Startseite Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles

  • Robert Moucka EMAIL logo , Miroslav Mrlik , Marketa Ilcikova , Zdenko Spitalsky , Natalia Kazantseva , Patrycja Bober und Jaroslav Stejskal
Veröffentlicht/Copyright: 3. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Statistical copolymers of aniline and p-phenylenediamine, poly(aniline-co-p-phenylenediamine)s, were synthesised by oxidative polymerisation using various oxidants, ammonium peroxydisulphate or silver nitrate. Depending on the choice of oxidant, copolymers or composites with silver particles were obtained. Different molar concentrations of p-phenylenediamine in the reaction mixture provided materials of different conductivities. The influence of both the copolymer composition and the presence of discrete silver particles on the electric and dielectric properties of the system was studied. The results showed a decrease in the conductivity of copolymers and their composites with the silver content compared with the content of standard polyaniline salt. The reduction in conductivity was described in terms of the decreased density of hopping centres due to defects in the copolymer structure. The dielectric relaxations observed were described in terms of their activation energies and were linked to the corresponding conduction mechanism.

[1] Blythe, A. R. (1979). Electrical properties of polymers. New York, NY, USA: Cambridge University Press. Suche in Google Scholar

[2] Bober, P., Stejskal, J., Trchová, M., Prokeš, J., & Sapurina, I. (2010). Oxidation of aniline with silver nitrate accelerated by p-phenylenediamine a new route to conducting composites. Macromolecules, 43, 10406–10413. DOI: 10.1021/ma101474j. http://dx.doi.org/10.1021/ma101474j10.1021/ma101474jSuche in Google Scholar

[3] Bober, P., Stejskal, J., Trchová, M., & Prokeš, J. (2011). Polyaniline-silver composites prepared by the oxidation of aniline with mixed oxidants, silver nitrate, and ammonium peroxydisulfate: The control of silver content. Polymer, 52, 5947–5952. DOI:10.1016/j.polymer.2011.10.025. http://dx.doi.org/10.1016/j.polymer.2011.10.02510.1016/j.polymer.2011.10.025Suche in Google Scholar

[4] Capaccioli, S., Lucchesi, M., Rolla, P. A., & Ruggeri, G. (1998). Dielectric response analysis of a conducting polymer dominated by the hopping charge transport. Journal of Physics: Condensed Matter, 10, 5595–5617. DOI: 10.1088/0953-8984/10/25/011. http://dx.doi.org/10.1088/0953-8984/10/25/01110.1088/0953-8984/10/25/011Suche in Google Scholar

[5] Cole, K. S., & Cole, R. H. (1941). Dispersion and absorption in dielectrics I. Alternating current characteristics. The Journal of Chemical Physics, 9, 341–351. DOI: 10.1063/1.1750906. 10.1063/1.1750906Suche in Google Scholar

[6] Dyre, J. C. (1988). The random free-energy barrier model for AC conduction in disordered solids. Journal of Applied Physics, 64, 2456–2468. DOI: 10.1063/1.341681. http://dx.doi.org/10.1063/1.34168110.1063/1.341681Suche in Google Scholar

[7] Epstein, A. J., Joo, J., Kohlman, R. S., Du, G., MacDiarmid, A. G., Oh, E. J., Min, Y., Tsukamoto, J., Kaneko, H., & Pouget, J. P. (1994). Inhomogeneous disorder and the modified Drude metallic state of conducting polymers. Synthetic Metals, 65, 149–157. DOI: 10.1016/0379-6779(94)90176-7. http://dx.doi.org/10.1016/0379-6779(94)90176-710.1016/0379-6779(94)90176-7Suche in Google Scholar

[8] Epstein, A. J., Lee, W. P., & Prigodin, V. N. (2001). Lowdimensional variable range hopping in conducting polymers. Synthetic Metals, 117, 9–13. DOI: 10.1016/s0379-6779(00)00531-2. http://dx.doi.org/10.1016/S0379-6779(00)00531-210.1016/S0379-6779(00)00531-2Suche in Google Scholar

[9] Hagiwara, T., Demura, T., & Iwata, K. (1987). Synthesis and properties of electrically conducting polymers from aromatic amines. Synthetic Metals, 18, 317–322. DOI: 10.1016/0379-6779(87)90898-8. http://dx.doi.org/10.1016/0379-6779(87)90898-810.1016/0379-6779(87)90898-8Suche in Google Scholar

[10] Křivka, I., Prokeš, J., Starykov, O., & Stejskal, J. (2001). AC properties of aniline-1,4-phenylenediamine copolymers. Synthetic Metals, 119, 481–482. DOI: 10.1016/s0379-6779(00)00802-x. http://dx.doi.org/10.1016/S0379-6779(00)00802-X10.1016/S0379-6779(00)00802-XSuche in Google Scholar

[11] Mott, N. F., & Davis, E. A. (1979). Electronic processes in non-crystalline materials (2nd ed.). New York, NY, USA: Clarendon Press. Suche in Google Scholar

[12] Mzenda, V. M., Goodman, S. A., & Auret, F. D. (2002). Conduction models in polyaniline — the effect of temperature on the current-voltage properties of polyaniline over the temperature range 30 < T(K) < 300. Synthetic Metals, 127, 285–289. DOI: 10.1016/s0379-6779(01)00638-5. http://dx.doi.org/10.1016/S0379-6779(01)00638-510.1016/S0379-6779(01)00638-5Suche in Google Scholar

[13] Prigodin, V. N., Samukhin, A. N., & Epstein, A. J. (2004). Variable range hopping in low-dimensional polymer structures. Synthetic Metals, 141, 155–164. DOI: 10.1016/j.synthmet.2003.09.017. http://dx.doi.org/10.1016/j.synthmet.2003.09.01710.1016/j.synthmet.2003.09.017Suche in Google Scholar

[14] Sapurina, I. Y., & Stejskal, J. (2012). Oxidation of aniline with strong and weak oxidants. Russian Journal of General Chemistry, 82, 256–275. DOI:10.1134/s1070363212020168. http://dx.doi.org/10.1134/S107036321202016810.1134/S1070363212020168Suche in Google Scholar

[15] Scher, H., & Zallen, R. (1970). Critical density in percolation processes. The Journal of Chemical Physics, 53, 3759–3761. DOI: 10.1063/1.1674565. http://dx.doi.org/10.1063/1.167456510.1063/1.1674565Suche in Google Scholar

[16] Starykov, O., Prokeš, J., Křivka, I., & Stejskal, J. (2004). Charge transport in polyaniline doped with 3-nitro-1,2,4-triazol-5(4H)-one. Macromolecular Symposia, 212, 455–460. DOI:10.1002/masy.200450857. http://dx.doi.org/10.1002/masy.20045085710.1002/masy.200450857Suche in Google Scholar

[17] Stejskal, J. (2005). The effect of chemical heterogeneity on the properties of statistical copolymers: the conductivity of poly(aniline-co-2-bromoaniline). Polymer International, 54, 108–113. DOI: 10.1002/pt.1650. http://dx.doi.org/10.1002/pi.1650Suche in Google Scholar

[18] Stejskal, J., Trchová, M., Ananieva, I. A., Janča, J., Prokeš, J., Fedorova, S., & Sapurina, I. (2004). Poly(aniline-co-pyrrole): powders, films, and colloids. Thermophoretic mobility of colloidal particles. Synthetic Metals, 146, 29–36. DOI:10.1016/j.synthmet.2004.06.013. http://dx.doi.org/10.1016/j.synthmet.2004.06.01310.1016/j.synthmet.2004.06.013Suche in Google Scholar

Published Online: 2013-5-3
Published in Print: 2013-8-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Recent trends and progress in research into structure and properties of polyaniline and polypyrrole — Topical Issue
  2. Printing polyaniline for sensor applications
  3. Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials
  4. Conducting polymer-silver composites
  5. Electrorheological response of polyaniline and its hybrids
  6. Effect of PPy/PEG conducting polymer film on electrochemical performance of LiFePO4 cathode material for Li-ion batteries
  7. Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration
  8. Self-assembly of aniline oligomers and their induced polyaniline supra-molecular structures
  9. Self-organization of polyaniline during oxidative polymerization: formation of granular structure
  10. Influence of ethanol on the chain-ordering of carbonised polyaniline
  11. X-ray absorption spectroscopy of nanostructured polyanilines
  12. Effect of cations on polyaniline morphology
  13. Preparation of polyaniline in the presence of polymeric sulfonic acids mixtures: the role of intermolecular interactions between polyacids
  14. Chemical degradation of polyaniline by reaction with Fenton’s reagent — a spectroelectrochemical study
  15. Thin mesoporous polyaniline films manifesting a water-promoted photovoltaic effect
  16. Polyamide grafted with polypyrrole: formation, properties, and stability
  17. Effect of ionic liquid on polyaniline chemically synthesised under falling-pH conditions
  18. Polyaniline doped with poly(acrylamidomethylpropanesulphonic acid): electrochemical behaviour and conductive properties in neutral solutions
  19. Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles
  20. Bi-hybrid coatings: polyaniline-montmorillonite filler in organic-inorganic polymer matrix
  21. Preparation of aqueous polyaniline-vesicle suspensions with class III peroxidases. Comparison between horseradish peroxidase isoenzyme C and soybean peroxidase
  22. Preparation, characterisation, and dielectric properties of polypyrrole-clay composites
  23. Multi-wall carbon nanotubes with nitrogen-containing carbon coating
  24. Conducting poly(o-anisidine)-coated steel electrodes for supercapacitors
  25. Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations
  26. Preparation of a miniaturised iodide ion selective sensor using polypyrrole and pencil lead: effect of double-coating, electropolymerisation time, and current density
  27. Role of polyaniline morphology in Pd particles dispersion. Hydrogenation of alkynes in the presence of Pd-polyaniline catalysts
  28. Nanostructured polyaniline-coated anode for improving microbial fuel cell power output
  29. Antibacterial properties of polyaniline-silver films
  30. Effect of compression pressure on mechanical and electrical properties of polyaniline pellets
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0351-7/html
Button zum nach oben scrollen