696-011-0039-910.2478/s11696-011-0039-9Search in Google Scholar
[29] Zanina, N., Haddad, S., Othmane, A., Jouenne, T., Vaudry, D., Souiri, M., & Mora, L. (2012). Endothelial cell adhesion on polyelectrolyte multilayer films functionalised with fibronectin and collagen. Chemical Papers, 66, 532–542. DOI: 10.2478/s11696-012-0141-7. http://dx.doi.org/10.2478/s11696-012-0141-710.2478/s11696-012-0141-7Search in Google Scholar
[30] Zou, Y. J., Xiang, C. L., Yang, L. N., Sun, L. X., Xu, F., & Cao, Z. (2008). A mediatorless microbial fuel cell using polypyrrole coated carbon nano tubes composite as anode material. International Journal of Hydrogen Energy, 33, 4856–4862. DOI: 10.1016/j.ijhydene.2008.06.061. http://dx.doi.org/10.1016/j.ijhydene.2008.06.06110.1016/j.ijhydene.2008.06.061Search in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Recent trends and progress in research into structure and properties of polyaniline and polypyrrole — Topical Issue
- Printing polyaniline for sensor applications
- Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials
- Conducting polymer-silver composites
- Electrorheological response of polyaniline and its hybrids
- Effect of PPy/PEG conducting polymer film on electrochemical performance of LiFePO4 cathode material for Li-ion batteries
- Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration
- Self-assembly of aniline oligomers and their induced polyaniline supra-molecular structures
- Self-organization of polyaniline during oxidative polymerization: formation of granular structure
- Influence of ethanol on the chain-ordering of carbonised polyaniline
- X-ray absorption spectroscopy of nanostructured polyanilines
- Effect of cations on polyaniline morphology
- Preparation of polyaniline in the presence of polymeric sulfonic acids mixtures: the role of intermolecular interactions between polyacids
- Chemical degradation of polyaniline by reaction with Fenton’s reagent — a spectroelectrochemical study
- Thin mesoporous polyaniline films manifesting a water-promoted photovoltaic effect
- Polyamide grafted with polypyrrole: formation, properties, and stability
- Effect of ionic liquid on polyaniline chemically synthesised under falling-pH conditions
- Polyaniline doped with poly(acrylamidomethylpropanesulphonic acid): electrochemical behaviour and conductive properties in neutral solutions
- Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles
- Bi-hybrid coatings: polyaniline-montmorillonite filler in organic-inorganic polymer matrix
- Preparation of aqueous polyaniline-vesicle suspensions with class III peroxidases. Comparison between horseradish peroxidase isoenzyme C and soybean peroxidase
- Preparation, characterisation, and dielectric properties of polypyrrole-clay composites
- Multi-wall carbon nanotubes with nitrogen-containing carbon coating
- Conducting poly(o-anisidine)-coated steel electrodes for supercapacitors
- Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations
- Preparation of a miniaturised iodide ion selective sensor using polypyrrole and pencil lead: effect of double-coating, electropolymerisation time, and current density
- Role of polyaniline morphology in Pd particles dispersion. Hydrogenation of alkynes in the presence of Pd-polyaniline catalysts
- Nanostructured polyaniline-coated anode for improving microbial fuel cell power output
- Antibacterial properties of polyaniline-silver films
- Effect of compression pressure on mechanical and electrical properties of polyaniline pellets
Articles in the same Issue
- Recent trends and progress in research into structure and properties of polyaniline and polypyrrole — Topical Issue
- Printing polyaniline for sensor applications
- Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials
- Conducting polymer-silver composites
- Electrorheological response of polyaniline and its hybrids
- Effect of PPy/PEG conducting polymer film on electrochemical performance of LiFePO4 cathode material for Li-ion batteries
- Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration
- Self-assembly of aniline oligomers and their induced polyaniline supra-molecular structures
- Self-organization of polyaniline during oxidative polymerization: formation of granular structure
- Influence of ethanol on the chain-ordering of carbonised polyaniline
- X-ray absorption spectroscopy of nanostructured polyanilines
- Effect of cations on polyaniline morphology
- Preparation of polyaniline in the presence of polymeric sulfonic acids mixtures: the role of intermolecular interactions between polyacids
- Chemical degradation of polyaniline by reaction with Fenton’s reagent — a spectroelectrochemical study
- Thin mesoporous polyaniline films manifesting a water-promoted photovoltaic effect
- Polyamide grafted with polypyrrole: formation, properties, and stability
- Effect of ionic liquid on polyaniline chemically synthesised under falling-pH conditions
- Polyaniline doped with poly(acrylamidomethylpropanesulphonic acid): electrochemical behaviour and conductive properties in neutral solutions
- Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles
- Bi-hybrid coatings: polyaniline-montmorillonite filler in organic-inorganic polymer matrix
- Preparation of aqueous polyaniline-vesicle suspensions with class III peroxidases. Comparison between horseradish peroxidase isoenzyme C and soybean peroxidase
- Preparation, characterisation, and dielectric properties of polypyrrole-clay composites
- Multi-wall carbon nanotubes with nitrogen-containing carbon coating
- Conducting poly(o-anisidine)-coated steel electrodes for supercapacitors
- Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations
- Preparation of a miniaturised iodide ion selective sensor using polypyrrole and pencil lead: effect of double-coating, electropolymerisation time, and current density
- Role of polyaniline morphology in Pd particles dispersion. Hydrogenation of alkynes in the presence of Pd-polyaniline catalysts
- Nanostructured polyaniline-coated anode for improving microbial fuel cell power output
- Antibacterial properties of polyaniline-silver films
- Effect of compression pressure on mechanical and electrical properties of polyaniline pellets