Abstract
Photovoltaic cells composed of thin mesoporous polyaniline films sandwiched between an indium-tin oxide anode and aluminium cathode have been fabricated. The cells show an increase in the photo-generated open-circuit voltage (V oc) from 0.2 V to 0.6 V and stable-in-time V oc generation following the addition of water containing highly hydrated ions, e.g. tap water.We explain the waterpromoted photo-voltaic effect by the polarity of the water environment. Theoretical calculations show that increasing the solvent polarity increases the energy of the electronic transition related to the measured V oc. The stable-in-time V oc generation could be explained by the increase in the lifetime of the excitons as well as by their more efficient dissociation in the interpenetrating network of polyaniline and water. The penetration of water into the mesoporous polyaniline films is promoted by the presence of highly hydrated ions.
[1] Bejbouji, H., Vignau, L., Miane, J. L., Dang, M. T., Oualim, E. M., Harmouchi, M., & Mouhsen, A. (2010). Polyaniline as a hole injection layer on organic photovoltaic cells. Solar Energy Materials and Solar Cells, 94, 176–181. DOI:1010.1016/j.solmat.2009.08.018. http://dx.doi.org/10.1016/j.solmat.2009.08.01810.1016/j.solmat.2009.08.018Search in Google Scholar
[2] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., & Fox, D. J. (2009). Gaussian 09 [computer software]. Wellingford, CT, USA: Gaussian Inc. Wallingford CT. Search in Google Scholar
[3] Chiang, C. J., & MacDiarmid, A. G. (1986). “Polyaniline”: Protonic acid doping of the emeraldine form to the metallic regime. Synthetic Metals, 13, 193–205. DOI: 10.1016/0379-6779(86)90070-6. http://dx.doi.org/10.1016/0379-6779(86)90070-610.1016/0379-6779(86)90070-6Search in Google Scholar
[4] Gospodinova, N., & Terlemezyan, L. (1998). Conducting polymers prepared by oxidative polymerization: polyaniline. Progress in Polymer Science, 23, 1443–1484. DOI: 10.1016/s0079-6700(98)00008-2. http://dx.doi.org/10.1016/S0079-6700(98)00008-210.1016/S0079-6700(98)00008-2Search in Google Scholar
[5] Gospodinova, N., Dorey, S., Anokhin, D., Ivanov, D., Romanova, Y., & Kolev, H. (2009a). European Patent No. WO2009/115714. Munich, Germany: European Patent Office. Search in Google Scholar
[6] Gospodinova, N., Ivanov, D. A., Anokhin, D. V., Mihai, I., Vidal, L., Brun, S., Romanova, J., & Tadjer, A. (2009b). Unprecedented route to ordered polyaniline: Direct synthesis of highly crystalline fibrillar films with strong π-π stacking alignment. Macromolecular Rapid Communications, 30, 29–33. DOI:1010.1002/marc.200800434. http://dx.doi.org/10.1002/marc.20080043410.1002/marc.200800434Search in Google Scholar PubMed
[7] Gospodinova, N., Muşat, V., Kolev, H., & Romanova, J. (2011). New insight into the redox behavior of polyaniline. Synthetic Metals, 161, 2510–2513. DOI:1010.1016/j.synthmet.2011.08.035. http://dx.doi.org/10.1016/j.synthmet.2011.08.03510.1016/j.synthmet.2011.08.035Search in Google Scholar
[8] Jørgensen, M., Norrman, K., & Krebs, F. C. (2008). Stability/degradation of polymer solar cells. Solar Energy Materials and Solar Cells, 92, 686–714. DOI:1010.1016/j.solmat.2008. 01.005. http://dx.doi.org/10.1016/j.solmat.2008.01.00510.1016/j.solmat.2008.01.005Search in Google Scholar
[9] Kippelen, B., & Brédas, J. L. (2009). Organic photovoltaics. Energy & Environmental Science, 2, 251–261. DOI: 10.1039/b812502n. http://dx.doi.org/10.1039/b812502n10.1039/b812502nSearch in Google Scholar
[10] Kuila, B. K., Nandan, B., Böhme, M., Janke, A., & Stamm, M. (2009). Vertically oriented arrays of polyaniline nanorods and their super electrochemical properties. Chemical Communications, 38, 5749–5751. DOI: 10.1039/b912513b. http://dx.doi.org/10.1039/b912513b10.1039/b912513bSearch in Google Scholar PubMed
[11] Kuila, B. K., & Stamm, M. (2010). Fabrication of oriented polyaniline nanostructures using block copolymer nanotemplates and their optical, electrochemical and electric properties. Journal of Materials Chemistry, 20, 6086–6094. DOI: 10.1039/c0jm00352b. http://dx.doi.org/10.1039/c0jm00352b10.1039/c0jm00352bSearch in Google Scholar
[12] Lemaur, V., Steel, M., Beljonne, D., Brédas, J. L., & Cornil, J. (2005). Photoinduced charge generation and recombination dynamics in model donor/acceptor pairs for organic solar cell applications: A full quantum-chemical treatment. Journal of the American Chemical Society, 127, 6077–6086. DOI: 10.1021/ja0423901. http://dx.doi.org/10.1021/ja042390lSearch in Google Scholar
[13] MacDiarmid, A. G., & Epstein, A. J. (1989). Polyanilines: a novel class of conducting polymers. Faraday Discussion of the Chemical Society, 88, 317–332. DOI: 10.1039/dc9898800 317. http://dx.doi.org/10.1039/dc9898800317Search in Google Scholar
[14] Markst, R. N., Halls, J. J., Bradley, D. D. C., Friend, R. H., & Holmes, A. B. (1994). The photovoltaic response in poly(p-phenylene vinylene) thin-film devices. Journal of Physics: Condensed Matter, 6, 1379. DOI: 10.1088/0953-8984/6/7/009. http://dx.doi.org/10.1088/0953-8984/6/7/00910.1088/0953-8984/6/7/009Search in Google Scholar
[15] Qaiser, A. A., Margaret, M. H., & Patterson, D. A. (2011). Surface and charge transport characterization of polyanilinecellulose acetate composite membranes. Journal of Physical Chemistry B, 115, 1652–1661. DOI: 10.1021/jp109455m. http://dx.doi.org/10.1021/jp109455m10.1021/jp109455mSearch in Google Scholar PubMed
[16] Romanova, J., Petrova, J., Ivanova, A., Tadjer, A., & Gospodinova, N. (2010a). Theoretical study on the emeraldine salt — impact of the computational protocol. Journal of Molecular Structucture: THEOCHEM, 954, 36–44. DOI:1010.1016/j.theochem.2010.01.032. http://dx.doi.org/10.1016/j.theochem.2010.01.03210.1016/j.theochem.2010.01.032Search in Google Scholar
[17] Romanova, J., Petrova, J., Tadjer, A., & Gospodinova, N. (2010b). Polyaniline-water interactions: A theoretical investigation with the polarisable continuum model. Synthetic Metals, 160, 1050–1054. DOI:1010.1016/j.synthmet.2010.02. 025. http://dx.doi.org/10.1016/j.synthmet.2010.02.02510.1016/j.synthmet.2010.02.025Search in Google Scholar
[18] Romanova, J., Madjarova, G., Tadjer, A., & Gospodinova, N. (2011). Solvent polarity and dopant effect on the electronic structure of the emeraldine salt. International Journal of Quantium Chemistry, 111, 435–443. DOI: 10.1002/qua.22703. http://dx.doi.org/10.1002/qua.2270310.1002/qua.22703Search in Google Scholar
[19] Spanggaard, H., & Krebs, F. C. (2004). A brief history of the development of organic and polymeric photovoltaics. Solar Energy Materials and Solar Cells, 83, 125–146. DOI:1010.1016/j.solmat.2004.02.021. http://dx.doi.org/10.1016/j.solmat.2004.02.02110.1016/j.solmat.2004.02.021Search in Google Scholar
[20] Stafström, S., Brédas, J. L., Epstein, A. J., Woo, H. S., Tanner, D. B., Huang, W. S., & MacDiarmid, A. G. (1987). Polaron lattice in highly conducting polyaniline: Theoretical and optical studies. Physical Review Letters, 59, 1464–1467. DOI: 10.1103/physrevlett.59.1464. http://dx.doi.org/10.1103/PhysRevLett.59.146410.1103/PhysRevLett.59.1464Search in Google Scholar PubMed
[21] Stejskal, J., Bogomolova, O. E., Blinova, N. V., Trchová, M., Šeděnkovš, J., & Sapurina, I. (2009). Mixed electron and proton conductivity of polyaniline films in aqueous solutions of acids: beyond the 1000 S cm−1 limit. Polymer International, 58, 872–879. DOI: 10.1002/pi.2605. http://dx.doi.org/10.1002/pi.260510.1002/pi.2605Search in Google Scholar
[22] Tosheva, L., Gospodinova, N., Vidal, L., Mihai, I., Defaux, M., Ivanov, D. A., & Doyle, A. M. (2009). Monoparticulate films of polyaniline. Thin Solid Films, 517, 5459–5463. DOI: 10.1016/j.tsf.2009.01.113. http://dx.doi.org/10.1016/j.tsf.2009.01.11310.1016/j.tsf.2009.01.113Search in Google Scholar
[23] van Hal, P. A., Janssen, R. A. J., Lanzani, G., Cerullo, G., Zavelani-Rossi, M., & De Silvestri, S. (2001). Two-step mechanism for the photoinduced intramolecular electron transfer in oligo(p-phenylene vinylene)-fullerene dyads. Physical Reviews B, 64, 075206. DOI: 10.1103/physrevb.64.075206. http://dx.doi.org/10.1103/PhysRevB.64.07520610.1103/PhysRevB.64.075206Search in Google Scholar
[24] Yang, S., Olishevski, P., & Kertesz, M. (2004). Bandgap calculations for conjugated polymers. Synthetic Metals, 141, 171–177. DOI:1010.1016/j.synthmet.2003.08.019. http://dx.doi.org/10.1016/j.synthmet.2003.08.01910.1016/j.synthmet.2003.08.019Search in Google Scholar
[25] Zade, S. S., Zamoshchik, N., & Bendikov, M. (2011). From short conjugated oligomers to conjugated polymers. Lessons from studies on long conjugated oligomers. Accounts of Chemical Research, 44, 14–24. DOI: 10.1021/ar1000555. http://dx.doi.org/10.1021/ar100055510.1021/ar1000555Search in Google Scholar PubMed
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Recent trends and progress in research into structure and properties of polyaniline and polypyrrole — Topical Issue
- Printing polyaniline for sensor applications
- Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials
- Conducting polymer-silver composites
- Electrorheological response of polyaniline and its hybrids
- Effect of PPy/PEG conducting polymer film on electrochemical performance of LiFePO4 cathode material for Li-ion batteries
- Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration
- Self-assembly of aniline oligomers and their induced polyaniline supra-molecular structures
- Self-organization of polyaniline during oxidative polymerization: formation of granular structure
- Influence of ethanol on the chain-ordering of carbonised polyaniline
- X-ray absorption spectroscopy of nanostructured polyanilines
- Effect of cations on polyaniline morphology
- Preparation of polyaniline in the presence of polymeric sulfonic acids mixtures: the role of intermolecular interactions between polyacids
- Chemical degradation of polyaniline by reaction with Fenton’s reagent — a spectroelectrochemical study
- Thin mesoporous polyaniline films manifesting a water-promoted photovoltaic effect
- Polyamide grafted with polypyrrole: formation, properties, and stability
- Effect of ionic liquid on polyaniline chemically synthesised under falling-pH conditions
- Polyaniline doped with poly(acrylamidomethylpropanesulphonic acid): electrochemical behaviour and conductive properties in neutral solutions
- Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles
- Bi-hybrid coatings: polyaniline-montmorillonite filler in organic-inorganic polymer matrix
- Preparation of aqueous polyaniline-vesicle suspensions with class III peroxidases. Comparison between horseradish peroxidase isoenzyme C and soybean peroxidase
- Preparation, characterisation, and dielectric properties of polypyrrole-clay composites
- Multi-wall carbon nanotubes with nitrogen-containing carbon coating
- Conducting poly(o-anisidine)-coated steel electrodes for supercapacitors
- Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations
- Preparation of a miniaturised iodide ion selective sensor using polypyrrole and pencil lead: effect of double-coating, electropolymerisation time, and current density
- Role of polyaniline morphology in Pd particles dispersion. Hydrogenation of alkynes in the presence of Pd-polyaniline catalysts
- Nanostructured polyaniline-coated anode for improving microbial fuel cell power output
- Antibacterial properties of polyaniline-silver films
- Effect of compression pressure on mechanical and electrical properties of polyaniline pellets
Articles in the same Issue
- Recent trends and progress in research into structure and properties of polyaniline and polypyrrole — Topical Issue
- Printing polyaniline for sensor applications
- Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials
- Conducting polymer-silver composites
- Electrorheological response of polyaniline and its hybrids
- Effect of PPy/PEG conducting polymer film on electrochemical performance of LiFePO4 cathode material for Li-ion batteries
- Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration
- Self-assembly of aniline oligomers and their induced polyaniline supra-molecular structures
- Self-organization of polyaniline during oxidative polymerization: formation of granular structure
- Influence of ethanol on the chain-ordering of carbonised polyaniline
- X-ray absorption spectroscopy of nanostructured polyanilines
- Effect of cations on polyaniline morphology
- Preparation of polyaniline in the presence of polymeric sulfonic acids mixtures: the role of intermolecular interactions between polyacids
- Chemical degradation of polyaniline by reaction with Fenton’s reagent — a spectroelectrochemical study
- Thin mesoporous polyaniline films manifesting a water-promoted photovoltaic effect
- Polyamide grafted with polypyrrole: formation, properties, and stability
- Effect of ionic liquid on polyaniline chemically synthesised under falling-pH conditions
- Polyaniline doped with poly(acrylamidomethylpropanesulphonic acid): electrochemical behaviour and conductive properties in neutral solutions
- Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles
- Bi-hybrid coatings: polyaniline-montmorillonite filler in organic-inorganic polymer matrix
- Preparation of aqueous polyaniline-vesicle suspensions with class III peroxidases. Comparison between horseradish peroxidase isoenzyme C and soybean peroxidase
- Preparation, characterisation, and dielectric properties of polypyrrole-clay composites
- Multi-wall carbon nanotubes with nitrogen-containing carbon coating
- Conducting poly(o-anisidine)-coated steel electrodes for supercapacitors
- Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations
- Preparation of a miniaturised iodide ion selective sensor using polypyrrole and pencil lead: effect of double-coating, electropolymerisation time, and current density
- Role of polyaniline morphology in Pd particles dispersion. Hydrogenation of alkynes in the presence of Pd-polyaniline catalysts
- Nanostructured polyaniline-coated anode for improving microbial fuel cell power output
- Antibacterial properties of polyaniline-silver films
- Effect of compression pressure on mechanical and electrical properties of polyaniline pellets