Abstract
Conducting textiles of polyamide (PA) fabrics and polypyrrole (PPy) were prepared by in situ oxidative chemical polymerisation of pyrrole (Py) on the surface of PA textiles using FeCl3 as oxidant. The anionic surfactant, dodecylbenzenesulphonic acid, was used as co-dopant during Py polymerisation on the textile surface. The influence of the monomer amount and polymerisation conditions on formation of the conducting PPy layer, conductivity, morphology, and stability of the prepared PA/PPy was studied. The conductivity of modified textiles decreased rapidly after the washing process, so a special Py-functionalised silane (1-(3-(triethoxysilyl)propylamino)-3-(1-H-pyrrole-1-yl)propan-2-ol; SP) was synthesised and applied to the PA surface prior to PPy formation. The presence of SP on the PA surface after completion of the sol-gel process was verified by Fourier transform infrared spectroscopy with an attenuated total reflectance. Pyrrole polymerisation was subsequently applied to the SP pre-treated textile surface. The influence of SP concentration on both the fastness of the conducting layer after the washing process and stability of the electrical conductivity of the prepared PA/PPy samples was investigated. Surface conductivity of the samples treated and untreated by the sol-gel process of SP was measured both prior to and after washing of the prepared textiles. It was found that an application of 0.6 mass % of SP significantly improved the fastness of the PPy layers. Examination of the modified PA surface using scanning electron microscopy disclosed the differences in the formation of PPy on PA textiles when using SP and also showed differences on the PPy modified textile surface prior to and after washing. The method of X-ray photoelectron spectroscopy was used for a detailed study of the surface composition. It was confirmed that the pre-treatment with Py-functionalised triethoxysilane significantly influenced the chemical composition of the PA surface modified with PPy.
[1] Ansari, R., & Mosayebzadeh, Z. (2011). Application of polyaniline as an efficient and novel adsorbent for azo dyes removal from textile wastewaters. Chemical Papers, 65, 1–8. DOI: 10.2478/s11696-010-0083-x. http://dx.doi.org/10.2478/s11696-010-0083-x10.2478/s11696-010-0083-xSuche in Google Scholar
[2] Babu, K. F., Senthilkumar, R., & Kulandainathan, M. A. (2009). Polypyrrole microstructure deposited by chemical and electrochemical methods on cotton fabrics. Synthetic Metals, 159, 1353–1358. DOI: 10.1016/j.synthmet.2009.03.005. http://dx.doi.org/10.1016/j.synthmet.2009.03.00510.1016/j.synthmet.2009.03.005Suche in Google Scholar
[3] Beneventi, D., Alila, S., Boufi, S., Chaussy, D., & Nortier, P. (2006). Polymerisation of pyrrole on cellulose fibres using a FeCl3 impregnation-pyrrole polymerisation sequence. Cellulose, 13, 725–734. DOI: 10.1007/s10570-006-9077-9. http://dx.doi.org/10.1007/s10570-006-9077-910.1007/s10570-006-9077-9Suche in Google Scholar
[4] Boukerma, K., Omastová, M., Fedorko, P., & Chehimi, M. M. (2005). Surface properties and conductivity of bis(2-ethylhexyl) sulfosuccinate-containing polypyrrole. Applied Surface Science, 249, 303–314. DOI: 10.1016/j.apsusc.2004.12.011. http://dx.doi.org/10.1016/j.apsusc.2004.12.01110.1016/j.apsusc.2004.12.011Suche in Google Scholar
[5] Cannon, C. G. (1960). The infra-red spectra and molecular configurations of polyamides. Spectrochimica Acta, 16, 302–319. DOI: 10.1016/0371-1951(60)80092-6. http://dx.doi.org/10.1016/0371-1951(60)80092-610.1016/0371-1951(60)80092-6Suche in Google Scholar
[6] Chattopadhyay, D. K., Zakula, A. D., & Webster, D. C. (2009). Organic-inorganic hybrid coatings prepared from glycidyl carbamate resin, 3-aminopropyl trimethoxy silane and tetraethoxyorthosilicate. Progress in Organic Coatings, 64, 128–137. DOI: 10.1016/j.porgcoat.2008.09.008. http://dx.doi.org/10.1016/j.porgcoat.2008.09.00810.1016/j.porgcoat.2008.09.008Suche in Google Scholar
[7] Cucchi, I., Boschi, A., Arosio, C., Bertini, F., Freddi, G., & Catellani, M. (2009). Bio-based conductive composites: Preparation and properties of polypyrrole (PPy)-coated silk fabrics. Synthetic Metals, 159, 246–253. DOI: 10.1016/j.synthmet.2008.09.012. http://dx.doi.org/10.1016/j.synthmet.2008.09.01210.1016/j.synthmet.2008.09.012Suche in Google Scholar
[8] Dall’Acqua, L., Tonin, C., Peila, R., Ferrero, F., & Catellani, M. (2004). Performances and properties of intrinsic conductive cellulose-polypyrrole textiles. Synthetic Metals, 146, 213–221. DOI: 10.1016/j.synthmet.2004.07.005. http://dx.doi.org/10.1016/j.synthmet.2004.07.00510.1016/j.synthmet.2004.07.005Suche in Google Scholar
[9] Dall’Acqua, L., Tonin, C., Varesano, A., Canetti, M., Porzio, W., & Catellani, M. (2006). Vapour phase polymerisation of pyrrole on cellulose-based textile substrates. Synthetic Metals, 156, 379–386. DOI: 10.1016/j.synthmet.2005.12.021. http://dx.doi.org/10.1016/j.synthmet.2005.12.02110.1016/j.synthmet.2005.12.021Suche in Google Scholar
[10] Dong, H., Cao, X. D., & Li, C. M. (2009). Functionalized polypyrrole film: Synthesis, characterization, and potential application in chemical and biological sensors. ACS Applied Materials & Interfaces, 1, 1599–1606. DOI: 10.1021/am900267e. http://dx.doi.org/10.1021/am900267e10.1021/am900267eSuche in Google Scholar PubMed
[11] Faverolle, F., Attias, A. J., & Bloch, B. (1998). Highly conducting and strongly adhering polypyrrole coating layers deposited on glass substrates by a chemical process. Chemistry of Materials, 10, 740–752. DOI: 10.1021/cm970466p. http://dx.doi.org/10.1021/cm970466p10.1021/cm970466pSuche in Google Scholar
[12] Ferrero, F., Napoli, L., Tonin, C., & Varesano, A. (2006). Pyrrole chemical polymerisation on textiles: Kinetics and operating conditions. Journal of Applied Polymer Science, 102, 4121–4126. DOI: 10.1002/app.24149. http://dx.doi.org/10.1002/app.2414910.1002/app.24149Suche in Google Scholar
[13] Flamini, D. O., & Saidman, S. B. (2010). Electrodeposition of polypyrrole onto NiTi and the corrosion behaviour of the coated alloy. Corrosion Science, 52, 229–234. DOI: 10.1016/j.corsci.2009.09.008. http://dx.doi.org/10.1016/j.corsci.2009.09.00810.1016/j.corsci.2009.09.008Suche in Google Scholar
[14] Garg, S., Hurren, C., & Kaynak, A. (2007). Improvement of adhesion of conductive polypyrrole coating on wool and polyester fabrics using atmospheric plasma treatment. Synthetic Metals, 157, 41–47. DOI: 10.1016/j.synthmet.2006.12.004. http://dx.doi.org/10.1016/j.synthmet.2006.12.00410.1016/j.synthmet.2006.12.004Suche in Google Scholar
[15] Gasana, E., Westbroek, P., Hakuzimana, J., De Clerck, K., Priniotakis, G., Kiekens, P., & Tseles, D. (2006). Electroconductive textile structures through electroless deposition of polypyrrole and copper at polyaramide surfaces. Surface and Coatings Technology, 201, 3547–3551. DOI: 10.1016/j.surfcoat.2006.08.128. http://dx.doi.org/10.1016/j.surfcoat.2006.08.12810.1016/j.surfcoat.2006.08.128Suche in Google Scholar
[16] Gonçalves, E. S., Poulsen, L., & Ogilby, P. R. (2007). Mechanism of the temperature-dependent degradation of polyamide 66 films exposed to water. Polymer Degradation and Stability, 92, 1977–1985. DOI: 10.1016/j.polymdegradstab.2007.08.007. http://dx.doi.org/10.1016/j.polymdegradstab.2007.08.00710.1016/j.polymdegradstab.2007.08.007Suche in Google Scholar
[17] Håkansson, E., Kaynak, A., Lin, T., Nahavandi, S., Jones, T., & Hu, E. (2004). Characterization of conducting polymer coated synthetic fabrics for heat generation. Synthetic Metals, 144, 21–28. DOI: 10.1016/j.synthmet.2004.01.003. http://dx.doi.org/10.1016/j.synthmet.2004.01.00310.1016/j.synthmet.2004.01.003Suche in Google Scholar
[18] Håkansson, E., Amiet, A., & Kaynak, A. (2006a). Electromagnetic shielding properties of polypyrrole/polyester composites in the 1–18 GHz frequency range. Synthetic Metals, 156, 917–925. DOI: 10.1016/j.synthmet.2006.05.010. http://dx.doi.org/10.1016/j.synthmet.2006.05.01010.1016/j.synthmet.2006.05.010Suche in Google Scholar
[19] Håkansson, E., Lin, T., Wang, H. X., & Kaynak, A. (2006b). The effect of dye dopants on the conductivity and optical absorption properties of polypyrrole. Synthetic Metals, 156, 1194–1202. DOI: 10.1016/j.synthmet.2006.08.006. http://dx.doi.org/10.1016/j.synthmet.2006.08.00610.1016/j.synthmet.2006.08.006Suche in Google Scholar
[20] Ji, L., Yao, Y. F., Toprakci, O., Lin, Z., Liang, Y. Z., Shi, Q., Medford, A. J., Millns, C. R., & Zhang, X. W. (2010). Fabrication of carbon nanofiber-driven electrodes from electrospun polyacrylonitrile/polypyrrole bicomponents for high-performance rechargeable lithium-ion batteries. Journal of Power Sources, 195, 2050–2056. DOI: 10.1016/j.jpowsour.2009.10.021. http://dx.doi.org/10.1016/j.jpowsour.2009.10.02110.1016/j.jpowsour.2009.10.021Suche in Google Scholar
[21] Kang, E. T., Neoh, K. G., & Tan, K. L. (1993). X-ray photoelectron spectroscopic studies of electroactive polymers. Advances in Polymer Science, 106, 135–190. DOI: 10.1007/bfb0025863. http://dx.doi.org/10.1007/BFb002586310.1007/BFb0025863Suche in Google Scholar
[22] Kaynak, A., Najar, S. S., & Foitzik, R. C. (2008). Conducting nylon, cotton and wool yarns by continuous vapor polymerisation of pyrrole. Synthetic Metals, 158, 1–5. DOI: 10.1016/j.synthmet.2007.10.016. http://dx.doi.org/10.1016/j.synthmet.2007.10.01610.1016/j.synthmet.2007.10.016Suche in Google Scholar
[23] Kaynak, A., Håkansson, E., & Amiet, A. (2009). The influence of polymerisation time and dopant concentration on the absorption of microwave radiation in conducting polypyrrole coated textiles. Synthetic Metals, 159, 1373–1380. DOI: 10.1016/j.synthmet.2009.03.013. http://dx.doi.org/10.1016/j.synthmet.2009.03.01310.1016/j.synthmet.2009.03.013Suche in Google Scholar
[24] Kim, B. C., Ko, J. M., & Wallace, G. G. (2008). A novel capacitor material based on Nafion-doped polypyrrole. Journal of Power Sources, 177, 665–668. DOI: 10.1016/j.jpowsour.2007.11.078. http://dx.doi.org/10.1016/j.jpowsour.2007.11.07810.1016/j.jpowsour.2007.11.078Suche in Google Scholar
[25] Kincal, D., Kumar, A., Child, A. D., & Reynolds, J. (1998). Conductivity switching in polypyrrole-coated textile fabrics as gas sensors. Synthetic Metals, 92, 53–56. DOI: 10.1016/s0379-6779(98)80022-2. http://dx.doi.org/10.1016/S0379-6779(98)80022-210.1016/S0379-6779(98)80022-2Suche in Google Scholar
[26] Lee, J. Y., Bashur, C. A., Goldstein, A. S., & Schmidt, C. E. (2009). Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials, 30, 4325–4335. DOI: 10.1016/j.biomaterials.2009.04.042. http://dx.doi.org/10.1016/j.biomaterials.2009.04.04210.1016/j.biomaterials.2009.04.042Suche in Google Scholar PubMed PubMed Central
[27] Lekpittaya, P., Yanumet, N., Grady, B. P., & O’Rear, E. A. (2004). Resistivity of conductive polymer-coated fabric. Journal of Applied Polymer Science, 92, 2629–2636. DOI: 10.1002/app.20270. http://dx.doi.org/10.1002/app.2027010.1002/app.20270Suche in Google Scholar
[28] Li, Y., Leung, M. Y., Tao, X. M., Cheng, X. Y., Tsang, J., & Yuen, M. C. W. (2005) Polypyrrole-coated conductive fabrics as a candidate for strain sensors. Journal of Materials Science, 40, 4093–4095. DOI: 10.1007/s10853-005-0791-8. http://dx.doi.org/10.1007/s10853-005-0791-810.1007/s10853-005-0791-8Suche in Google Scholar
[29] Lin, T., Wang, L. J., Wang, X. G., & Kaynak, A. (2005). Polymerising pyrrole on polyester textiles and controlling the conductivity through coating thickness. Thin Solid Films, 479, 77–82. DOI: 10.1016/j.tsf.2004.11.146. http://dx.doi.org/10.1016/j.tsf.2004.11.14610.1016/j.tsf.2004.11.146Suche in Google Scholar
[30] Lu, X. Q., Li, Y., Zhang, X., Du, J., Zhou, X. B., Xue, Z. H., & Liu, X. H. (2012). A simple and an efficient strategy to synthesize multi-component nanocomposites for biosensor applications. Analytica Chimica Acta, 711, 40–45. DOI: 10.1016/j.aca.2011.11.005. http://dx.doi.org/10.1016/j.aca.2011.11.00510.1016/j.aca.2011.11.005Suche in Google Scholar PubMed
[31] Mičušík, M., Nedelčev, T., Omastová, M., Krupa, I., Olejníková, K., Fedorko, P., & Chehimi, M. M. (2007a). Conductive polymer-coated textiles: The role of fabric treatment by pyrrole-functionalized triethoxysilane. Synthetic Metals, 157, 914–923. DOI: 10.1016/j.synthmet.2007.09.001. http://dx.doi.org/10.1016/j.synthmet.2007.09.00110.1016/j.synthmet.2007.09.001Suche in Google Scholar
[32] Mičušík, M., Omastová, M., Boukerma, K., Albouy, A., Chehimi, M. M., Trchová, M., & Fedorko, P. (2007b). Preparation, surface chemistry, and electrical conductivity of novel silicon carbide/polypyrrole composites containing an anionic surfactant. Polymer Engineering & Science, 47, 1198–1206. DOI: 10.1002/pen.20690. http://dx.doi.org/10.1002/pen.2069010.1002/pen.20690Suche in Google Scholar
[33] Molina, J., del Río, A. I., Bonaste, J., & Cases, F. (2008). Chemical and electrochemical polymerisation of pyrrole on polyester textiles in presence of phosphotungstic acid. European Polymer Journal, 44, 2087–2098. DOI: 10.1016/j.eurpolymj.2008.04.007. http://dx.doi.org/10.1016/j.eurpolymj.2008.04.00710.1016/j.eurpolymj.2008.04.007Suche in Google Scholar
[34] Molina, J., del Río, A. I., Bonaste, J., & Cases, F. (2009). Electrochemical polymerisation of aniline on conducting textiles of polyester covered with polypyrrole/AQSA. European Polymer Journal, 45, 1302–1315. DOI: 10.1016/j.eurpolymj.2008.11.003. http://dx.doi.org/10.1016/j.eurpolymj.2008.11.00310.1016/j.eurpolymj.2008.11.003Suche in Google Scholar
[35] Neoh, K. G., Young, T. T., Kang, E. T., & Tan, K. L. (1997). Structural and mechanical degradation of polypyrrole films due to aqueous media and heat treatment and the subsequent redoping characteristics. Journal of Applied Polymer Science, 64, 519–526. DOI: 10.1002/(SICI)1097-4628(19970418)64:3〈519::AID-APP8〉3.0.CO;2-N. http://dx.doi.org/10.1002/(SICI)1097-4628(19970418)64:3<519::AID-APP8>3.0.CO;2-N10.1002/(SICI)1097-4628(19970418)64:3<519::AID-APP8>3.0.CO;2-NSuche in Google Scholar
[36] Oh, K. W., Park, H. J., & Kim, S. H. (2003). Stretchable conductive fabric for electrotherapy. Journal of Applied Polymer Science, 88, 1225–1229. DOI: 10.1002/app.11783. http://dx.doi.org/10.1002/app.1178310.1002/app.11783Suche in Google Scholar
[37] Omastová, M., Pionteck, J., & Košina, S. (1996). Preparation and characterization of electrically conductive polypropylene/polypyrrole composites. European Polymer Journal, 32, 681–689. DOI: 10.1016/0014-3057(95)00206-5. http://dx.doi.org/10.1016/0014-3057(95)00206-510.1016/0014-3057(95)00206-5Suche in Google Scholar
[38] Omastová, M., Trchová, M., Kovářová, J., & Stejskal, J. (2003). Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synthetic Metals, 138, 447–455. DOI: 10.1016/s0379-6779(02)00498-8. http://dx.doi.org/10.1016/S0379-6779(02)00498-810.1016/S0379-6779(02)00498-8Suche in Google Scholar
[39] Omastová, M., Mosnáčková, K., Trchová, M., Konyushenko, E. N., Stejskal, J., Fedorko, P., & Prokeš, J. (2010). Polypyrrole and polyaniline prepared with cerium (IV) sulfate oxidant. Synthetic Metals, 160, 701–707. DOI: 10.1016/j.synthmet.2010.01.004. http://dx.doi.org/10.1016/j.synthmet.2010.01.00410.1016/j.synthmet.2010.01.004Suche in Google Scholar
[40] Omastová, M., & Mičušík, M. (2012). Polypyrrole coating of inorganic and organic materials by chemical oxidative polymerisation. Chemical Papers, 66, 392–414. DOI: 10.2478/s11696-011-0120-4. http://dx.doi.org/10.2478/s11696-011-0120-410.2478/s11696-011-0120-4Suche in Google Scholar
[41] Onar, N., Akşit, A. C., Ebeoglugil, M. F., Birlik, I., Celik, E., & Ozdemir, I. (2009). Structural, electrical, and electromagnetic properties of cotton fabrics coated with polyaniline and polypyrrole. Journal of Applied Polymer Science, 114, 2003–2010. DOI: 10.1002/app.30652. http://dx.doi.org/10.1002/app.3065210.1002/app.30652Suche in Google Scholar
[42] Shmykov, A. Y., Mjakin, S. V., Vasiljeva, I. V., Filippov, V. N., Vylegzhanina, M. E., Sukhanova, T. E., & Kurochkin, V. E. (2009). Electron beam initiated grafting of methacryloxypropyl-trimethoxysilane to fused silica glass. Applied Surface Science, 255, 6391–6396. DOI: 10.1016/j.apsusc.2009.02.023. http://dx.doi.org/10.1016/j.apsusc.2009.02.02310.1016/j.apsusc.2009.02.023Suche in Google Scholar
[43] Slovak Office of Standards, Metrology, and Testing (2010). Textiles. Tests for colour fastness. Part C06: Colour fastness to domestic and commercial laundering (ISO 105-C06:2010). Bratislava, Slovakia. Suche in Google Scholar
[44] Tavanai, H., & Kaynak, A. (2007). Effect of weight reduction pre-treatment on the electrical and thermal properties of polypyrrole coated woven polyester fabrics. Synthetic Metals, 157, 764–769. DOI: 10.1016/j.synthmet.2007.08.008. http://dx.doi.org/10.1016/j.synthmet.2007.08.00810.1016/j.synthmet.2007.08.008Suche in Google Scholar
[45] Varesano, A., Ferrer, A. I., & Tonin, C. (2007). Electrical performance and stability of polypyrrole coated PET fibres. e-Polymers, 2007,022 (pp. 1–14). 10.1515/epoly.2007.7.1.248Suche in Google Scholar
[46] Varesano, A., Antognozzi, B., & Tonin, C. (2010). Electrically conducting-adhesive coating on polyamide fabrics. Synthetic Metals, 160, 1683–1687. DOI: 10.1016/j.synthmet.2010.05. 041. http://dx.doi.org/10.1016/j.synthmet.2010.05.04110.1016/j.synthmet.2010.05.041Suche in Google Scholar
[47] Wang, J., Too, C. O., Zhou, D., & Wallace, G. G. (2005). Novel electrode substrates for rechargeable lithium/polypyrrole batteries. Journal of Power Sources, 140, 162–167. DOI: 10.1016/j.jpowsour.2004.08.040. http://dx.doi.org/10.1016/j.jpowsour.2004.08.04010.1016/j.jpowsour.2004.08.040Suche in Google Scholar
[48] Wu, J., Zhou, D., Too, C. O., & Wallace, G. G. (2005). Conducting polymer coated lycra. Synthetic Metals, 155, 698–701. DOI: 10.1016/j.synthmet.2005.08.032. http://dx.doi.org/10.1016/j.synthmet.2005.08.03210.1016/j.synthmet.2005.08.032Suche in Google Scholar
[49] Yuan, X. X., Zeng, X., Zhang, H. J., Ma, Z. F., & Wang, C. Y. (2010). Improved performance of proton exchange membrane fuel cells with p-toluenesulfonic acid-doped Co-PPy/C as cathode electrocatalyst. Journal of the American Chemical Society, 132, 1754–1755. DOI: 10.1021/ja909537g. http://dx.doi.org/10.1021/ja909537g10.1021/ja909537gSuche in Google Scholar PubMed
[50] Zhou, X., Zhang, P., Jiang, X. T., & Rao, G. (2009). Influence of maleic anhydride grafted polypropylene on the miscibility of polypropylene/polyamide-6 blends using ATRFTIR mapping. Vibrational Spectroscopy, 49, 17–21. DOI: 10.1016/j.vibspec.2008.04.004. http://dx.doi.org/10.1016/j.vibspec.2008.04.00410.1016/j.vibspec.2008.04.004Suche in Google Scholar
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Recent trends and progress in research into structure and properties of polyaniline and polypyrrole — Topical Issue
- Printing polyaniline for sensor applications
- Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials
- Conducting polymer-silver composites
- Electrorheological response of polyaniline and its hybrids
- Effect of PPy/PEG conducting polymer film on electrochemical performance of LiFePO4 cathode material for Li-ion batteries
- Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration
- Self-assembly of aniline oligomers and their induced polyaniline supra-molecular structures
- Self-organization of polyaniline during oxidative polymerization: formation of granular structure
- Influence of ethanol on the chain-ordering of carbonised polyaniline
- X-ray absorption spectroscopy of nanostructured polyanilines
- Effect of cations on polyaniline morphology
- Preparation of polyaniline in the presence of polymeric sulfonic acids mixtures: the role of intermolecular interactions between polyacids
- Chemical degradation of polyaniline by reaction with Fenton’s reagent — a spectroelectrochemical study
- Thin mesoporous polyaniline films manifesting a water-promoted photovoltaic effect
- Polyamide grafted with polypyrrole: formation, properties, and stability
- Effect of ionic liquid on polyaniline chemically synthesised under falling-pH conditions
- Polyaniline doped with poly(acrylamidomethylpropanesulphonic acid): electrochemical behaviour and conductive properties in neutral solutions
- Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles
- Bi-hybrid coatings: polyaniline-montmorillonite filler in organic-inorganic polymer matrix
- Preparation of aqueous polyaniline-vesicle suspensions with class III peroxidases. Comparison between horseradish peroxidase isoenzyme C and soybean peroxidase
- Preparation, characterisation, and dielectric properties of polypyrrole-clay composites
- Multi-wall carbon nanotubes with nitrogen-containing carbon coating
- Conducting poly(o-anisidine)-coated steel electrodes for supercapacitors
- Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations
- Preparation of a miniaturised iodide ion selective sensor using polypyrrole and pencil lead: effect of double-coating, electropolymerisation time, and current density
- Role of polyaniline morphology in Pd particles dispersion. Hydrogenation of alkynes in the presence of Pd-polyaniline catalysts
- Nanostructured polyaniline-coated anode for improving microbial fuel cell power output
- Antibacterial properties of polyaniline-silver films
- Effect of compression pressure on mechanical and electrical properties of polyaniline pellets
Artikel in diesem Heft
- Recent trends and progress in research into structure and properties of polyaniline and polypyrrole — Topical Issue
- Printing polyaniline for sensor applications
- Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials
- Conducting polymer-silver composites
- Electrorheological response of polyaniline and its hybrids
- Effect of PPy/PEG conducting polymer film on electrochemical performance of LiFePO4 cathode material for Li-ion batteries
- Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration
- Self-assembly of aniline oligomers and their induced polyaniline supra-molecular structures
- Self-organization of polyaniline during oxidative polymerization: formation of granular structure
- Influence of ethanol on the chain-ordering of carbonised polyaniline
- X-ray absorption spectroscopy of nanostructured polyanilines
- Effect of cations on polyaniline morphology
- Preparation of polyaniline in the presence of polymeric sulfonic acids mixtures: the role of intermolecular interactions between polyacids
- Chemical degradation of polyaniline by reaction with Fenton’s reagent — a spectroelectrochemical study
- Thin mesoporous polyaniline films manifesting a water-promoted photovoltaic effect
- Polyamide grafted with polypyrrole: formation, properties, and stability
- Effect of ionic liquid on polyaniline chemically synthesised under falling-pH conditions
- Polyaniline doped with poly(acrylamidomethylpropanesulphonic acid): electrochemical behaviour and conductive properties in neutral solutions
- Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles
- Bi-hybrid coatings: polyaniline-montmorillonite filler in organic-inorganic polymer matrix
- Preparation of aqueous polyaniline-vesicle suspensions with class III peroxidases. Comparison between horseradish peroxidase isoenzyme C and soybean peroxidase
- Preparation, characterisation, and dielectric properties of polypyrrole-clay composites
- Multi-wall carbon nanotubes with nitrogen-containing carbon coating
- Conducting poly(o-anisidine)-coated steel electrodes for supercapacitors
- Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations
- Preparation of a miniaturised iodide ion selective sensor using polypyrrole and pencil lead: effect of double-coating, electropolymerisation time, and current density
- Role of polyaniline morphology in Pd particles dispersion. Hydrogenation of alkynes in the presence of Pd-polyaniline catalysts
- Nanostructured polyaniline-coated anode for improving microbial fuel cell power output
- Antibacterial properties of polyaniline-silver films
- Effect of compression pressure on mechanical and electrical properties of polyaniline pellets