Startseite Role of polyaniline morphology in Pd particles dispersion. Hydrogenation of alkynes in the presence of Pd-polyaniline catalysts
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Role of polyaniline morphology in Pd particles dispersion. Hydrogenation of alkynes in the presence of Pd-polyaniline catalysts

  • Robert Kosydar EMAIL logo , Monika Goral , Alicja Drelinkiewicz und Jaroslav Stejskal
Veröffentlicht/Copyright: 3. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Two polyaniline (PANI) samples of various molecular masses were used for the preparation of palladium catalysts (with 2 mass % of Pd). The physicochemical features of starting polyanilines were found to substantially affect the size and extent of palladium nanoparticles aggregation. Strongly aggregated large palladium particles appeared in the PANI sample of more compact morphology (PANI-H), higher crystallinity and lower specific surface area. Pd nanoparticles of a definitively smaller size were formed in the more amorphous PANI sample of looser morphology (PANI-L) and the extent of particles aggregation was markedly lower. The catalytic properties of Pd/PANI samples were studied in a liquid phase hydrogenation of unsaturated triple bond (C≡C) in alkynes reactants, phenylacetylene, and cyclohexylacetylene. The 2 mass % Pd/PANI-L catalyst prepared using polymer of less compact texture exhibited much higher activity in both reactions. In the presence of the 2 mass % Pd/PANI-L catalyst, alkene products were formed with a high selectivity (approximately 90 %) attained at the almost complete conversion of alkynes. This highly selective hydrogenation of the C≡C to the C=C bond was related to the presence of an electroactive polymer, PANI, in close proximity with Pd active sites. Polyaniline could have a role in a steric effect as well as in a modification of adsorptive properties of Pd centres.

[1] Amaya, T., Saio, D., & Hirao, T. (2007). Template synthesis of polyaniline/Pd nanoparticle and its catalytic application. Tetrahedron Letters, 48, 2729–2732. DOI: 10.1016/j.tetlet.2007.02.059. http://dx.doi.org/10.1016/j.tetlet.2007.02.05910.1016/j.tetlet.2007.02.059Suche in Google Scholar

[2] Antolini, E., & Gonzalez, E. R. (2009). Polymer supports for low-temeperature fuel cell catalysts. Applied Catalysis A: General, 365, 1–19. DOI: 10.1016/j.apcata.2009.05.045. http://dx.doi.org/10.1016/j.apcata.2009.05.04510.1016/j.apcata.2009.05.045Suche in Google Scholar

[3] Arena, F., Cum, G., Gallo, R., & Parmaliana, A. (1996). Palladium catalysts supported on oligomeric aramides in the liquid-phase hydrogenation of phenylacetylene. Journal of Molecular Catalysis A: Chemical, 110, 235–242. DOI: 10.1016/1381-1169(96)00188-4. http://dx.doi.org/10.1016/1381-1169(96)00188-410.1016/1381-1169(96)00188-4Suche in Google Scholar

[4] Białek, B. (2006). Computational studies of the interactions between emeraldine and palladium atom. Surface Science, 600, 1679–1683. DOI: 10.1016/j.susc.2005.12.059. http://dx.doi.org/10.1016/j.susc.2005.12.05910.1016/j.susc.2005.12.059Suche in Google Scholar

[5] Christodoulakis, K. E., Palioura, D., Anastasiadis, S. H., & Vamvakaki, M. (2009). Metal nanocrystals embedded within polymeric nanostructures: Effect of polymer-metal compound interactions. Topics in Catalysis, 52, 394–411. DOI: 10.1007/s11244-008-9172-2. http://dx.doi.org/10.1007/s11244-008-9172-210.1007/s11244-008-9172-2Suche in Google Scholar

[6] Drelinkiewicz, A., Hasik, M., & Choczyński, M. (1998). Preparation and properties of polyaniline containing palladium. Materials Research Bulletin, 33, 739–762. DOI: 10.1016/s0025-5408(98)00042-7. http://dx.doi.org/10.1016/S0025-5408(98)00042-710.1016/S0025-5408(98)00042-7Suche in Google Scholar

[7] Drelinkiewicz, A., Hasik, M., & Kloc, M. (1999). Liquid-phase hydrogenation of 2-ethylanthraquinone over Pd/polyaniline catalysts. Journal of Catalysis, 186, 123–133. DOI: 10.1006/jcat.1999.2493. http://dx.doi.org/10.1006/jcat.1999.249310.1006/jcat.1999.2493Suche in Google Scholar

[8] Drelinkiewicz, A., Waksmundzka, A., Makowski, W., Sobczak, J. W., Król, A., & Zięba, A. (2004). Acetophenone hy drogenation on polymer-palladium catalysts. The effect of polymer matrix. Catalysis Letters, 94, 143–156. DOI: 10.1023/b:catl.0000020539.31128.d4. http://dx.doi.org/10.1023/B:CATL.0000020539.31128.d410.1023/B:CATL.0000020539.31128.d4Suche in Google Scholar

[9] Drelinkiewicz, A., Zięba, A., Król, A., Sobczak, J. W., & Grzywa, M. (2008). Polyaniline supported Pd and Pt catalysts. Role of metal in hydrogenation of 2-butyne-1,4-diol. Polish Journal of Chemistry, 82, 1717–1732. Suche in Google Scholar

[10] Hasik, M., Turek, W., Nyczyk, A., Stochmal, E., Bernaisk, A., Sniechota, A., & Sołtysek, A. (2009). Application of conjugated polymer-platinum group metal composites as heterogeneous catalysts. Catalysis Letters, 127, 304–311. DOI: 10.1007/s10562-008-9679-y. http://dx.doi.org/10.1007/s10562-008-9679-y10.1007/s10562-008-9679-ySuche in Google Scholar

[11] Higuchi, M., Imoda, D., & Hirao, T. (1996). Redox behavior of polyaniline-transition metal complexes in solution. Macromolecules, 29, 8277–8279. DOI: 10.1021/ma960761f. http://dx.doi.org/10.1021/ma960761f10.1021/ma960761fSuche in Google Scholar

[12] Hirao, T. (2002). Conjugated systems composed of transition metals and redox-active π-conjugated ligands. Coordination Chemistry Reviews, 226, 81–91. DOI: 10.1016/s0010-8545(01)00436-2. http://dx.doi.org/10.1016/S0010-8545(01)00436-210.1016/S0010-8545(01)00436-2Suche in Google Scholar

[13] Kang, E. T., Neoh, K. G., & Tan, K. L. (1998). Polyaniline: A polymer with many interesting intrinsic redox states. Progress in Polymer Science, 23, 277–324. DOI: 10.1016/s0079-6700(97)00030-0. http://dx.doi.org/10.1016/S0079-6700(97)00030-010.1016/S0079-6700(97)00030-0Suche in Google Scholar

[14] Kim, S., & Park, S. J. (2008). Electroactivity of Pt-Ru/polyaniline composite catalyst-electrodes prepared by electrochemical deposition methods. Solid State Ionics, 178, 1915–1921. DOI: 10.1016/j.ssi.2007.12.074. 10.1016/j.ssi.2007.12.074Suche in Google Scholar

[15] Klasovsky, F., Claus, P., & Wolf, D. (2009). Influence of preparation parameyters on the performance of colloid-derived oxidic palladium catalysts for selective hydrogenation of colloid-derived oxidic palladium catalysts for selective hydrogenation of C-C triple bonds. Topics in Catalysis, 52, 412–423. DOI: 10.1007/s11244-008-9173-1. http://dx.doi.org/10.1007/s11244-008-9173-110.1007/s11244-008-9173-1Suche in Google Scholar

[16] Kumar, S., Verma, R., Venkataramani, B., Raju, V. S., & Gangadharan, S. (1995). Sorption of platinum, palladium, iridium, and gold complexes on polyaniline. Solvent Extraction and Ion Exchange, 13, 1097–1121. DOI: 10.1080/07366299508918320. http://dx.doi.org/10.1080/0736629950891832010.1080/07366299508918320Suche in Google Scholar

[17] Li, J., Fang, K., Qiu, H., Li, S. P., & Mao, W. M. (2004). Micromorphology and electrical property of the HCl-doped and DBSA-doped polyanilines. Synthetic Metals, 142, 107–111. DOI: 10.1016/j.synthmet.2003.08.014. http://dx.doi.org/10.1016/j.synthmet.2003.08.01410.1016/j.synthmet.2003.08.014Suche in Google Scholar

[18] Michalska, Z. M., Ostaszewski, B., Zientarska, J., & Sobczak, J. W. (1998). Catalytic hydrogenation of alkadienes and alkynes by palladium catalysts supported on heterocyclic polyamides. Journal of Molecular Catalysis A: Chemical, 129, 207–218. DOI: 10.1016/s1381-1169(97)00212-4. http://dx.doi.org/10.1016/S1381-1169(97)00212-410.1016/S1381-1169(97)00212-4Suche in Google Scholar

[19] Molnár, A., Sárkány, A., & Varga, M. (2001). Hydrogenation of carbon-carbon multiple bonds: chemo-, regio- and stereoselectivity. Journal of Molecular Catalysis A: Chemical, 173, 185–221. DOI: 10.1016/s1381-1169(01)00150-9. http://dx.doi.org/10.1016/S1381-1169(01)00150-910.1016/S1381-1169(01)00150-9Suche in Google Scholar

[20] Murugesan, R., & Subramanian, E. (2003). Effect of organic dopants on electrodeposition and characteristics of polyaniline under the varying influence of H2SO4 and HClO4 electrolyte media. Materials Chemistry and Physics, 80, 731–739. DOI: 10.1016/s0254-0584(03)00127-5. http://dx.doi.org/10.1016/S0254-0584(03)00127-510.1016/S0254-0584(03)00127-5Suche in Google Scholar

[21] Nadgeri, J. M., Telkar, M. M., & Rode, C. V. (2008). Hydrogenation activity and selectivity behaviour of supported palladium nanoparticles. Catalysis Communications, 9, 441–446. DOI: 10.1016/j.catcom.2007.07.023. http://dx.doi.org/10.1016/j.catcom.2007.07.02310.1016/j.catcom.2007.07.023Suche in Google Scholar

[22] O’Mullane, A. P., Dale, S. E., Macpherson, J. V., & Unwin, P. R. (2004) Fabrication and electrocatalytic properties of polyaniline/Pt nanocomposites. Chemical Communications, 2004, 1606–1607. DOI: 10.1039/b404636f. http://dx.doi.org/10.1039/b404636f10.1039/b404636fSuche in Google Scholar

[23] Park, J. E., Park, S. G., Koukitu, A., Hatozaki, O., & Oyama, N. (2004). Electrochemical and chemical interactions between polyaniline and palladium nanoparticles. Synthetic Metals, 141, 265–269. DOI: 10.1016/s0379-6779(03)00410-7. http://dx.doi.org/10.1016/S0379-6779(03)00410-710.1016/S0379-6779(03)00410-7Suche in Google Scholar

[24] Pouget, J. P., Jozefowicz, M. E., Epstein, A. J., Tang, X., & MacDiarmid, A. G. (1991). X-ray structure of polyaniline. Macromolecules, 24, 779–789. DOI: 10.1021/ma00003a022. http://dx.doi.org/10.1021/ma00003a02210.1021/ma00003a022Suche in Google Scholar

[25] Steffan, M., Klasovsky, F., Arras, J., Roth, C., Radnik, J., Hofmeister, H., & Claus, P. (2008). Carbon-carbon double bonds versus carbonyl group hydrogenation: Controlling the intramolecular selectivity with polyaniline-supported platinum catalysts. Advanced Synthesis & Catalysis, 350, 1337–1348. DOI: 10.1002/adsc.200800035. http://dx.doi.org/10.1002/adsc.20080003510.1002/adsc.200800035Suche in Google Scholar

[26] Stejskal, J., Riede, A., Hlavatá, D., Prokeš, J., Helmstedt, M., & Holler, P. (1998). The effect of polymerization temperature on molecular weight, crystallinity, and electrical conductivity of polyaniline. Synthetic Metals, 96, 55–61. DOI: 10.1016/s0379-6779(98)00064-2. http://dx.doi.org/10.1016/S0379-6779(98)00064-210.1016/S0379-6779(98)00064-2Suche in Google Scholar

[27] Telkar, M. M., Rode, C. V., Chaudhari, R. V., Joshi, S. S., & Nalawade, A. M. (2004). Shape-controlled preparation and catalytic activity of metal nanoparticles for hydrogenation of 2-butyne-1,4-diol and styrene oxide. Applied Catalysis A: General, 273, 11–19. DOI: 10.1016/j.apcata.2004.05.056. http://dx.doi.org/10.1016/j.apcata.2004.05.05610.1016/j.apcata.2004.05.056Suche in Google Scholar

Published Online: 2013-5-3
Published in Print: 2013-8-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Recent trends and progress in research into structure and properties of polyaniline and polypyrrole — Topical Issue
  2. Printing polyaniline for sensor applications
  3. Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials
  4. Conducting polymer-silver composites
  5. Electrorheological response of polyaniline and its hybrids
  6. Effect of PPy/PEG conducting polymer film on electrochemical performance of LiFePO4 cathode material for Li-ion batteries
  7. Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration
  8. Self-assembly of aniline oligomers and their induced polyaniline supra-molecular structures
  9. Self-organization of polyaniline during oxidative polymerization: formation of granular structure
  10. Influence of ethanol on the chain-ordering of carbonised polyaniline
  11. X-ray absorption spectroscopy of nanostructured polyanilines
  12. Effect of cations on polyaniline morphology
  13. Preparation of polyaniline in the presence of polymeric sulfonic acids mixtures: the role of intermolecular interactions between polyacids
  14. Chemical degradation of polyaniline by reaction with Fenton’s reagent — a spectroelectrochemical study
  15. Thin mesoporous polyaniline films manifesting a water-promoted photovoltaic effect
  16. Polyamide grafted with polypyrrole: formation, properties, and stability
  17. Effect of ionic liquid on polyaniline chemically synthesised under falling-pH conditions
  18. Polyaniline doped with poly(acrylamidomethylpropanesulphonic acid): electrochemical behaviour and conductive properties in neutral solutions
  19. Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles
  20. Bi-hybrid coatings: polyaniline-montmorillonite filler in organic-inorganic polymer matrix
  21. Preparation of aqueous polyaniline-vesicle suspensions with class III peroxidases. Comparison between horseradish peroxidase isoenzyme C and soybean peroxidase
  22. Preparation, characterisation, and dielectric properties of polypyrrole-clay composites
  23. Multi-wall carbon nanotubes with nitrogen-containing carbon coating
  24. Conducting poly(o-anisidine)-coated steel electrodes for supercapacitors
  25. Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations
  26. Preparation of a miniaturised iodide ion selective sensor using polypyrrole and pencil lead: effect of double-coating, electropolymerisation time, and current density
  27. Role of polyaniline morphology in Pd particles dispersion. Hydrogenation of alkynes in the presence of Pd-polyaniline catalysts
  28. Nanostructured polyaniline-coated anode for improving microbial fuel cell power output
  29. Antibacterial properties of polyaniline-silver films
  30. Effect of compression pressure on mechanical and electrical properties of polyaniline pellets
Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0383-z/html
Button zum nach oben scrollen