Abstract
Polyaniline (PANI) and polypyrrole (PPY) undergo carbonisation in an inert/reduction atmosphere and vacuum, yielding different nitrogen-containing carbon materials. This contribution reviews various procedures for the carbonisation of PANI and PPY precursors, and the characteristics of obtained carbonised PANI (C-PANI) and carbonised PPY (C-PPY). Special attention is paid to the role of synthetic procedures in tailoring the formation of C-PANI and C-PPY nanostructures and nanocomposites. The review considers the importance of scanning and transmission electron microscopies, XPS, FTIR, Raman, NMR, and EPR spectroscopies, electrical conductivity and adsorption/desorption measurements, XRD, and elemental analyses in the characterisation of C-PANIs and C-PPYs. The application of C-PANI and C-PPY in various fields of modern technology is also reviewed.
[1] Bae, J. (2011). Fabrication of carbon microcapsules containing silicon nanoparticles-carbon nanotubes nanocomposite by sol-gel method for anode in lithium ion battery. Journal of Solid State Chemistry, 184, 1749–1755. DOI: 10.1016/j.jssc.2011.05.012. http://dx.doi.org/10.1016/j.jssc.2011.05.01210.1016/j.jssc.2011.05.012Search in Google Scholar
[2] Bae, J., & Jang, J. (2012). Fabrication of carbon nanotubes from conducting polymer precursor as field emitter. Journal of Industrial and Engineering Chemistry, 18, 1921–1924. DOI: 10.1016/j.jiec.2012.05.004. http://dx.doi.org/10.1016/j.jiec.2012.05.00410.1016/j.jiec.2012.05.004Search in Google Scholar
[3] Baranauskas, V., Ceragioli, H. J., Peterlevitz, A. C., & Quispe, J. C. R. (2007). Properties of carbon nanostructures prepared by polyaniline carbonization. Journal of Physics: Conference Series, 61, 71–74. DOI: 10.1088/1742-6596/61/1/015. http://dx.doi.org/10.1088/1742-6596/61/1/01510.1088/1742-6596/61/1/015Search in Google Scholar
[4] Cao, Y. L., Xiao, L. F., Sushko, M. L., Wang, W., Schwenzer, B., Xiao, J., Nie, Z. M., Saraf, L. V., Yang, Z. G., & Liu, J. (2012). Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Letters, 12, 3783–3787. DOI: 10.1021/nl3016957. http://dx.doi.org/10.1021/nl301695710.1021/nl3016957Search in Google Scholar PubMed
[5] Chen, X.W., Hong, L., Chen, X. L., Yeong, W. H. A., & Chan, W. K. I. (2011a). Aliphatic chain grafted polypyrrole as a precursor of carbon membrane. Journal of Membrane Science, 379, 353–360. DOI: 10.1016/j.memsci.2011.06.007. http://dx.doi.org/10.1016/j.memsci.2011.06.00710.1016/j.memsci.2011.06.007Search in Google Scholar
[6] Chen, Y. Z., Zhu, H. Y., & Liu, Y. N. (2011b). Preparation of activated rectangular polyaniline-based carbon tubes and their application in hydrogen adsorption. International Journal of Hydrogen Energy, 36, 11738–11745. DOI: 10.1016/j.ijhydene.2011.01.119. http://dx.doi.org/10.1016/j.ijhydene.2011.01.11910.1016/j.ijhydene.2011.01.119Search in Google Scholar
[7] Chen, Y. Z., Cao, X. Z., Zhu, H. Y., & Liu, Y. N. (2012a). Preparation of a porous carbon from ferrocene-loaded polyaniline and its use in hydrogen adsorption. International Journal of Hydrogen Energy, 37, 7629–7637. DOI: 10.1016/j.ijhydene.2011.09.107. http://dx.doi.org/10.1016/j.ijhydene.2011.09.10710.1016/j.ijhydene.2011.09.107Search in Google Scholar
[8] Chen, L. F., Zhang, X. D., Liang, H. W., Kong, M. G., Guan, Q. F., Chen, P., Wu, Z. Y., & Yu, S. H. (2012b). Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano, 6, 7092–7102. DOI: 10.1021/nn302147s. http://dx.doi.org/10.1021/nn302147s10.1021/nn302147sSearch in Google Scholar PubMed
[9] Choi, B., Yoon, H., Park, I. S., Jang, J., & Sung, Y. E. (2007). Highly dispersed Pt nanoparticles on nitrogen-doped magnetic carbon nanoparticles and their enhanced activity for methanol oxidation. Carbon, 45, 2496–2501. DOI: 10.1016/j.carbon.2007.08.028. http://dx.doi.org/10.1016/j.carbon.2007.08.02810.1016/j.carbon.2007.08.028Search in Google Scholar
[10] Ćirić-Marjanović, G. (2010). Polyaniline nanostructures. In A. Eftekhari (Ed.), Nanostructured conductive polymers (pp. 19–98). London, UK: Wiley. DOI: 10.1002/9780470661338.ch2. http://dx.doi.org/10.1002/9780470661338.ch210.1002/9780470661338.ch2Search in Google Scholar
[11] Ćirić-Marjanović, G., Dragičević, L., Milojević, M., Mojović, M., Mentus, S., Dojčinović, B., Marjanović, B., & Stejskal, J. (2009). Synthesis and characterization of selfassembled polyaniline nanotubes/silica nanocomposites. The Journal of Physical Chemistry B, 113, 7116–7127. DOI: 10.1021/jp900096b. http://dx.doi.org/10.1021/jp900096b10.1021/jp900096bSearch in Google Scholar
[12] Dai, X. Y., Zhang, X., Meng, Y. F., & Shen, P. K. (2011). Preparation of hollow carbon spheres by carbonization of polystyrene/polyaniline core-shell polymer particles. New Carbon Materials, 26, 389–395. DOI: 10.1016/s1872-5805(11)60089-9. http://dx.doi.org/10.1016/S1872-5805(11)60089-910.1016/S1872-5805(11)60089-9Search in Google Scholar
[13] Doh, C. H., Kim, S. I., Jeong, K. Y., Jin, B. S., An, K. H., Min, B. C., Moon, S. I., & Yun, M. S. (2006). Synthesis of siliconcarbon by polyaniline coating and electrochemical properties of the Si-C/Li cell. Bulletin of the Korean Chemical Society, 27, 1175–1180. DOI: 10.5012/bkcs.2006.27.8.1175. http://dx.doi.org/10.5012/bkcs.2006.27.8.117510.5012/bkcs.2006.27.8.1175Search in Google Scholar
[14] Dong, H., & Jones, W. E. (2006). Preparation of submicron polypyrrole/poly(methyl methacrylate) coaxial fibers and conversion to polypyrrole tubes and carbon tubes. Langmuir, 22, 11384–11387. DOI: 10.1021/la061399t. http://dx.doi.org/10.1021/la061399t10.1021/la061399tSearch in Google Scholar PubMed
[15] Dupuis, A. C. (2005). The catalyst in the CCVD of carbon nanotubes—a review. Progress in Material Science, 50, 929–961. DOI: 10.1016/j.pmatsci.2005.04.003. http://dx.doi.org/10.1016/j.pmatsci.2005.04.00310.1016/j.pmatsci.2005.04.003Search in Google Scholar
[16] Fuertes, A. B., & Centeno, T. A. (2005). Mesoporous carbons with graphitic structures fabricated by using porous silica materials as templates and iron-impregnated polypyrrole as precursor. Journal of Materials Chemistry, 15, 1079–1083. DOI: 10.1039/b416007j. http://dx.doi.org/10.1039/b416007j10.1039/b416007jSearch in Google Scholar
[17] Ganesan, Y., Peng, C., Lu, Y., Ci, L., Srivastava, A., Ajayan, P. M., & Lou, J. (2010). Effect of nitrogen doping on the mechanical properties of carbon nanotubes. ACS Nano, 4, 7637–7643. DOI: 10.1021/nn102372w. http://dx.doi.org/10.1021/nn102372w10.1021/nn102372wSearch in Google Scholar PubMed
[18] Gavrilov, N., Dašić-Tomić, M., Pašti, I., Ćirić-Marjanović, G., & Mentus, S. (2011a). Carbonized polyaniline nanotubes/nanosheets-supported Pt nanoparticles: Synthesis, characterization and electrocatalysis. Materials Letters, 65, 962–965. DOI: 10.1016/j.matlet.2010.12.044. http://dx.doi.org/10.1016/j.matlet.2010.12.04410.1016/j.matlet.2010.12.044Search in Google Scholar
[19] Gavrilov, N., Vujković, M., Pašti, I. A., Ćirić-Marjanović, G., & Mentus, S. V. (2011b). Enhancement of electrocatalytic properties of carbonized polyaniline nanoparticles upon a hydrothermal treatment in alkaline medium. Electrochimica Acta, 56, 9197–9202. DOI: 10.1016/j.electacta.2011.07.134. 10.1016/j.electacta.2011.07.134Search in Google Scholar
[20] Gavrilov, N. M., Pašti, I. A., Ćirić-Marjanović, G., Nikolić, V. M., Kaninski, M. P. M., Miljanić, S. S., & Mentus, S. V. (2012a). Nanodispersed platinum on chemically treated nanostructured carbonized polyaniline as a new PEMFC catalysts. International Journal of Electrochemical Science, 7, 6666–6676. Search in Google Scholar
[21] Gavrilov, N., Pašti, I. A., Mitrić, M., Travas-Sejdić, J., Ćirić-Marjanović, G., & Mentus, S. (2012b). Electrocatalysis of oxygen reduction reaction on polyaniline-derived N-doped carbon nanoparticle surfaces in alkaline media. Journal of Power Sources, 220, 306–316. DOI: 10.1016/j.jpowsour.2012.07.119. http://dx.doi.org/10.1016/j.jpowsour.2012.07.11910.1016/j.jpowsour.2012.07.119Search in Google Scholar
[22] Gavrilov, N., Pašti, I. A., Vujković, M., Travas-Sejdić, J., Ćirić-Marjanović, G., & Mentus, S. V. (2012c). High-performance charge storage by N-containing nanostructured carbon derived from polyaniline. Carbon, 50, 3915–3927. DOI: 10.1016 /j.carbon.2012.04.045. http://dx.doi.org/10.1016/j.carbon.2012.04.04510.1016/j.carbon.2012.04.045Search in Google Scholar
[23] Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6, 183–191. DOI: 10.1038/nmat1849. http://dx.doi.org/10.1038/nmat184910.1038/nmat1849Search in Google Scholar PubMed
[24] Gong, K. P., Du, F., Xia, Z. H., Durstock, M., & Dai, L. M. (2009). Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science, 323, 760–764. DOI: 10.1126/science.1168049. http://dx.doi.org/10.1126/science.116804910.1126/science.1168049Search in Google Scholar PubMed
[25] Gu, N. Y., He, X. H., & Li, Y. (2012). LiFePO4@C cathode materials synthesized from FePO4@PAn composites. Materials Letters, 81, 115–118. DOI: 10.1016/j.matlet.2012.05.003. http://dx.doi.org/10.1016/j.matlet.2012.05.00310.1016/j.matlet.2012.05.003Search in Google Scholar
[26] Guo, Y. X., He, J. P., Wang, T., Xue, H. R., Hu, Y. Y., Li, G. X., Tang, J., & Sun, X. (2011). Enhanced electrocatalytic activity of platinum supported on nitrogen modified ordered mesoporous carbon. Journal of Power Sources, 196, 9299–9307. DOI: 10.1016/j.jpowsour.2011.07.073. http://dx.doi.org/10.1016/j.jpowsour.2011.07.07310.1016/j.jpowsour.2011.07.073Search in Google Scholar
[27] Han, C. C., Lee, J. T., Yang, R. W., Chang, H., & Han, C. H. (1999). A new and easy method for making well-organized micrometer-sized carbon tubes and their regularly assembled structures. Chemistry of Materials, 11, 1806–1813. DOI: 10.1021/cm990032p. http://dx.doi.org/10.1021/cm990032p10.1021/cm990032pSearch in Google Scholar
[28] Han, C. C., Lee, J. T., & Chang, H. (2001a). Thermal annealing effects on structure and morphology of micrometer-sized carbon tubes. Chemistry of Materials, 13, 4180–4186. DOI: 10.1021/cm010333a. http://dx.doi.org/10.1021/cm010333a10.1021/cm010333aSearch in Google Scholar
[29] Han, C. C., Lee, J. T., Yang, R. W., & Han, C. H. (2001b). Formation mechanism of micrometer-sized carbon tubes. Chemistry of Materials, 13, 2656–2665. DOI: 10.1021/cm010141f. http://dx.doi.org/10.1021/cm010141f10.1021/cm010141fSearch in Google Scholar
[30] Han, C. C., Bai, M. Y., Yang, K. F., Lee, Y. S., & Lin, C. W. (2008). A novel method for making highly dispersible conducting polymer and concentric graphitic carbon nanospheres based on an undoped and functionalized polyaniline. Journal of Materials Chemistry, 18, 3918–3925. DOI: 10.1039/b804131h. http://dx.doi.org/10.1039/b804131h10.1039/b804131hSearch in Google Scholar
[31] Hellgren, N., Johansson, M. P., Broitman, E., Hultman, L., & Sundgren, J. E. (1999). Role of nitrogen in the formation of hard and elastic CNx thin films by reactive magnetron sputtering. Physical Review B, 59, 5162–5169. DOI: 10.1103/PhysRevB.59.5162. http://dx.doi.org/10.1103/PhysRevB.59.516210.1103/PhysRevB.59.5162Search in Google Scholar
[32] Ho, K. S., Han, Y. K., Tuan, Y. T., Huang, Y. J., Wang, Y. Z., Ho, T. H., Hsieh, T. H., Lin, J. J., & Lin, S. C. (2009). Formation and degradation mechanism of a novel nanofi-brous polyaniline. Synthetic Metals, 159, 1202–1209. DOI: 10.1016/j.synthmet.2009.02.047. http://dx.doi.org/10.1016/j.synthmet.2009.02.04710.1016/j.synthmet.2009.02.047Search in Google Scholar
[33] Hsu, C. H., Wu, H. M., & Kuo, P. L. (2010). Excellent performance of Pt0 on high nitrogen-containing carbon nanotubes using aniline as nitrogen/carbon source, dispersant and stabilizer. Chemical Communications, 46, 7628–7630. DOI: 10.1039/c0cc02018d. http://dx.doi.org/10.1039/c0cc02018d10.1039/c0cc02018dSearch in Google Scholar
[34] Hsu, C. H., & Kuo, P. L. (2012). The use of carbon nanotubes coated with a porous nitrogen-doped carbon layer with embedded Pt for the methanol oxidation reaction. Journal of Power Sources, 198, 83–89. DOI: 10.1016/j.jpowsour.2011.10.012. http://dx.doi.org/10.1016/j.jpowsour.2011.10.01210.1016/j.jpowsour.2011.10.012Search in Google Scholar
[35] Hu, J. T., Yang, P. D., & Lieber, C. M. (1998). Nitrogendriven sp3 to sp2 transformation in carbon nitride materials. Physical Review B, 57, R3185–R3188. DOI: 10.1103/Phys-RevB.57.R3185. http://dx.doi.org/10.1103/PhysRevB.57.R3185Search in Google Scholar
[36] Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56–58. DOI: 10.1038/354056a0. http://dx.doi.org/10.1038/354056a010.1038/354056a0Search in Google Scholar
[37] Jang, J., Oh, J. H., & Stucky, G. D. (2002). Fabrication of ultrafine conducting polymer and graphite nanoparticles. Angewandte Chemie International Edition, 41, 4016–4019. DOI: 10.1002/1521-3773(20021104)41:21〈4016::AIDANIE4016〉3.0.CO;2-G. http://dx.doi.org/10.1002/1521-3773(20021104)41:21<4016::AID-ANIE4016>3.0.CO;2-G10.1002/1521-3773(20021104)41:21<4016::AID-ANIE4016>3.0.CO;2-GSearch in Google Scholar
[38] Jang, J. S., & Yoon, H. S. (2003). Fabrication of magnetic carbon nanotubes using a metal-impregnated polymer precursor. Advanced Materials, 15, 2088–2091. DOI: 10.1002/adma.200305296. http://dx.doi.org/10.1002/adma.20030529610.1002/adma.200305296Search in Google Scholar
[39] Jang, J., & Yoon, H. (2005). Multigram-scale fabrication of monodisperse conducting polymer and magnetic carbon nanoparticles. Small, 1, 1195–1199. DOI: 10.1002/smll.200500237. http://dx.doi.org/10.1002/smll.20050023710.1002/smll.200500237Search in Google Scholar
[40] Janošević, A., Pašti, I., Gavrilov, N., Mentus, S., Ćirić-Marjanović, G., Krstić, J., & Stejskal, J. (2011). Micro/ mesoporous conducting carbonized polyaniline 5-sulfosalicylate nanorods/nanotubes: Synthesis, characterization and electrocatalysis. Synthetic Metals, 161, 2179–2184. DOI: 10.1016/j.synthmet.2011.08.028. http://dx.doi.org/10.1016/j.synthmet.2011.08.02810.1016/j.synthmet.2011.08.028Search in Google Scholar
[41] Janošević, A., Pašti, I., Gavrilov, N., Mentus, S., Krstić, J., Mitrić, M., Travas-Sejdić, J., & Ćirić-Marjanović, G. (2012). Microporous conducting carbonized polyaniline nanorods: Synthesis, characterization and electrocatalytic properties. Microporous and Mesoporous Materials, 152, 50–57. DOI: 10.1016/j.micromeso.2011.12.002. http://dx.doi.org/10.1016/j.micromeso.2011.12.00210.1016/j.micromeso.2011.12.002Search in Google Scholar
[42] Jeon, S. S., Han, W. B., An, H. H., Im, S. S., & Yoon, C. S. (2011). Polypyrrole-modified graphitized carbon black as a catalyst support for methanol oxidation. Applied Catalysis A: General, 409–410, 156–161. DOI: 10.1016/j.apcata.2011.09.044. http://dx.doi.org/10.1016/j.apcata.2011.09.04410.1016/j.apcata.2011.09.044Search in Google Scholar
[43] Ji, L. W., Yao, Y. F., Toprakci, O., Lin, Z., Liang, Y. Z., Shi, Q., Medford, A. J., Millns, C. R., & Zhang, X. W. (2010). Fabrication of carbon nanofiber-driven electrodes from electrospun polyacrylonitrile/polypyrrole bicomponents for high-performance rechargeable lithium-ion batteries. Journal of Power Sources, 195, 2050–2056. DOI: 10.1016/j.jpowsour.2009.10.021. http://dx.doi.org/10.1016/j.jpowsour.2009.10.02110.1016/j.jpowsour.2009.10.021Search in Google Scholar
[44] Jiang, Z. Q., & Jiang, Z. J. (2012). Effects of carbon content on the electrochemical performance of LiFePO4/C core/shell nanocomposites fabricated using FePO4/polyaniline as an iron source. Journal of Alloys and Compounds, 537, 308–317. DOI: 10.1016/j.jallcom.2012.05.066. http://dx.doi.org/10.1016/j.jallcom.2012.05.06610.1016/j.jallcom.2012.05.066Search in Google Scholar
[45] Jin, C., Nagaiah, T. C., Xia, W., Spliethoff, B., Wang, S. S., Bron, M., Schuhmann, W., & Muhler, M. (2010). Metal-free and electrocatalytically active nitrogen-doped carbon nanotubes synthesized by coating with polyaniline. Nanoscale, 2, 981–987. DOI: 10.1039/b9nr00405j. http://dx.doi.org/10.1039/b9nr00405j10.1039/b9nr00405jSearch in Google Scholar PubMed
[46] Kim, H., Jung, J. C., Park, D. R., Baeck, S. H., & Song, I. K. (2007). Preparation of H5PMo10V2O40 (PMo10V2) catalyst immobilized on nitrogen-containing mesoporous carbon (N-MC) and its application to the methacrolein oxidation. Applied Catalysis A: General, 320, 159–165. DOI: 10.1016/j.apcata.2007.01.034. http://dx.doi.org/10.1016/j.apcata.2007.01.03410.1016/j.apcata.2007.01.034Search in Google Scholar
[47] Kim, H., Jung, J. C., Park, D. R., Lee, H., Lee, J., Lee, S. H., Baeck, S. H., Lee, K. Y., Yi, J., & Song, I. K. (2008). Preparation of H5PMo10V2O40 catalyst immobilized on nitrogen-containing mesostructured cellular foam carbon (N-MCF-C) and its application to the vapor-phase oxidation of benzyl alcohol. Catalysis Today, 132, 58–62. DOI: 10.1016/j.cattod.2007.12.004. http://dx.doi.org/10.1016/j.cattod.2007.12.00410.1016/j.cattod.2007.12.004Search in Google Scholar
[48] Kim, H., Park, D. R., Park, S., Jung, J. C., Lee, S. B., & Song, I. K. (2009). Preparation, characterization, and catalytic activity of H5PMo10V2O40 immobilized on nitrogen-containing mesoporous carbon (PMo10V2/N-MC) for selective conversion of methanol to dimethoxymethane. Korean Journal of Chemical Engineering, 26, 660–665. DOI: 10.1007/s11814-009-0110-1. http://dx.doi.org/10.1007/s11814-009-0110-110.1007/s11814-009-0110-1Search in Google Scholar
[49] Kim, K. S., & Park, S. J. (2011). Synthesis of carboncoated graphene electrodes and their electrochemical performance. Electrochimica Acta, 56, 6547–6553. DOI: 10.1016/j. electacta.2011.04.092. http://dx.doi.org/10.1016/j.electacta.2011.04.09210.1016/j.electacta.2011.04.092Search in Google Scholar
[50] Kim, K. S., & Park, S. J. (2012a). Easy synthesis of polyanilinebased mesoporous carbons and their high electrochemical performance. Microporous and Mesoporous Materials, 163, 140–146. DOI: 10.1016/j.micromeso.2012.04.047. http://dx.doi.org/10.1016/j.micromeso.2012.04.04710.1016/j.micromeso.2012.04.047Search in Google Scholar
[51] Kim, K. S., & Park, S. J., (2012b). Synthesis of microporous carbon nanotubes by templating method and their high electrochemical performance. Electrochimica Acta, 78, 147–153. DOI: 10.1016/j.electacta.2012.05.116. http://dx.doi.org/10.1016/j.electacta.2012.05.11610.1016/j.electacta.2012.05.116Search in Google Scholar
[52] Kroto, H. W, Heath, J. R., O’Brien, S. C., Curl, R. F., & Smalley, R. E. (1985). C60: Buckminsterfullerene. Nature, 318, 162–163. DOI: 10.1038/318162a0. http://dx.doi.org/10.1038/318162a010.1038/318162a0Search in Google Scholar
[53] Kuo, P. L., & Hsu, C. H. (2011). Stabilization of embedded Pt nanoparticles in the novel nanostructure carbon materials. ACS Applied Materials & Interfaces, 3, 115–118. DOI: 10.1021/am1010089. http://dx.doi.org/10.1021/am101008910.1021/am1010089Search in Google Scholar PubMed
[54] Kuo, P. L., Hsu, C. H., Wu, H. M., Hsu, W. S., & Kuo, D. (2012). Controllable-nitrogen doped carbon layer surrounding carbon nanotubes as novel carbon support for oxygen reduction reaction. Fuel Cells, 12, 649–655. DOI: 10.1002/fuce.201100130. http://dx.doi.org/10.1002/fuce.20110013010.1002/fuce.201100130Search in Google Scholar
[55] Kuroki, S., Nabae, Y., Chokai, M., Kakimoto, M., & Miyata, S. (2012). Oxygen reduction activity of pyrolyzed polypyrroles studied by 15N solid-state NMR and XPS with principal component analysis. Carbon, 50, 153–162. DOI: 10.1016/j.carbon.2011.08.014. http://dx.doi.org/10.1016/j.carbon.2011.08.01410.1016/j.carbon.2011.08.014Search in Google Scholar
[56] Kyotani, M., Goto, H., Suda, K., Nagai, T., Matsui, Y., & Akagi, K. (2008). Tubular-shaped nanocarbons prepared from polyaniline synthesized by a self-assembly process and their electrical conductivity. Journal of Nanoscience and Nanotechnology, 8, 1999–2004. DOI: 10.1166/jnn.2008.041. http://dx.doi.org/10.1166/jnn.2008.04110.1166/jnn.2008.041Search in Google Scholar
[57] Langer, J. J., & Golczak, S. (2007). Highly carbonized polyaniline micro- and nanotubes. Polymer Degradation and Stability, 92, 330–334. DOI: 10.1016/j.polymdegradstab.2006.07.018. http://dx.doi.org/10.1016/j.polymdegradstab.2006.07.01810.1016/j.polymdegradstab.2006.07.018Search in Google Scholar
[58] Lei, Z. B., An, L. Z., Dang, L. Q., Zhao, M. Y., Shi, J. Y., Bai, S. Y., & Cao, Y. D. (2009a). Highly dispersed platinum supported on nitrogen-containing ordered mesoporous carbon for methanol electrochemical oxidation. Microporous and Mesoporous Materials, 119, 30–38. DOI: 10.1016/j.micromeso.2008.09.033. http://dx.doi.org/10.1016/j.micromeso.2008.09.03310.1016/j.micromeso.2008.09.033Search in Google Scholar
[59] Lei, Z. B., Zhao, M. Y., Dang, L. Q., An, L. Z., Lu, M., Lo, A. Y., Yu, N. Y., & Liu, S. B. (2009b). Structural evolution and electrocatalytic application of nitrogen-doped carbon shells synthesized by pyrolysis of near-monodisperse polyaniline nanospheres. Journal of Materials Chemistry, 19, 5985–5995. DOI: 10.1039/b908223a. http://dx.doi.org/10.1039/b908223a10.1039/b908223aSearch in Google Scholar
[60] Lezanska, M., Pietrzyk, P., & Sojka, Z. (2010). Investigations into the structure of nitrogen-containing CMK-3 and OCM-0.75 carbon replicas and the nature of surface functional groups by spectroscopic and sorption techniques. The Journal of Physical Chemistry C, 114, 1208–1216. DOI: 10.1021/jp909529x. http://dx.doi.org/10.1021/jp909529x10.1021/jp909529xSearch in Google Scholar
[61] Li, C. C., Yin, X. M., Chen, L. B., Li, Q. H., & Wang, T. H. (2009). Porous carbon nanofibers derived from conducting polymer: Synthesis and application in lithium-ion batteries with high-rate capability. The Journal of Physical Chemistry C, 113, 13438–13442. DOI: 10.1021/jp901968v. http://dx.doi.org/10.1021/jp901968v10.1021/jp901968vSearch in Google Scholar
[62] Li, X. G., Li, A., Huang, M. R., Liao, Y. Z., & Lu, Y. G. (2010a). Efficient and scalable synthesis of pure polypyrrole nanoparticles applicable for advanced nanocomposites and carbon nanoparticles. The Journal of Physical Chemistry C, 114, 19244–19255. DOI: 10.1021/jp107435b. http://dx.doi.org/10.1021/jp107435b10.1021/jp107435bSearch in Google Scholar
[63] Li, L. M., Liu, E. H., Li, J., Yang, Y. J., Shen, H. J., Huang, Z. Z., & Xiang, X. X. (2010b). Polyaniline-based carbon for a supercapacitor electrode. Acta Physico-Chimica Sinica, 26, 1521–1526. DOI: 10.3866/pku.whxb20100626. 10.3866/PKU.WHXB20100626Search in Google Scholar
[64] Li, L. M., Liu, E. H., Li, J., Yang, Y. J., Shen, H. J., Huang, Z. Z., Xiang, X. X., & Li, W. (2010c). A doped activated carbon prepared from polyaniline for high performance supercapacitors. Journal of Power Sources, 195, 1516–1521. DOI: 10.1016/j.jpowsour.2009.09.016. http://dx.doi.org/10.1016/j.jpowsour.2009.09.01610.1016/j.jpowsour.2009.09.016Search in Google Scholar
[65] Li, L. M., Liu, E. H., Yang, Y. J., Shen, H. J., Huang, Z. Z., & Xiang, X. X. (2010d). Nitrogen-containing carbons prepared from polyaniline as anode materials for lithium secondary batteries. Materials Letters, 64, 2115–2117. DOI: 10.1016/j.matlet.2010.06.057. http://dx.doi.org/10.1016/j.matlet.2010.06.05710.1016/j.matlet.2010.06.057Search in Google Scholar
[66] Li, L. M., Liu, E. H., Shen, H. J., Yang, Y. J., Huang, Z. Z., Xiang, X. X., & Tian, Y. Y. (2011). Charge storage performance of doped carbons prepared from polyaniline for supercapacitors. Journal of Solid State Electrochemistry, 15, 175–182. DOI: 10.1007/s10008-010-1087-8. http://dx.doi.org/10.1007/s10008-010-1087-810.1007/s10008-010-1087-8Search in Google Scholar
[67] Liao, Y. Z., Li, X. G., & Kaner, R. B. (2010). Facile synthesis of water-dispersible conducting polymer nanospheres. ACS Nano, 4, 5193–5202. DOI: 10.1021/nn101378p. http://dx.doi.org/10.1021/nn101378p10.1021/nn101378pSearch in Google Scholar PubMed
[68] Lin, L., Niu, H. J., Zhang, M. L., Song, W., Wang, Z., & Bai, X. D. (2008). Electron field emission from amorphous carbon with N-doped nanostructures pyrolyzed from polyaniline. Applied Surface Science, 254, 7250–7254. DOI: 10.1016/j.apsusc.2008.05.347. http://dx.doi.org/10.1016/j.apsusc.2008.05.34710.1016/j.apsusc.2008.05.347Search in Google Scholar
[69] Liu, H. S., Shi, Z., Zhang, J. L., Zhang, L., & Zhang, J. J. (2009). Ultrasonic spray pyrolyzed iron-polypyrrole mesoporous spheres for fuel cell oxygen reduction electrocatalysts. Journal of Materials Chemistry, 19, 468–470. DOI: 10.1039/b819619b. http://dx.doi.org/10.1039/b819619b10.1039/B819619BSearch in Google Scholar
[70] Liu, Z. L., Su, F. B., Zhang, X. H., & Tay, S. W. (2011). Preparation and characterization of PtRu nanoparticles supported on nitrogen-doped porous carbon for electrooxidation of methanol. ACS Applied Materials & Interfaces, 3, 3824–3830. DOI: 10.1021/am2010515. http://dx.doi.org/10.1021/am201051510.1021/am2010515Search in Google Scholar PubMed
[71] Liu, Y., Cai, Q., Li, H., & Zhang, J. (2012). Fabrication and characterization of mesoporous carbon nanosheets using halloysite nanotubes and polypyrrole via a templatelike method. Journal of Applied Polymer Science. DOI:10.1002/app.38208. (in press) 10.1002/app.38208Search in Google Scholar
[72] Long, J. L., Xie, X.Q., Xu, J., Gu, Q., Chen, L.M., & Wang, X. X. (2012). Nitrogen-doped graphene nanosheets as metal-free catalysts for aerobic selective oxidation of benzylic alcohols. ACS Catalysis, 2, 622–631. DOI: 10.1021/cs3000396. http://dx.doi.org/10.1021/cs300039610.1021/cs3000396Search in Google Scholar
[73] Lü, Q. F., He, Z. W., Zhang, J. Y., & Lin, Q. L. (2011). Preparation and properties of nitrogen-containing hollow carbon nanospheres by pyrolysis of polyaniline-lignosulfonate composites. Journal of Analytical and Applied Pyrolysis, 92, 152–157. DOI: 10.1016/j.jaap.2011.05.009. http://dx.doi.org/10.1016/j.jaap.2011.05.00910.1016/j.jaap.2011.05.009Search in Google Scholar
[74] Lü, Q. F., He, Z. W., Zhang, J. Y., & Lin, Q. L. (2012). Fabrication of nitrogen-containing hollow carbon nanospheres by pyrolysis of self-assembled poly(aniline-co-pyrrole). Journal of Analytical and Applied Pyrolysis, 93, 147–152. DOI: 10.1016/j.jaap.2011.10.009. http://dx.doi.org/10.1016/j.jaap.2011.10.00910.1016/j.jaap.2011.10.009Search in Google Scholar
[75] Ma, Y. W., Zhang, L. R., Li, J. J., Ni, H. T., Li, M., Zhang, J. L., Feng, X. M., Fan, Q. L., Hu, Z., & Huang, W. (2011). Carbon-nitrogen/graphene composite as metal-free electrocatalyst for the oxygen reduction reaction. Chinese Science Bulletin, 56, 3583–3589. DOI: 10.1007/s11434-011-4730-6. http://dx.doi.org/10.1007/s11434-011-4730-610.1007/s11434-011-4730-6Search in Google Scholar
[76] Maiyalagan, T. (2008). Synthesis and electro-catalytic activity of methanol oxidation on nitrogen containing carbon nanotubes supported Pt electrodes. Applied Catalysis B: Environmental, 80, 286–295. DOI: 10.1016/j.apcatb.2007.11.033. http://dx.doi.org/10.1016/j.apcatb.2007.11.03310.1016/j.apcatb.2007.11.033Search in Google Scholar
[77] Maiyalagan, T., & Viswanathan, B. (2005). Template synthesis and characterization of well-aligned nitrogen containing carbon nanotubes. Materials Chemistry and Physics, 93, 291–295. DOI: 10.1016/j.matchemphys.2005.03.039. http://dx.doi.org/10.1016/j.matchemphys.2005.03.03910.1016/j.matchemphys.2005.03.039Search in Google Scholar
[78] Mališić, M., Janošević, A., Šljukić Paunković, B., Stojković, I., & Ćirić-Marjanović, G. (2012). Exploration of MnO2/carbon composites and their application to simultaneous electroanalytical determination of Pb(II) and Cd(II). Electrochimica Acta, 74, 158–164. DOI: 10.1016/j.electacta.2012.04.049. http://dx.doi.org/10.1016/j.electacta.2012.04.04910.1016/j.electacta.2012.04.049Search in Google Scholar
[79] Mentus, S., Ćirić-Marjanović, G., Trchová, M., & Stejskal, J. (2009). Conducting carbonized polyaniline nanotubes. Nanotechnology, 20, 245601. DOI: 10.1088/0957-4484/20/24/245601. http://dx.doi.org/10.1088/0957-4484/20/24/24560110.1088/0957-4484/20/24/245601Search in Google Scholar PubMed
[80] Mi, H. Y., Xu, Y. L., Shi, W., Yoo, H. D., Park, S. J., Park, Y. W., & Oh, S. M. (2011). Polymer-derived carbon nanofiber network supported SnO2 nanocrystals: a superior lithium secondary battery material. Journal of Materials Chemistry, 21, 19302–19309. DOI: 10.1039/c1jm12262b. http://dx.doi.org/10.1039/c1jm12262b10.1039/c1jm12262bSearch in Google Scholar
[81] Morávková, Z., Trchová, M., Exnerová, M., & Stejskal, J. (2012a). The carbonization of thin polyaniline films. Thin Solid Films, 520, 6088–6094. DOI: 10.1016/j.tsf.2012.05.067. http://dx.doi.org/10.1016/j.tsf.2012.05.06710.1016/j.tsf.2012.05.067Search in Google Scholar
[82] Morávková, Z., Trchová, M., Tomšík, E., Čechvala, J., & Stejskal, J. (2012b). Enhanced thermal stability of multiwalled carbon nanotubes after coating with polyaniline salt. Polymer Degradation and Stability, 97, 1405–1414. DOI: 10.1016/j.polymdegradstab.2012.05.019. http://dx.doi.org/10.1016/j.polymdegradstab.2012.05.01910.1016/j.polymdegradstab.2012.05.019Search in Google Scholar
[83] Murai, T., Fukasawa, R., Muraoka, T., Takauchi, H., Gotoh, Y., Takizawa, T., & Matsuse, T. (2009). Electrical conductivity of microwave heated polyaniline nanotubes and possible mechanism of microwave absorption by materials. Journal of Microwave Power & Electromagnetic Energy, 43(1), 34–43. 10.1080/08327823.2008.11688605Search in Google Scholar PubMed
[84] Nxumalo, E. N., & Coville, N. J. (2010). Nitrogen doped carbon nanotubes from organometallic compounds: A review. Materials, 3, 2141–2171. DOI: 10.3390/ma3032141. http://dx.doi.org/10.3390/ma303214110.3390/ma3032141Search in Google Scholar
[85] Park, S. K., Lee, S. Y., Lee, C. S., Kim, H. M., Joo, J., Beag, Y. W., & Koh, S. K. (2004). High energy (MeV) ion-irradiated π-conjugated polyaniline: Transition from insulating state to carbonized conducting state. Journal of Applied Physics, 96, 1914–1918. DOI: 10.1063/1.1769603. http://dx.doi.org/10.1063/1.176960310.1063/1.1769603Search in Google Scholar
[86] Qie, L., Chen, W. M., Wang, Z. H., Shao, Q. G., Li, X., Yuan, L. X., Hu, X. L., Zhang, W. X., & Huang, Y. H. (2012). Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Advanced Materials, 24, 2047–2050. DOI: 10.1002/adma.201104634. http://dx.doi.org/10.1002/adma.20110463410.1002/adma.201104634Search in Google Scholar PubMed
[87] Qiu, Y. J., Yu, J., Fang, G., Shi, H., Zhou, X. S., & Bai, X. D. (2009). Synthesis of carbon/carbon core/shell nanotubes with a high specific surface area. The Journal of Physical Chemistry C, 113, 61–68. DOI: 10.1021/jp806971e. http://dx.doi.org/10.1021/jp806971e10.1021/jp806971eSearch in Google Scholar
[88] Rozlívková, Z., Trchová, M., Exnerová, M., & Stejskal, J. (2011). The carbonization of granular polyaniline to produce nitrogen-containing carbon. Synthetic Metals, 161, 1122–1129. DOI: 10.1016/j.synthmet.2011.03.034. http://dx.doi.org/10.1016/j.synthmet.2011.03.03410.1016/j.synthmet.2011.03.034Search in Google Scholar
[89] Sevilla, M., Mokaya, R., & Fuertes, A. B. (2011a). Ultrahigh surface area polypyrrole-based carbons with superior performance for hydrogen storage. Energy & Environmental Science, 4, 2930–2936. DOI: 10.1039/c1ee01608c. http://dx.doi.org/10.1039/c1ee01608c10.1039/c1ee01608cSearch in Google Scholar
[90] Sevilla, M., Valle-Vigón, P., & Fuertes, A. B. (2011b). NDoped polypyrrole-based porous carbons for CO2 capture. Advanced Functional Materials, 21, 2781–2787. DOI: 10.1002/adfm.201100291. http://dx.doi.org/10.1002/adfm.20110029110.1002/adfm.201100291Search in Google Scholar
[91] Shang, S. M., Yang, X. M., & Tao, X. M. (2009). Easy synthesis of carbon nanotubes with polypyrrole nanotubes as the carbon precursor. Polymer, 50, 2815–2818. DOI: 10.1016/j.polymer.2009.04.041. http://dx.doi.org/10.1016/j.polymer.2009.04.04110.1016/j.polymer.2009.04.041Search in Google Scholar
[92] Shiraishi, S., & Mamyouda, H. (2008). Electrochemical capacitance of carbonized polyaniline. Carbon, 46, 1110. DOI: 10.1016/j.carbon.2008.04.003. http://dx.doi.org/10.1016/j.carbon.2008.04.00310.1016/j.carbon.2008.04.003Search in Google Scholar
[93] Šljukić, B., Stojković, I., Cvijetićanin, N., & Ćirić-Marjanović, G. (2011). Hydrogen peroxide sensing at MnO2/carbonized nanostructured polyaniline electrode. Russian Journal of Physical Chemistry A, 85, 2406–2409. DOI: 10.1134/s0036024411130279. http://dx.doi.org/10.1134/S003602441113027910.1134/S0036024411130279Search in Google Scholar
[94] Stejskal, J., Trchová, M., & Sapurina, I. (2005). Flameretardant effect of polyaniline coating deposited on cellulose fibers. Journal of Applied Polymer Science, 98, 2347–2354. DOI: 10.1002/app.22144. http://dx.doi.org/10.1002/app.2214410.1002/app.22144Search in Google Scholar
[95] Stejskal, J., Trchová, M., Brodinová, J., & Sapurina, I. (2007). Flame retardancy afforded by polyaniline deposited on wood. Journal of Applied Polymer Science, 103, 24–30. DOI: 10.1002/app.23873. http://dx.doi.org/10.1002/app.2387310.1002/app.23873Search in Google Scholar
[96] Stejskal, J., Trchová, M., Hromádková, J., Kovářová, J., & Kalendová, A. (2010). The carbonization of colloidal polyaniline nanoparticles to nitrogen-containing carbon analogues. Polymer International, 59, 875–878. DOI: 10.1002/pi.2858. http://dx.doi.org/10.1002/pi.285810.1002/pi.2858Search in Google Scholar
[97] Stejskal, J., & Trchová, M. (2012). Aniline oligomers versus polyaniline. Polymer International, 61, 240–251. DOI: 10.1002/pi.3179. http://dx.doi.org/10.1002/pi.317910.1002/pi.3179Search in Google Scholar
[98] Stephan, O., Ajayan, P. M., Colliex, C., Redlich, Ph., Lambert, J. M., Bernier, P., & Lefin, P. (1994). Doping graphitic and carbon nanotube structures with boron and nitrogen. Science, 266, 1683–1685. DOI: 10.1126/science.266.5191.1683. http://dx.doi.org/10.1126/science.266.5191.168310.1126/science.266.5191.1683Search in Google Scholar PubMed
[99] Su, F. B., Tian, Z. Q., Poh, C. K., Wang, Z., Lim, S. H., Liu, Z. L., & Lin, J. Y. (2010). Pt nanoparticles supported on nitrogen-doped porous carbon nanospheres as an electrocatalyst for fuel cells. Chemistry of Materials, 22, 832–839. DOI: 10.1021/cm901542w. http://dx.doi.org/10.1021/cm901542w10.1021/cm901542wSearch in Google Scholar
[100] Su, F. B., Poh, C. K., Chen, J. S., Xu, G. W., Wang, D., Li, Q., Lin J. Y., & Lou, X. W. (2011). Nitrogen-containing micro-porous carbon nanospheres with improved capacitive properties. Energy & Environmental Science, 4, 717–724. DOI: 10.1039/c0ee00277a. http://dx.doi.org/10.1039/c0ee00277a10.1039/C0EE00277ASearch in Google Scholar
[101] Tan, Y. M., Xu, C. F., Chen, G. G., Fang, X. L., Zheng, N. F., & Xie, Q. J. (2012). Facile synthesis of manganese-oxidecontaining mesoporous nitrogen-doped carbon for efficient oxygen reduction. Advanced Functional Materials, 22, 4584–4591. DOI: 10.1002/adfm.201201244. http://dx.doi.org/10.1002/adfm.20120124410.1002/adfm.201201244Search in Google Scholar
[102] Trchová, M., Matějka, P., Brodinová, J., Kalendová, A., Prokeš, J., & Stejskal, J. (2006). Structural and conductivity changes during the pyrolysis of polyaniline base. Polymer Degradation and Stability, 91, 114–121. DOI: 10.1016/j.polymdegradstab.2005.04.022. http://dx.doi.org/10.1016/j.polymdegradstab.2005.04.02210.1016/j.polymdegradstab.2005.04.022Search in Google Scholar
[103] Trchová, M., Konyushenko, E. N., Stejskal, J., Kovářová, J., & Ćirić-Marjanović, G. (2009). The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-walled carbon nanotubes. Polymer Degradation and Stability, 94, 929–938. DOI: 10.1016/j.polymdegradstab.2009.03.001. http://dx.doi.org/10.1016/j.polymdegradstab.2009.03.00110.1016/j.polymdegradstab.2009.03.001Search in Google Scholar
[104] Trchová, M., Morávková, Z., Šeděnková, I., & Stejskal, J. (2012). Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline. Chemical Papers, 66, 415–445. DOI: 10.2478/s11696-012-0142-6. http://dx.doi.org/10.2478/s11696-012-0142-610.2478/s11696-012-0142-6Search in Google Scholar
[105] Villalpando-Paez, F., Zamudio, A., Elias, A. L., Son, H., Barros, E. B., Chou, S.G., Kim, Y. A., Muramatsu, H., Hayashi, T., Kong, J., Terrones, H., Dresselhaus, G., Endo, M., Terrones, M., & Dresselhaus, M. S. (2006). Synthesis and characterization of long strands of nitrogen-doped single-walled carbon nanotubes. Chemical Physics Letters, 424, 345–352. DOI: 10.1016/j.cplett.2006.04.074. http://dx.doi.org/10.1016/j.cplett.2006.04.07410.1016/j.cplett.2006.04.074Search in Google Scholar
[106] Wang, Y., Su, F. B., Wood, C. D., Lee, J. Y., & Zhao, X. S. (2008a). Preparation and characterization of carbon nanospheres as anode materials in lithium-ion secondary batteries. Industrial & Engineering Chemistry Research, 47, 2294–2300. DOI: 10.1021/ie071337d. http://dx.doi.org/10.1021/ie071337d10.1021/ie071337dSearch in Google Scholar
[107] Wang, Y. G., Wang, Y. R., Hosono, E. J., Wang, K. X., & Zhou, H. S. (2008b). The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. Angewandte Chemie International Edition, 47, 7461–7465. DOI: 10.1002/anie.200802539. http://dx.doi.org/10.1002/anie.20080253910.1002/anie.200802539Search in Google Scholar PubMed
[108] Wang, T., He, J. P., Sun, D., Guo, Y. X., Ma, Y. O., Hu, Y., Li, G. X., Xue, H. R., Tang, J., & Sun, X. (2011a). Synthesis of mesoporous carbon-silica-polyaniline and nitrogencontaining carbon-silica films and their corrosion behavior in simulated proton exchange membrane fuel cells environment. Journal of Power Sources, 196, 9552–9560. DOI: 10.1016/j.jpowsour.2011.07.084. http://dx.doi.org/10.1016/j.jpowsour.2011.07.08410.1016/j.jpowsour.2011.07.084Search in Google Scholar
[109] Wang, R. F., Jia, J. C., Li, H., Li, X. S., Wang, H., Chang, Y. M., Kang, J., & Lei, Z. Q. (2011b). Nitrogen-doped carbon coated palygorskite as an efficient electrocatalyst support for oxygen reduction reaction. Electrochimica Acta, 56, 4526–4531. DOI: 10.1016/j.electacta.2011.02.066. http://dx.doi.org/10.1016/j.electacta.2011.02.06610.1016/j.electacta.2011.02.066Search in Google Scholar
[110] Wu, G., Chen, Z. W., Artyushkova, K., Garzon, F. H., & Zelenay, P. (2008a). Polyaniline-derived non-precious catalyst for the polymer electrolyte fuel cell cathode. In T. Fuller, K. Shinohara, V. Ramani, P. Shirvanian, H. Uchida, S. Cleghorn, M. Inaba, S. Mitsushima, P. Strasser, H. Nakagawa, H. A. Gasteiger, T. Zawodzinski, & C. Lamy (Eds.), ECS Transactions (Vol. 16, pp. 159–170). Pennington, NJ, USA: Electrochemical Society. DOI: 10.1149/1.2981852. http://dx.doi.org/10.1149/1.298185210.1149/1.2981852Search in Google Scholar
[111] Wu, G., Li, D. Y., Dai, C. S., Wang, D. L., & Li, N. (2008b). Well-dispersed high-loading Pt nanoparticles supported by shell-core nanostructured carbon for methanol electrooxidation. Langmuir, 24, 3566–3575. DOI: 10.1021/la7029278. http://dx.doi.org/10.1021/la702927810.1021/la7029278Search in Google Scholar PubMed
[112] Wu, G., Swaidan, R., Li, D. Y., & Li, N. (2008c). Enhanced methanol electro-oxidation activity of PtRu catalysts supported on heteroatom-doped carbon. Electrochimica Acta, 53, 7622–7629. DOI: 10.1016/j.electacta.2008.03.082. http://dx.doi.org/10.1016/j.electacta.2008.03.08210.1016/j.electacta.2008.03.082Search in Google Scholar
[113] Wu, G., Artyushkova, K., Ferrandon, M., Kropf, A. J., Myers, D., & Zelenay, P. (2009). Performance durability of polyaniline-derived non-precious cathode catalysts. ECS Transactions, 25, 1299–1311. DOI: 10.1149/1.3210685. http://dx.doi.org/10.1149/1.321068510.1149/1.3210685Search in Google Scholar
[114] Wu, G., More K. L., Johnston, C. M., & Zelenay, P. (2011). High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science, 332, 443–447. DOI: 10.1126/science.1200832. http://dx.doi.org/10.1126/science.120083210.1126/science.1200832Search in Google Scholar PubMed
[115] Xiang, X. X., Liu, E. H., Huang, Z. Z., Shen, H. J., Tian, Y. Y., Xiao, C. Y., Yang, J. J., & Mao, Z. H. (2011a). Preparation of activated carbon from polyaniline by zinc chloride activation as supercapacitor electrodes. Journal of Solid State Electrochemistry, 15, 2667–2674. DOI: 10.1007/s10008-010-1258-7. http://dx.doi.org/10.1007/s10008-010-1258-710.1007/s10008-010-1258-7Search in Google Scholar
[116] Xiang, X. X., Liu, E. H., Huang, Z. Z., Shen, H. J., Tian, Y. Y., Xiao, C. Y., Yang, J. J., & Mao, Z. H. (2011b). Microporous carbon derived from polyaniline base as anode material for lithium ion secondary battery. Materials Research Bulletin, 46, 1266–1271. DOI: 10.1016/j.materresbull.2011.03.032. http://dx.doi.org/10.1016/j.materresbull.2011.03.03210.1016/j.materresbull.2011.03.032Search in Google Scholar
[117] Xiang, X. X., Huang, Z. Z., Liu, E. H., Shen, H. J., Tian, Y. Y., Xie, H., Wu, Y. H., & Wu, Z. L. (2011c). Lithium storage performance of carbon nanotubes prepared from polyaniline for lithium-ion batteries. Electrochimica Acta, 56, 9350–9356. DOI: 10.1016/j.electacta.2011.08.014. http://dx.doi.org/10.1016/j.electacta.2011.08.01410.1016/j.electacta.2011.08.014Search in Google Scholar
[118] Xiang, X. X., Liu, E. H., Li, L. M., Yang Y. J., Shen, H. J., Huang, Z. Z., & Tian, Y. Y. (2011d). Activated carbon prepared from polyaniline base by K2CO3 activation for application in supercapacitor electrodes. Journal of Solid State Electrochemistry, 15, 579–585. DOI: 10.1007/s10008-010-1130-9. http://dx.doi.org/10.1007/s10008-010-1130-910.1007/s10008-010-1130-9Search in Google Scholar
[119] Yan, H., Inokuchi, M., Kinoshita, M., & Toshima, N. (2005). Spontaneously formed polypyrrole microtubes: incandescence and graphitization. Synthetic Metals, 148, 93–98. DOI: 10.1016/j.synthmet.2004.08.036. http://dx.doi.org/10.1016/j.synthmet.2004.08.03610.1016/j.synthmet.2004.08.036Search in Google Scholar
[120] Yan, J., Wei, T., Qiao, W. M., Fan, Z. J., Zhang, L. J., Li, T. Y., & Zhao, Q. K. (2010). A high-performance carbon derived from polyaniline for supercapacitors. Electrochemistry Communications, 12, 1279–1282. DOI: 10.1016/j.elecom.2010.06.037. http://dx.doi.org/10.1016/j.elecom.2010.06.03710.1016/j.elecom.2010.06.037Search in Google Scholar
[121] Yang, C. M., Weidenthaler, C., Spliethoff, B., Mayanna, M., & Schüth, F. (2005). Facile template synthesis of ordered mesoporous carbon with polypyrrole as carbon precursor. Chemistry of Materials, 17, 355–358. DOI: 10.1021/cm049164v. http://dx.doi.org/10.1021/cm049164v10.1021/cm049164vSearch in Google Scholar
[122] Yang, M. M., Cheng, B., Song, H. H., & Chen, X. H. (2010). Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor. Electrochimica Acta, 55, 7021–7027. DOI: 10.1016/j.electacta.2010.06.077. http://dx.doi.org/10.1016/j.electacta.2010.06.07710.1016/j.electacta.2010.06.077Search in Google Scholar
[123] Yao, T. J., Cui, T. Y., Wu, J., Chen, Q. Z., Yin, X. J., Cui, F., & Sun, K. N. (2012). Preparation of acid-resistant core/shell Fe3O4@C materials and their use as catalyst supports. Carbon, 50, 2287–2295. DOI: 10.1016/j.carbon.2012.01.048. http://dx.doi.org/10.1016/j.carbon.2012.01.04810.1016/j.carbon.2012.01.048Search in Google Scholar
[124] Yin, X. G., Huang, K. L., Liu, S. Q., Wang, H. Y., & Wang, H. (2010a). Preparation and characterization of Na-doped LiFePO4/C composites as cathode materials for lithium-ion batteries. Journal of Power Sources, 195, 4308–4312. DOI: 10.1016/j.jpowsour.2010.01.019. http://dx.doi.org/10.1016/j.jpowsour.2010.01.01910.1016/j.jpowsour.2010.01.019Search in Google Scholar
[125] Yin, J. B., Xia, X. A., Xiang, L. Q., & Zhao, X. P. (2010b). Conductivity and polarization of carbonaceous nanotubes derived from polyaniline nanotubes and their electrorheology when dispersed in silicone oil. Carbon, 48, 2958–2967. DOI: 10.1016/j.carbon.2010.04.035. http://dx.doi.org/10.1016/j.carbon.2010.04.03510.1016/j.carbon.2010.04.035Search in Google Scholar
[126] Yin, J. B., Xia, X. A., Xiang, L. Q., & Zhao, X. P. (2011). Temperature effect of electrorheological fluids based on polyaniline derived carbonaceous nanotubes. Smart Materials & Structures, 20, 015002. DOI: 10.1088/0964-1726/20/1/015002. http://dx.doi.org/10.1088/0964-1726/20/1/01500210.1088/0964-1726/20/1/015002Search in Google Scholar
[127] Yin, J. B., Shui, Y. J., Chang, R. T., & Zhao, X. P. (2012). Graphene-supported carbonaceous dielectric sheets and their electrorheology. Carbon, 50, 5247–5255. DOI: 10.1016/j.carbon.2012.06.062. http://dx.doi.org/10.1016/j.carbon.2012.06.06210.1016/j.carbon.2012.06.062Search in Google Scholar
[128] Yuan, D. S., Zhou, T. X., Zhou, S. L., Zou, W. J., Mo, S. S., & Xia, N. N. (2011). Nitrogen-enriched carbon nanowires from the direct carbonization of polyaniline nanowires and its electrochemical properties. Electrochemistry Communications, 13, 242–246. DOI: 10.1016/j.elecom.2010.12.023. http://dx.doi.org/10.1016/j.elecom.2010.12.02310.1016/j.elecom.2010.12.023Search in Google Scholar
[129] Zhang, X. Y., & Manohar, S. K. (2006). Microwave synthesis of nanocarbons from conducting polymers. Chemical Communications, 2006, 2477–2479. DOI: 10.1039/b603925a. http://dx.doi.org/10.1039/b603925a10.1039/b603925aSearch in Google Scholar PubMed
[130] Zhou, Y. K., Neyerlin, K., Olson, T. S., Pylypenko, S., Bult, J., Dinh, H. N., Gennett, T., Shao, Z. P., & O’Hayre, R. (2010). Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy & Environmental Science, 3, 1437–1446. DOI: 10.1039/c003710a. http://dx.doi.org/10.1039/c003710a10.1039/c003710aSearch in Google Scholar
[131] Zhou, C. F., Liu, Z. W., Du, X. S., Mitchell, D. R. G., Mai, Y. W., Yan, Y. S., & Ringer, S. (2012). Hollow nitrogen-containing core/shell fibrous carbon nanomaterials as support to platinum nanocatalysts and their TEM tomography study. Nanoscale Research Letters, 7, 165. DOI: 10.1186/1556-276x-7-165. http://dx.doi.org/10.1186/1556-276X-7-16510.1186/1556-276X-7-165Search in Google Scholar PubMed PubMed Central
[132] Zhu, Y., Li, J. M., Wan, M. X., & Jiang, L. (2009). Electromagnetic functional urchin-like hollow carbon spheres carbonized by polyaniline micro/nanostructures containing FeCl3 as a precursor. European Journal of Inorganic Chemistry, 2009, 2860–2864. DOI: 10.1002/ejic.200900040. http://dx.doi.org/10.1002/ejic.20090004010.1002/ejic.200900040Search in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Recent trends and progress in research into structure and properties of polyaniline and polypyrrole — Topical Issue
- Printing polyaniline for sensor applications
- Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials
- Conducting polymer-silver composites
- Electrorheological response of polyaniline and its hybrids
- Effect of PPy/PEG conducting polymer film on electrochemical performance of LiFePO4 cathode material for Li-ion batteries
- Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration
- Self-assembly of aniline oligomers and their induced polyaniline supra-molecular structures
- Self-organization of polyaniline during oxidative polymerization: formation of granular structure
- Influence of ethanol on the chain-ordering of carbonised polyaniline
- X-ray absorption spectroscopy of nanostructured polyanilines
- Effect of cations on polyaniline morphology
- Preparation of polyaniline in the presence of polymeric sulfonic acids mixtures: the role of intermolecular interactions between polyacids
- Chemical degradation of polyaniline by reaction with Fenton’s reagent — a spectroelectrochemical study
- Thin mesoporous polyaniline films manifesting a water-promoted photovoltaic effect
- Polyamide grafted with polypyrrole: formation, properties, and stability
- Effect of ionic liquid on polyaniline chemically synthesised under falling-pH conditions
- Polyaniline doped with poly(acrylamidomethylpropanesulphonic acid): electrochemical behaviour and conductive properties in neutral solutions
- Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles
- Bi-hybrid coatings: polyaniline-montmorillonite filler in organic-inorganic polymer matrix
- Preparation of aqueous polyaniline-vesicle suspensions with class III peroxidases. Comparison between horseradish peroxidase isoenzyme C and soybean peroxidase
- Preparation, characterisation, and dielectric properties of polypyrrole-clay composites
- Multi-wall carbon nanotubes with nitrogen-containing carbon coating
- Conducting poly(o-anisidine)-coated steel electrodes for supercapacitors
- Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations
- Preparation of a miniaturised iodide ion selective sensor using polypyrrole and pencil lead: effect of double-coating, electropolymerisation time, and current density
- Role of polyaniline morphology in Pd particles dispersion. Hydrogenation of alkynes in the presence of Pd-polyaniline catalysts
- Nanostructured polyaniline-coated anode for improving microbial fuel cell power output
- Antibacterial properties of polyaniline-silver films
- Effect of compression pressure on mechanical and electrical properties of polyaniline pellets
Articles in the same Issue
- Recent trends and progress in research into structure and properties of polyaniline and polypyrrole — Topical Issue
- Printing polyaniline for sensor applications
- Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials
- Conducting polymer-silver composites
- Electrorheological response of polyaniline and its hybrids
- Effect of PPy/PEG conducting polymer film on electrochemical performance of LiFePO4 cathode material for Li-ion batteries
- Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration
- Self-assembly of aniline oligomers and their induced polyaniline supra-molecular structures
- Self-organization of polyaniline during oxidative polymerization: formation of granular structure
- Influence of ethanol on the chain-ordering of carbonised polyaniline
- X-ray absorption spectroscopy of nanostructured polyanilines
- Effect of cations on polyaniline morphology
- Preparation of polyaniline in the presence of polymeric sulfonic acids mixtures: the role of intermolecular interactions between polyacids
- Chemical degradation of polyaniline by reaction with Fenton’s reagent — a spectroelectrochemical study
- Thin mesoporous polyaniline films manifesting a water-promoted photovoltaic effect
- Polyamide grafted with polypyrrole: formation, properties, and stability
- Effect of ionic liquid on polyaniline chemically synthesised under falling-pH conditions
- Polyaniline doped with poly(acrylamidomethylpropanesulphonic acid): electrochemical behaviour and conductive properties in neutral solutions
- Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles
- Bi-hybrid coatings: polyaniline-montmorillonite filler in organic-inorganic polymer matrix
- Preparation of aqueous polyaniline-vesicle suspensions with class III peroxidases. Comparison between horseradish peroxidase isoenzyme C and soybean peroxidase
- Preparation, characterisation, and dielectric properties of polypyrrole-clay composites
- Multi-wall carbon nanotubes with nitrogen-containing carbon coating
- Conducting poly(o-anisidine)-coated steel electrodes for supercapacitors
- Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations
- Preparation of a miniaturised iodide ion selective sensor using polypyrrole and pencil lead: effect of double-coating, electropolymerisation time, and current density
- Role of polyaniline morphology in Pd particles dispersion. Hydrogenation of alkynes in the presence of Pd-polyaniline catalysts
- Nanostructured polyaniline-coated anode for improving microbial fuel cell power output
- Antibacterial properties of polyaniline-silver films
- Effect of compression pressure on mechanical and electrical properties of polyaniline pellets