Home Multi-wall carbon nanotubes with nitrogen-containing carbon coating
Article
Licensed
Unlicensed Requires Authentication

Multi-wall carbon nanotubes with nitrogen-containing carbon coating

  • Elena Tomšík EMAIL logo , Zuzana Morávková , Jaroslav Stejskal , Miroslava Trchová , Petr Šálek , Jana Kovářová , Josef Zemek , Miroslav Cieslar and Jan Prokeš
Published/Copyright: May 3, 2013
Become an author with De Gruyter Brill

Abstract

Polyaniline coating was deposited on the surface of multi-wall carbon nanotubes of Russian and Taiwanese origin in situ during the polymerization of aniline. The deposited polyaniline film was subsequently carbonized under an inert atmosphere at various temperatures to produce coaxial coating of the carbon nanotubes with nitrogen-containing carbon. The new materials were investigated by infrared and Raman spectroscopies, which demonstrated the conversion of the polyaniline coating to a carbonized structure. X-ray photoelectron spectroscopy proved that the carbonized overlayer contains nitrogen atoms in various covalent bonding states. Transmission electron microscopy confirmed the coaxial structure of the composites. The Brunauer-Emmett-Teller method was used to estimate the specific surface area, the highest being 272 m2 g−1. The conductivity of 0.9–16 S cm−1 was measured by the four-point method, and it was only a little affected by the carbonization of the polyaniline coating.

[1] Bavastrello, V., Terencio, T. B. C., & Nicolini, C. (2011). Synthesis and characterization of polyaniline derivatives and related carbon nanotubes nanocomposites — Study of optical properties and band gap calculation. Polymer, 52, 46–54. DOI: 10.1016/j.polymer.2010.10.022. http://dx.doi.org/10.1016/j.polymer.2010.10.02210.1016/j.polymer.2010.10.022Search in Google Scholar

[2] Bober, P., Stejskal, J., Špírková, M., Varga, M., & Prokeš, J. (2010). Conducting polyaniline-montmorillonite composites. Synthetic Metals, 160, 2596–2604. DOI: 10.1016/j.synthmet.2010.10.010. http://dx.doi.org/10.1016/j.synthmet.2010.10.01010.1016/j.synthmet.2010.10.010Search in Google Scholar

[3] Chiou, N. R., & Epstein, A. J. (2005). Polyaniline nanofibers prepared by dilute polymerization. Advanced Materials, 17, 1679–1683. DOI: 10.1002/adma.200401000. http://dx.doi.org/10.1002/adma.20040100010.1002/adma.200401000Search in Google Scholar

[4] Ding, M. N., Tang, Y. F., Gou, P. P., Reber, M. J., & Star, A. (2011). Chemical sensing with polyaniline coated single-walled carbon nanotubes. Advanced Materials, 23, 536–540. DOI: 10.1002/adma.201003304. http://dx.doi.org/10.1002/adma.20100330410.1002/adma.201003304Search in Google Scholar PubMed

[5] Dresselhaus, M. S., Dresselhaus, G., & Hofmann, M. (2008). Raman spectroscopy as a probe of graphene and carbon nanotubes. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 366, 231–236. DOI: 10.1098/rsta.2007.2155. http://dx.doi.org/10.1098/rsta.2007.215510.1098/rsta.2007.2155Search in Google Scholar PubMed

[6] Gajendran, P., & Saraswathi, R. (2008). Polyaniline-carbon nanotube composites. Pure and Applied Chemistry, 80, 2377–2395. DOI: 10.1351/pac200880112377. http://dx.doi.org/10.1351/pac20088011237710.1351/pac200880112377Search in Google Scholar

[7] Gavrilov, N., Dasić-Tomić, M., Pašti, I., Ćirić-Marjanović, G., & Mentus, S. (2011). Carbonized polyaniline nanotubes/nanosheets-supported Pt nanoparticles: Synthesis, characterization and electrocatalysis. Materials Letters, 65, 962–965. DOI: 10.1016/j.matlet.2010.12.044. http://dx.doi.org/10.1016/j.matlet.2010.12.04410.1016/j.matlet.2010.12.044Search in Google Scholar

[8] Ghosh, S., & Raj, C. R. (2010). Facile in situ synthesis of multiwall carbon nanotube supported flowerlike Pt nanostructures: An efficient electrocatalyst for fuel cell application. The Journal of Physical Chemistry C, 114, 10843–10849. DOI: 10.1021/jp100551e. http://dx.doi.org/10.1021/jp100551e10.1021/jp100551eSearch in Google Scholar

[9] Hesse, R., Streubel, P., & Szargan, R. (2005). Improved accuracy of quantitative XPS analysis using predetermined spectrometer transmission functions with UNIFIT 2004. Surface and Interface Analysis, 37, 589–607. DOI: 10.1002/sia.2056. http://dx.doi.org/10.1002/sia.205610.1002/sia.2056Search in Google Scholar

[10] Hsu, C. H., Wu, H. M., & Kuo, P. L. (2010). Excellent performance of Pt0 on high nitrogen-containing carbon nanotubes using aniline as nitrogen/carbon source, dispersant, and stabilizer. Chemical Communications, 46, 7628–7630. DOI: 10.1039/c0cc02018d. http://dx.doi.org/10.1039/c0cc02018d10.1039/c0cc02018dSearch in Google Scholar PubMed

[11] Im, J. S., Kim, J. G., Lee, S. H., & Lee, Y. S. (2010). Enhanced adhesion and dispersion of carbon nanotube in PANI/PEO electrospun fibers for shielding effectiveness of electromagnetic interference. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 364, 151–157. DOI: 10.1016/j.colsurfa.2010.05.015. http://dx.doi.org/10.1016/j.colsurfa.2010.05.01510.1016/j.colsurfa.2010.05.015Search in Google Scholar

[12] Jiménez, P., Castell, P., Sainz, R., Anson, A., Martinez, M. T., Benito, A. M., & Maser, W. K. (2010). Carbon nanotube effect on polyaniline morphology in water dispersible composites. The Journal of Physical Chemistry B, 114, 1579–1585. DOI: 10.1021/jp909093e. http://dx.doi.org/10.1021/jp909093e10.1021/jp909093eSearch in Google Scholar PubMed

[13] Jin, C., Nagaiah, T. C., Xia, W., Spliethoff, B., Wang, S. S., Bron, M., Shuhmann, W., & Muhler, M. (2010). Metal-free and electrocatalytically active nitrogen-doped carbon nanotubes synthesized by coating with polyaniline. Nanoscale, 2, 981–987. DOI: 10.1039/b9nr00405j. http://dx.doi.org/10.1039/b9nr00405j10.1039/b9nr00405jSearch in Google Scholar PubMed

[14] Jiříček, P. (1994). Measurement of the transmission function of the hemispherical energy analyser of ADES 400 electron spectrometer. Czechoslovak Journal of Physics, 44, 261–267. DOI: 10.1007/bf01694490. http://dx.doi.org/10.1007/BF0169449010.1007/BF01694490Search in Google Scholar

[15] Kelemen, S. R., Afeworki, M., Gorbaty, M. L., Kwiatek, P. J., Solum, M. S., Hu, J. Z., & Pugmire, R. J. (2002). XPS and 15N NMR study of nitrogen forms in carbonaceous solids. Energy & Fuels, 16, 1507–1515. DOI: 10.1021/ef0200828. http://dx.doi.org/10.1021/ef020082810.1021/ef0200828Search in Google Scholar

[16] Kieffel, Y., Travers, J. P., Ermolieff, A., & Rouchon, D. (2002). Thermal aging of undoped polyaniline: Effect of chemical degradation on electrical properties. Journal of Applied Polymer Science, 86, 395–404. DOI: 10.1002/app.10981. http://dx.doi.org/10.1002/app.1098110.1002/app.10981Search in Google Scholar

[17] Konyushenko, E. N., Stejskal, J., Trchová, M., Hradil, J., Kovářová, J., Cieslar, M., Hwang, J. Y., Chen, K. H., & Sapurina, I. (2006). Multi-wall carbon nanotubes coated with polyaniline. Polymer, 47, 5715–5723. DOI: 10.1016/j.polymer.2006.05.059. http://dx.doi.org/10.1016/j.polymer.2006.05.05910.1016/j.polymer.2006.05.059Search in Google Scholar

[18] Konyushenko, E. N., Kazantseva, N. E., Stejskal, J., Trchová, M., Kovářová O. V., & Prokeš, J. (2008). Ferromagnetic behaviour of polyaniline-coated multi-wall carbon nanotubes containing nickel nanoparticles. Journal of Magnetism and Magnetic Materials, 320, 231–240. DOI: 10.1016/j.jmmm.2007.05.036. http://dx.doi.org/10.1016/j.jmmm.2007.05.03610.1016/j.jmmm.2007.05.036Search in Google Scholar

[19] Kuo, P. L., & Hsu, C. H. (2011). Stabilization of embedded Pt nanoparticles in the novel nanostructure carbon materials. ACS Applied Materials & Interfaces, 3, 115–118. DOI: 10.1021/am1010089. http://dx.doi.org/10.1021/am101008910.1021/am1010089Search in Google Scholar PubMed

[20] Kuo, P. L., Hsu, C. H., Wu, H. M., Hsu, W. S., & Kuo, D. (2012). Controllable-nitrogen doped carbon layer surrounding carbon nanotubes as novel carbon support for oxygen reduction reaction. Fuel Cells, 12, 649–655. DOI: 10.1002/fuce.201100130. http://dx.doi.org/10.1002/fuce.20110013010.1002/fuce.201100130Search in Google Scholar

[21] Kyotani, M., Goto, H., Suda, K., Nagai, T., Matsui, Y., & Akagi, K. (2008). Tubular-shaped nanocarbons prepared from polyaniline synthesized by a self-assembly process and their electrical conductivity. Journal of Nanoscience and Nanotechnology, 8, 1999–2004. DOI: 10.1166/jnn.2008.041. http://dx.doi.org/10.1166/jnn.2008.04110.1166/jnn.2008.041Search in Google Scholar

[22] Laslau, C., Zujovic, Z. D., Zhang, L. J., Bowmaker, G. A., & Travas-Sejdic, J. (2009). Morphological evolution of self-assembled polyaniline nanostuctures obtained by pH-stat chemical oxidation. Chemistry of Materials, 21, 954–962. DOI: 10.1021/cm803447a. http://dx.doi.org/10.1021/cm803447a10.1021/cm803447aSearch in Google Scholar

[23] Lei, Z. B., Zhao, M. Y., Dang, L. Q., An, L. Z., Lu, M., Lo, A. Y., Yu, N. Y., & Liu, S. B. (2009). Structural evolution and electrocatalytic application of nitrogen-doped carbon shells synthesized by pyrolysis of near-monodisperse polyaniline nanospheres. Journal of Materials Chemistry, 19, 5985–5995. DOI: 10.1039/b908223a. http://dx.doi.org/10.1039/b908223a10.1039/b908223aSearch in Google Scholar

[24] Lesiak, B., Jablonski, A., Zemek, J., Trchová, M., & Stejskal, J. (2000). Determination of the inelastic mean free path of electrons in different polyaniline samples. Langmuir, 16, 1415–1423. DOI: 10.1021/la990699q. http://dx.doi.org/10.1021/la990699q10.1021/la990699qSearch in Google Scholar

[25] Li, W., & Kim, D. (2011). Polyaniline/multiwall carbon nanotube nanocomposite for detecting aromatic hydrocarbon vapors. Journal of Materials Science, 46, 1857–1861. DOI: 10.1007/s10853-010-5013-3. http://dx.doi.org/10.1007/s10853-010-5013-310.1007/s10853-010-5013-3Search in Google Scholar

[26] Liao, Y. Z., Zhang, C., Zhang, Y., Strong, V., Tang, J. S., Li, X. G., Kalantar-Zadeh, K., Hoek, E. M. V., Wang, K. L., & Kaner, R. B. (2011). Carbon nanotube/polyaniline composite nanofibers: Facile synthesis and chemosensors. Nano Letters, 11, 954–959. DOI: 10.1021/nl103322b. http://dx.doi.org/10.1021/nl103322b10.1021/nl103322bSearch in Google Scholar PubMed

[27] Lindfors, T., & Ivaska, A. (2005). Raman based pH measurements with polyaniline. Journal of Electroanalytical Chemistry, 580, 320–329. DOI: 10.1016/j.jelechem.2005.03.042. http://dx.doi.org/10.1016/j.jelechem.2005.03.04210.1016/j.jelechem.2005.03.042Search in Google Scholar

[28] Liu, S., Wang, J. Q., Zhang, D., Zhang, P. L., Ou, J. F., Liu, B., & Yang, S. R. (2010). Investigation on cell biocompatible behaviors of polyaniline film fabricated via electroless surface polymerization. Applied Surface Science, 256, 3427–3431. DOI: 10.1016/j.apsusc.2009.12.046. http://dx.doi.org/10.1016/j.apsusc.2009.12.04610.1016/j.apsusc.2009.12.046Search in Google Scholar

[29] Lobotka, P., Kunzo, P., Kovacova, E., Vavra, I., Krizanova, Z., Smatko, V., Stejskal, J., Konyushenko, E. N., Omastova, M., Spitalsky, Z., Micusik, M., & Krupa, I. (2011). Thin polyaniline and polyaniline/carbon nanocomposite films for gas sensing. Thin Solid Films, 519, 4123–4127. DOI: 10.1016/j.tsf.2011.01.177. http://dx.doi.org/10.1016/j.tsf.2011.01.17710.1016/j.tsf.2011.01.177Search in Google Scholar

[30] Lu, X. F., Zhang, W. J., Wang, C., Wen, T. C., & Wei, Y. (2011). One-dimensional conducting polymer nanocomposites: Synthesis, properties, and applications. Progress in Polymer Science, 36, 671–712. DOI: 10.1016/j.progpolymsci.2010.07.010. http://dx.doi.org/10.1016/j.progpolymsci.2010.07.01010.1016/j.progpolymsci.2010.07.010Search in Google Scholar

[31] Mentus, S., Ćirić-Marjanović, G., Trchová, M., & Stejskal, J. (2009). Conducting carbonized polyaniline nanotubes. Nanotechnology, 20, 245601. DOI: 10.1088/0957-4484/20/24/245601. http://dx.doi.org/10.1088/0957-4484/20/24/24560110.1088/0957-4484/20/24/245601Search in Google Scholar

[32] Morávková, Z., Trchová, M., Tomšík, E., Čechvala, J., & Stejskal, J. (2012). Enhanced thermal stability of multiwalled carbon nanotubes after coating with polyaniline salt. Polymer Degradation and Stability, 97, 1405–1414. DOI: 10.1016/j.polymdegradstab.2012.05.019. http://dx.doi.org/10.1016/j.polymdegradstab.2012.05.01910.1016/j.polymdegradstab.2012.05.019Search in Google Scholar

[33] Qiu, Y. J., Yu, J., Fang, G., Shi, H., Zhou, X. S., & Bai, X. D. (2008). Synthesis of carbon/carbon core/shell nanotubes with a high specific surface area. The Journal of Physical Chemistry C, 113, 61-68. DOI: 10.1021/jp806971e. 10.1021/jp806971eSearch in Google Scholar

[34] Robertson, J. (2002). Diamond-like amorphous carbon. Materials Science and Engineering R: Reports, 37, 129–281. DOI: 10.1016/s0927-796x(02)00005-0. http://dx.doi.org/10.1016/S0927-796X(02)00005-010.1016/S0927-796X(02)00005-0Search in Google Scholar

[35] Rozlívková, Z., Trchová, M., Exnerová, M., & Stejskal, J. (2011). The carbonization of granular polyaniline to produce nitrogen-containing carbon. Synthetic Metals, 161, 1122–1129. DOI: 10.1016/j.synthmet.2011.03.034. http://dx.doi.org/10.1016/j.synthmet.2011.03.03410.1016/j.synthmet.2011.03.034Search in Google Scholar

[36] Sapurina, I., & Stejskal, J. (2008). The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polymer International, 57, 1295–1325. DOI: 10.1002/pi.2476. http://dx.doi.org/10.1002/pi.247610.1002/pi.2476Search in Google Scholar

[37] Scofield, J. H. (1976). Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. Journal of Electron Spectroscopy and Related Phenomena, 8, 129–137. DOI: 10.1016/0368-2048(76)80015-1. http://dx.doi.org/10.1016/0368-2048(76)80015-110.1016/0368-2048(76)80015-1Search in Google Scholar

[38] Shirley, D. A. (1972). High-resolution X-ray photoemission spectrum of the valence bands of gold. Physical Review B, 5, 4709–4715. DOI: 10.1103/physrevb.5.4709. http://dx.doi.org/10.1103/PhysRevB.5.470910.1103/PhysRevB.5.4709Search in Google Scholar

[39] Špitalskějka, L., Šlouf, M., Konyushenko, E. N., Kovářová of carbon nanotubes and its effect on properties of carbon nanotube/epoxy nanocomposites. Polymer Composites, 30, 1378–1387. DOI: 10.1002/pc.20701. 10.1002/pc.20701Search in Google Scholar

[40] Stejskal, J., & Gilbert, R. G. (2002). Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure and Applied Chemistry, 74, 857–867. DOI: 10.1351/pac200274050857. http://dx.doi.org/10.1351/pac20027405085710.1351/pac200274050857Search in Google Scholar

[41] Stejskal, J., Sapurina, I., Prokeš, J., & Zemek, J. (1999). In-situ polymerized polyaniline films. Synthetic Metals, 105, 195–202. DOI: 10.1016/s0379-6779 (99)00105-8. http://dx.doi.org/10.1016/S0379-6779(99)00105-810.1016/S0379-6779(99)00105-8Search in Google Scholar

[42] Stejskal, J., Trchová, M., Fedorova, S., Sapurina, I., & Zemek, J. (2003). Surface polymerization of aniline on silica gel. Langmuir, 19, 3013–3018. DOI: 10.1021/la026672f. http://dx.doi.org/10.1021/la026672f10.1021/la026672fSearch in Google Scholar

[43] Stejskal, J., Sapurina, I., & Trchová, M. (2010). Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science, 35, 1420–1481. DOI: 10.1016/j.progpolymsci.2010.07.006. http://dx.doi.org/10.1016/j.progpolymsci.2010.07.00610.1016/j.progpolymsci.2010.07.006Search in Google Scholar

[44] Terrones, M., Jorio, A., Endo, M., Rao, A. M., Kim, Y. A., Hayashi, T., Terrones, H., Charlier, J. C., Dresselhaus, G., & Dresselhaus, M. S. (2004). New direction in nanotube science. Materials Today, 7, 30–45. DOI: 10.1016/s1369-7021(04)00447-x. http://dx.doi.org/10.1016/S1369-7021(04)00447-X10.1016/S1369-7021(04)00447-XSearch in Google Scholar

[45] Tran, H. D., D’Arcy, J. M., Wang, Y., Beltramo, P. J., Strong, V. A., & Kaner, R. B. (2011). The oxidation of aniline to produce ”polyaniline”: a process yielding many different nanoscale structures. Journal of Materials Chemistry, 21, 3534–3550. DOI: 10.1039/c0jm02699a. http://dx.doi.org/10.1039/c0jm02699a10.1039/C0JM02699ASearch in Google Scholar

[46] Trchová, M., & Stejskal, J. (2011). Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (IUPAC technical report). Pure and Applied Chemistry, 83, 1803–1817. DOI: 10.1351/pac-rep-10-02-01. http://dx.doi.org/10.1351/PAC-REP-10-02-0110.1351/PAC-REP-10-02-01Search in Google Scholar

[47] Trchová, M., Konyushenko, E. N., Stejskal, J., Kovářová J., & Ćirić-Marjanović, G. (2009). The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-walled carbon nanotubes. Polymer Degradation and Stability, 94, 929–938. DOI: 10.1016/j.polymdegradstab.2009.03.001. http://dx.doi.org/10.1016/j.polymdegradstab.2009.03.00110.1016/j.polymdegradstab.2009.03.001Search in Google Scholar

[48] Trchová, M., Morávková, Z., Šeděnkov Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline. Chemical Papers, 66, 415–445. DOI: 10.2478/s11696-012-0142-6. 10.2478/s11696-012-0142-6Search in Google Scholar

[49] Wei, D., Wang, H. L., Hiralal, P., Andrew, P., Ryhänen, T., Hayashi, Y., & Amaratunga, G. A. J. (2010). Template-free electrochemical nanofabrication of polyaniline nanobrush and hybrid polyaniline with carbon nanohorns for supercapacitors. Nanotechnology, 21, 435702. DOI: 10.1088/0957-4484/21/43/435702. http://dx.doi.org/10.1088/0957-4484/21/43/43570210.1088/0957-4484/21/43/435702Search in Google Scholar PubMed

[50] Yan, X. B., Tai, Z. X., Chen, J. T., & Xue, Q. J. (2011). Fabrication of carbon nanofiber-polyaniline composite flexible paper for supercapacitor. Nanoscale, 3, 212–216. DOI: 10.1039/c0nr00470g. http://dx.doi.org/10.1039/c0nr00470g10.1039/C0NR00470GSearch in Google Scholar

[51] Yang, M. M., Cheng, B., Song, H. H., & Chen, X. H. (2010). Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor. Electrochimica Acta, 55, 7021–7027. DOI: 10.1016/j.electacta.2010.06.077. http://dx.doi.org/10.1016/j.electacta.2010.06.07710.1016/j.electacta.2010.06.077Search in Google Scholar

[52] Zhang, K., Zhang, L. L., Zhao, X. S., & Wu, J. S. (2010). Graphene/polyaniline nanoriber composites as supercapacitor electrodes. Chemistry of Materials, 22, 1392–1401. DOI: 10.1021/cm902876u. http://dx.doi.org/10.1021/cm902876u10.1021/cm902876uSearch in Google Scholar

[53] Zhang, X. J., Pei, H., & Shen, Z. M. (2011). Carbon fiber paper modified with carbon nanotube for proton exchange membrane fuel cell. Advanced Materials Research, 139–141, 76–79. DOI: 10.4028/www.scientific.net/amr.139-141.76. 10.4028/www.scientific.net/AMR.139-141.76Search in Google Scholar

[54] Zhao, X. S., Li, W. Z., Jiang, L. H., Zhou, W. J., Xin, Q., Yi, B. L., & Sun, G. Q. (2004). Multi-wall carbon nanotube supported Pt-Sn nanoparticles as an anode catalyst for the direct ethanol fuel cell. Carbon, 42, 3263–3265. DOI: 10.1016/j.carbon.2004.07.031. http://dx.doi.org/10.1016/j.carbon.2004.07.03110.1016/j.carbon.2004.07.031Search in Google Scholar

[55] Zhou, Y., Qin, Z. Y., Li, L., Zhang, Y., Wei, Y. L., Wang, L. F., & Zhu, M. F. (2010). Polyaniline/multi-walled carbon nanotube composites with core-shell structures as supercapacitor electrode materials. Electrochimica Acta, 55, 3904–3908. DOI: 10.1016/j.electacta.2010.02.022. http://dx.doi.org/10.1016/j.electacta.2010.02.02210.1016/j.electacta.2010.02.022Search in Google Scholar

Published Online: 2013-5-3
Published in Print: 2013-8-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Recent trends and progress in research into structure and properties of polyaniline and polypyrrole — Topical Issue
  2. Printing polyaniline for sensor applications
  3. Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials
  4. Conducting polymer-silver composites
  5. Electrorheological response of polyaniline and its hybrids
  6. Effect of PPy/PEG conducting polymer film on electrochemical performance of LiFePO4 cathode material for Li-ion batteries
  7. Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration
  8. Self-assembly of aniline oligomers and their induced polyaniline supra-molecular structures
  9. Self-organization of polyaniline during oxidative polymerization: formation of granular structure
  10. Influence of ethanol on the chain-ordering of carbonised polyaniline
  11. X-ray absorption spectroscopy of nanostructured polyanilines
  12. Effect of cations on polyaniline morphology
  13. Preparation of polyaniline in the presence of polymeric sulfonic acids mixtures: the role of intermolecular interactions between polyacids
  14. Chemical degradation of polyaniline by reaction with Fenton’s reagent — a spectroelectrochemical study
  15. Thin mesoporous polyaniline films manifesting a water-promoted photovoltaic effect
  16. Polyamide grafted with polypyrrole: formation, properties, and stability
  17. Effect of ionic liquid on polyaniline chemically synthesised under falling-pH conditions
  18. Polyaniline doped with poly(acrylamidomethylpropanesulphonic acid): electrochemical behaviour and conductive properties in neutral solutions
  19. Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles
  20. Bi-hybrid coatings: polyaniline-montmorillonite filler in organic-inorganic polymer matrix
  21. Preparation of aqueous polyaniline-vesicle suspensions with class III peroxidases. Comparison between horseradish peroxidase isoenzyme C and soybean peroxidase
  22. Preparation, characterisation, and dielectric properties of polypyrrole-clay composites
  23. Multi-wall carbon nanotubes with nitrogen-containing carbon coating
  24. Conducting poly(o-anisidine)-coated steel electrodes for supercapacitors
  25. Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations
  26. Preparation of a miniaturised iodide ion selective sensor using polypyrrole and pencil lead: effect of double-coating, electropolymerisation time, and current density
  27. Role of polyaniline morphology in Pd particles dispersion. Hydrogenation of alkynes in the presence of Pd-polyaniline catalysts
  28. Nanostructured polyaniline-coated anode for improving microbial fuel cell power output
  29. Antibacterial properties of polyaniline-silver films
  30. Effect of compression pressure on mechanical and electrical properties of polyaniline pellets
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0348-2/html
Scroll to top button