Startseite Effect of ionic liquid on polyaniline chemically synthesised under falling-pH conditions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of ionic liquid on polyaniline chemically synthesised under falling-pH conditions

  • Anurag Krishna EMAIL logo , Cosmin Laslau , Geoffrey Waterhouse , Zoran Zujovic und Jadranka Travas-Sejdic
Veröffentlicht/Copyright: 3. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This study investigates the effect of the ionic liquid 1-butyl-3-methyl imidazolium chloride ([bmim]Cl) on the morphological, structural, and electronic properties of polyaniline (PANI) products synthesised by the falling-pH method. Products were characterised by SEM, FT-IR, UVVIS, N2-physisorption, and conductivity measurements. The [bmim]Cl addition strongly influenced the PANI morphology, specific surface area, porosity, and conductivity. Depending on the [bmim]Cl: ANI ratio and the synthesis pH, a wide range of PANI nanostructures could be prepared, with rod-like, and fibre-like elongated structures being the dominant morphology under most experimental conditions. Samples prepared in the presence of [bmim]Cl exhibit specific areas of ca 22–35 m2 g−1. The conductivity of the final products depends on the [bmim]Cl: ANI ratio. Temperature dependence of conductivity in the temperature range from 77 K to 300 K was also studied.

[1] Ago, H., Petritsch, K., Shaffer, M. S. P., Windle, A. H., & Friend, R. H. (1999). Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Advanced Materials, 11, 1281–1285. DOI: 10.1002/(sici)1521-4095(199910)11:15〈1281:aid-adma1281〉3.0.co;2-6. http://dx.doi.org/10.1002/(SICI)1521-4095(199910)11:15<1281::AID-ADMA1281>3.0.CO;2-610.1002/(SICI)1521-4095(199910)11:15<1281::AID-ADMA1281>3.0.CO;2-6Suche in Google Scholar

[2] Bazito, F. F. C., Silveira, L. T., Torresi, R. M., & de Torresi, S. I. C. (2008). On the stabilization of conducting pernigraniline salt by the synthesis and oxidation of polyaniline in hydrophobic ionic liquids. Physical Chemistry Chemical Physics, 10, 1457–1462. DOI: 10.1039/b714458j. http://dx.doi.org/10.1039/b714458j10.1039/b714458jSuche in Google Scholar

[3] Bıçak, N., Şenkal, B. F., & Sezer, E. (2005). Preparation of organo-soluble polyaniline in ionic liquid. Synthetic Metals, 155, 105–109 DOI: 10.1016/j.synthmet.2005.06.010. http://dx.doi.org/10.1016/j.synthmet.2005.06.01010.1016/j.synthmet.2005.06.010Suche in Google Scholar

[4] Chowdhury, A. N., Saleh, F. S., Rahman, M. R., & Rahim, A. (2008). Influence of pH on the specific surface area of polyaniline matrices. Journal of Applied Polymer Science, 109, 1764–1771. DOI: 10.1002/app.28227. http://dx.doi.org/10.1002/app.2822710.1002/app.28227Suche in Google Scholar

[5] Deepa, M., Ahmad, S., Sood, K. N., Alam, J., Ahmad, S., & Srivastava, A. K. (2007). Electrochromic properties of polyaniline thin film nanostructures derived from solutions of ionic liquid/polyethylene glycol. Electrochimica Acta, 52, 7453–7463. DOI: 10.1016/j.electacta.2007.06.031. http://dx.doi.org/10.1016/j.electacta.2007.06.03110.1016/j.electacta.2007.06.031Suche in Google Scholar

[6] Gao, H. X., Jiang, T., Han, B. X., Wang, Y., Du, J. M., Liu, Z. M., & Zhang, J. L. (2004). Aqueous/ionic liquid interfacial polymerization for preparing polyaniline nanoparticles. Polymer, 45, 3017–3019. DOI: 10.1016/j.polymer.2004.03.002. http://dx.doi.org/10.1016/j.polymer.2004.03.00210.1016/j.polymer.2004.03.002Suche in Google Scholar

[7] Gustafsson, G., Cao, Y., Teacy, G. M., Klavetter, F., Colaneri, N., & Heeger, A. J. (1992). Flexible light-emitting diodes made from soluble conducting polymers. Nature, 357, 477–479. DOI: 10.1038/357477a0. http://dx.doi.org/10.1038/357477a010.1038/357477a0Suche in Google Scholar

[8] Huang, J. X., Virji, S., Weiller, B. H., & Kaner, R. B. (2003). Polyaniline nanofibers: Facile synthesis and chemical sensors. Journal of the American Chemical Society, 125, 314–315. DOI: 10.1021/ja028371y. http://dx.doi.org/10.1021/ja028371y10.1021/ja028371ySuche in Google Scholar

[9] Jiang, Y., Wang, A. Y., & Kan, J. Q. (2007). Selective uricase biosensor based on polyaniline synthesized in ionic liquid. Sensors and Actuators B-Chemical, 124, 529–534. DOI: 10.1016/j.snb.2007.01.016. http://dx.doi.org/10.1016/j.snb.2007.01.01610.1016/j.snb.2007.01.016Suche in Google Scholar

[10] Laslau, C., Zujovic, Z. D., & Travas-Sejdic, J. (2010). Theories of polyaniline nanostructure self-assembly: Towards an expanded, comprehensive Multi-Layer Theory (MLT). Progress in Polymer Science, 35, 1403–1419. DOI: 10.1016/j. progpolymsci.2010.08.002. http://dx.doi.org/10.1016/j.progpolymsci.2010.08.00210.1016/j.progpolymsci.2010.08.002Suche in Google Scholar

[11] Li, M. C., Ma, C. A., Liu, B. Y., & Jin, Z. M. (2005). A novel electrolyte 1-ethylimidazolium trifluoroacetate used for electropolymerization of aniline. Electrochemistry Communications, 7, 209–212. DOI: 10.1016/j.elecom.2004.12.012. http://dx.doi.org/10.1016/j.elecom.2004.12.01210.1016/j.elecom.2004.12.012Suche in Google Scholar

[12] Maddison, D. S., & Tansley, T. L. (1992). Variable range hopping in polypyrrole films of a range of conductivities and preparation methods. Journal of Applied Physics, 72, 4677–4682. DOI: 10.1063/1.352073. http://dx.doi.org/10.1063/1.35207310.1063/1.352073Suche in Google Scholar

[13] Miao, Z. J., Wang, Y., Liu, Z. M., Huang, J., Han, B. X., Sun, Z. Y., & Du, J. M. (2006). Synthesis of polyaniline nanofibrous networks with the aid of an amphiphilic ionic liquid. Journal of Nanoscience and Nanotechnology, 6, 227–230. DOI: 10.1166/jnn.2006.054. http://dx.doi.org/10.1166/jnn.2006.15110.1166/jnn.2006.054Suche in Google Scholar

[14] Mott, N. F., & Davis, E. A. (1979). Electronic processes in noncrystalline materials (2nd ed.). London, UK: Oxford University Press. Suche in Google Scholar

[15] Mu, S. (2007). Pronounced effect of the ionic liquid on the electrochromic property of the polyaniline film: Color changes in the wide wavelength range. Electrochimica Acta, 52, 7827–7834. DOI: 10.1016/j.electacta.2007.06.053. http://dx.doi.org/10.1016/j.electacta.2007.06.05310.1016/j.electacta.2007.06.053Suche in Google Scholar

[16] Pahovnik, D., Žagar, E., Vohlidal, J., & Žigon, M. (2010). Ionic liquid-induced formation of polyaniline nanostructures during the chemical polymerization of aniline in an acidic aqueous medium. Synthetic Metals, 160, 1761–1766. DOI: 10.1016/j.synthmet.2010.06.016. http://dx.doi.org/10.1016/j.synthmet.2010.06.01610.1016/j.synthmet.2010.06.016Suche in Google Scholar

[17] Sekiguchi, K., Atobe, M., & Fuchigama, M. T. (2003). Electrooxidative polymerization of aromatic compounds in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate roomtemperature ionic liquid. Journal of Electroanalytical Chemistry, 557, 1–7. DOI: 10.1016/s0022-0728(03)00344-9. http://dx.doi.org/10.1016/S0022-0728(03)00344-910.1016/S0022-0728(03)00344-9Suche in Google Scholar

[18] Singh, R. K., Kumar, A., & Singh, R. (2010). Mechanism of charge transport in poly(2,5-dimethoxyaniline). Journal of Applied Physics, 107, 113711. DOI: 10.1063/1.3443564. http://dx.doi.org/10.1063/1.344356410.1063/1.3443564Suche in Google Scholar

[19] Singh, R. K., Kumar, A., Agarwal, K., Kumar, M., Singh, H. K., Srivastava, P., & Singh, R. (2012). DC electrical conduction and morphological behavior of counter anion-governed genesis of electrochemically synthesized polypyrrole films. Jour nal of Polymer Science Part B: Polymer Physics, 50, 347–360. DOI: 10.1002/polb.23006. http://dx.doi.org/10.1002/polb.2300610.1002/polb.23006Suche in Google Scholar

[20] Skotheim, T. A., Elsenbaumer, R. L., & Reynolds, J. R. (2007). Handbook of conducting polymers (2nd ed.). New York, NY, USA: Marcel Dekker. 10.1201/b12346Suche in Google Scholar

[21] Song, G. P., Han, J., Bo, J., & Guo, R. (2009). Synthesis of polyaniline nanostructures in different lamellar liquid crystals and application to lubrication. Journal of Material Science, 44, 715–720. DOI: 10.1007/s10853-008-3175-z. http://dx.doi.org/10.1007/s10853-008-3175-z10.1007/s10853-008-3175-zSuche in Google Scholar

[22] Stejskal, J., Sapurina, I., Trchová, M., Konyushenko, E. N., & Holler, P. (2006). The genesis of polyaniline nanotubes. Polymer, 47, 8253–8262. DOI: 10.1016/j.polymer.2006.10.007. http://dx.doi.org/10.1016/j.polymer.2006.10.00710.1016/j.polymer.2006.10.007Suche in Google Scholar

[23] Trchová, M., Šeděnková, I., Konyushenko, E. N., Stejskal, J., Holler, P., & Ćirić-Marjanović, G. (2006). Evolution of polyaniline nanotubes: Oxidation of aniline in water. The Journal of Physical Chemistry B, 110, 9461–946 DOI: 10.1021/jp057528g. http://dx.doi.org/10.1021/jp057528g10.1021/jp057528gSuche in Google Scholar PubMed

[24] Wang, Z. H., Ray, A., MacDiarmid, A. G., & Epstein, A. J. (1991). Electron localization and charge transport in poly (o-toluidine): A model polyaniline derivative. Physics Review B, 43, 4373–4384. DOI: 10.1103/physrevb.43.4373. http://dx.doi.org/10.1103/PhysRevB.43.437310.1103/PhysRevB.43.4373Suche in Google Scholar PubMed

[25] Wei, Z. X., Zhang, L. J., Yu, M., Yang, Y. S., & Wan, M. X. (2003). Self-assembling sub-micrometer-sized tube junctions and dendrites of conducting polymers. Advanced Materials, 15, 1382–1385. DOI: 10.1002/adma.200305048. http://dx.doi.org/10.1002/adma.20030504810.1002/adma.200305048Suche in Google Scholar

[26] Wei, D., Kvarnström, C., Lindfors, T., & Ivaska, A. (2006). Polyaniline nanotubules obtained in room-temperature ionic liquids. Electrochemistry Communications, 8, 1563–1566. DOI: 10.1016/j.elecom.2006.07.024. http://dx.doi.org/10.1016/j.elecom.2006.07.02410.1016/j.elecom.2006.07.024Suche in Google Scholar

[27] Welton, T. (1999). Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chemical Reviews, 99, 2071–2084. DOI: 10.1021/cr980032t. http://dx.doi.org/10.1021/cr980032t10.1021/cr980032tSuche in Google Scholar PubMed

[28] Zhang, Z. M., Wei, Z. X., & Wan, M. X. (2002). Nanostructures of polyaniline doped with inorganic acids. Macromolecules, 35, 5937–5942. DOI: 10.1021/ma020199v. http://dx.doi.org/10.1021/ma020199v10.1021/ma020199vSuche in Google Scholar

[29] Zhang, X. Y., Goux, W. J., & Manohar, S. K. (2004). Synthesis of polyaniline nanofibers by “nanofiber seeding”. Journal of the American Chemical Society, 126, 4502–4503. DOI: 10.1021/ja031867a. http://dx.doi.org/10.1021/ja031867a10.1021/ja031867aSuche in Google Scholar PubMed

[30] Zhang, L. J., Peng, H., Zujovic, Z. D., Kilmartin, P. A., & Travas-Sejdic, J. (2007). Characterization of polyaniline nanotubes formed in the presence of amino acids. Macromolecular Chemistry and Physics, 208, 1210–1217. DOI: 10.1002/macp.200700013. http://dx.doi.org/10.1002/macp.20070001310.1002/macp.200700013Suche in Google Scholar

[31] Zhou, Z., He, D. L., Li, X. L., Wang, S. Q., & Li, G. X. (2008). Preparation and properties of polyaniline codoped with ionic liquid and dodecyl benzene sulfonic acid or hydrochloric acid. Polymer Science Series B, 50, 209–214. DOI: 10.1134/s1560090408070130. http://dx.doi.org/10.1134/S156009040807013010.1134/S1560090408070130Suche in Google Scholar

[32] Zhou, Z., He, D. L., Guo, Y. N., Cui, Z. D., Zeng, L. P., Li, G. X., & Yang, R. H. (2009). Photo-induced polymerization in ionic liquid medium: 1. Preparation of polyaniline nanoparticles. Polymer Bulletin, 62, 573–580. DOI: 10.1007/s00289-009-0038-y. http://dx.doi.org/10.1007/s00289-009-0038-y10.1007/s00289-009-0038-ySuche in Google Scholar

[33] Zujovic, Z. D., Zhang, L., Bowmaker, G. A., Kilmartin, P. A., & Travas-Sejdic, J. (2008). Self-assembled, nanostructured aniline oxidation products: A structural investigation. Macromolecules, 41, 3125–3135. DOI: 10.1021/ma071650r. http://dx.doi.org/10.1021/ma071650r10.1021/ma071650rSuche in Google Scholar

[34] Zujovic, Z. D., Laslau, C., Bowmaker, G. A., Kilmartin, P. A., Webber, A. L., Brown, S. P., & Travas-Sejdic, J. (2010). Role of aniline oligomeric nanosheets in the formation of polyaniline nanotubes. Macromolecules, 43, 662–670. DOI: 10.1021/ma902109r. http://dx.doi.org/10.1021/ma902109r10.1021/ma902109rSuche in Google Scholar

Published Online: 2013-5-3
Published in Print: 2013-8-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Recent trends and progress in research into structure and properties of polyaniline and polypyrrole — Topical Issue
  2. Printing polyaniline for sensor applications
  3. Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials
  4. Conducting polymer-silver composites
  5. Electrorheological response of polyaniline and its hybrids
  6. Effect of PPy/PEG conducting polymer film on electrochemical performance of LiFePO4 cathode material for Li-ion batteries
  7. Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration
  8. Self-assembly of aniline oligomers and their induced polyaniline supra-molecular structures
  9. Self-organization of polyaniline during oxidative polymerization: formation of granular structure
  10. Influence of ethanol on the chain-ordering of carbonised polyaniline
  11. X-ray absorption spectroscopy of nanostructured polyanilines
  12. Effect of cations on polyaniline morphology
  13. Preparation of polyaniline in the presence of polymeric sulfonic acids mixtures: the role of intermolecular interactions between polyacids
  14. Chemical degradation of polyaniline by reaction with Fenton’s reagent — a spectroelectrochemical study
  15. Thin mesoporous polyaniline films manifesting a water-promoted photovoltaic effect
  16. Polyamide grafted with polypyrrole: formation, properties, and stability
  17. Effect of ionic liquid on polyaniline chemically synthesised under falling-pH conditions
  18. Polyaniline doped with poly(acrylamidomethylpropanesulphonic acid): electrochemical behaviour and conductive properties in neutral solutions
  19. Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles
  20. Bi-hybrid coatings: polyaniline-montmorillonite filler in organic-inorganic polymer matrix
  21. Preparation of aqueous polyaniline-vesicle suspensions with class III peroxidases. Comparison between horseradish peroxidase isoenzyme C and soybean peroxidase
  22. Preparation, characterisation, and dielectric properties of polypyrrole-clay composites
  23. Multi-wall carbon nanotubes with nitrogen-containing carbon coating
  24. Conducting poly(o-anisidine)-coated steel electrodes for supercapacitors
  25. Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations
  26. Preparation of a miniaturised iodide ion selective sensor using polypyrrole and pencil lead: effect of double-coating, electropolymerisation time, and current density
  27. Role of polyaniline morphology in Pd particles dispersion. Hydrogenation of alkynes in the presence of Pd-polyaniline catalysts
  28. Nanostructured polyaniline-coated anode for improving microbial fuel cell power output
  29. Antibacterial properties of polyaniline-silver films
  30. Effect of compression pressure on mechanical and electrical properties of polyaniline pellets
Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0327-7/html
Button zum nach oben scrollen