Startseite Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations

  • Pravin Deshpande EMAIL logo , Sanket Vathare , Shashikant Vagge , Elena Tomšík und Jaroslav Stejskal
Veröffentlicht/Copyright: 3. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The coaxial coating of multi-wall carbon nanotubes (MWCNT) with poly(aniline) (PANI) was synthesised and a paint was prepared containing conducting PANI-MWCNT composite. The corrosion protection performance was assessed by open circuit potential measurements, potentiodynamic polarisation, and electrochemical impedance spectroscopy. The corrosion rate of low-carbon steel coated with 1.5 mass % of PANI-MWCNT-based paint in 3.5 mass % sodium chloride solution was found to be 0.037 mm y−1, about 5.2 times lower than that of unpainted low-carbon steel and 3.6 times lower than that of epoxy painted steel.

[1] Ahmad, N., & MacDiarmid, A. G. (1996). Inhibition of corrosion of steels with the exploitation of conducting polymers. Synthetic Metals, 78, 103–110. DOI: 10.1016/0379-6779(96)80109-3. http://dx.doi.org/10.1016/0379-6779(96)80109-310.1016/0379-6779(96)80109-3Suche in Google Scholar

[2] Armelin, E., Aleman, C., & Iribarren, J. I. (2009a). Anticorrosion performances of epoxy coatings modified with polyaniline: A comparison between the emeraldine base and salt forms. Progress in Organic Coatings, 65, 88–93. DOI: 10.1016/j.porgcoat.2008.10.001. http://dx.doi.org/10.1016/j.porgcoat.2008.10.00110.1016/j.porgcoat.2008.10.001Suche in Google Scholar

[3] Armelin, E., Meneguzzi, A., Ferreira, C. A., & Aleman, C. (2009b). Polyaniline, polypyrrole and poly(3,4-ethylenedioxythiophene) as additives of organic coatings to prevent corrosion. Surface and Coatings Technology, 203, 3763–3769. DOI: 10.1016/j.surfcoat.2009.06.019. http://dx.doi.org/10.1016/j.surfcoat.2009.06.01910.1016/j.surfcoat.2009.06.019Suche in Google Scholar

[4] Deshpande, P. P., Peshwe, D. R., & Pathak, S. U. (2001a). A note on electrochemical synthesis of conducting polyaniline films on low alloy steel. Transactions of Indian Institute of Metals, 54, 179–183. Suche in Google Scholar

[5] Deshpande, P. P., Peshwe, D. R., & Pathak, S. U. (2001b). Corrosion control by an organic metal: A review. Journal of the Institution of Engineers, Series A, 82, 33–36. Suche in Google Scholar

[6] Deshpande, P. P., Jagtap, S. P., More, M. A., & Khairnar, R. S. (2008). Corrosion prevention by conducting polyaniline based paint on low-carbon steel. Journal of Electrochemical Society, 57, 83–86. Suche in Google Scholar

[7] do Nascimento, G. M., Silva, T. B., Corio, P., & Dresselhaus, M. S. (2010). Charge-transfer behavior of polyaniline single wall carbon nanotubes nanocomposites monitored by resonance Raman spectroscopy. Journal of Raman Spectroscopy, 41, 1587–1593. DOI: 10.1002/jrs.2598. http://dx.doi.org/10.1002/jrs.259810.1002/jrs.2598Suche in Google Scholar

[8] Kalendová, A., Sapurina, I., Stejskal, J., & Veselý, D. (2008a). Anticorrosion properties of polyaniline-coated pigments in organic coatings. Corrosion Science, 50, 3549–3560. DOI: 10.1016/j.corsci.2008.08.044. http://dx.doi.org/10.1016/j.corsci.2008.08.04410.1016/j.corsci.2008.08.044Suche in Google Scholar

[9] Kalendová, A., Veselý, D., Sapurina, I., & Stejskal, J. (2008b). Anticorrosion efficiency of organic coatings depending on the pigment volume concentration of polyaniline phosphate. Progress in Organic Coatings, 63, 228–237. DOI: 10.1016/j.porgcoat.2008.06.005. http://dx.doi.org/10.1016/j.porgcoat.2008.06.00510.1016/j.porgcoat.2008.06.005Suche in Google Scholar

[10] Kamaraj, K., Sathiyanarayanan, S., Muthukrishnan, S., & Venkatachari, G. (2009). Corrosion protection of iron by benzoate doped polyaniline containing coatings. Progress in Organic Coatings, 64, 460–465. DOI: 10.1016/j.porgcoat.2008.08.008. http://dx.doi.org/10.1016/j.porgcoat.2008.08.00810.1016/j.porgcoat.2008.08.008Suche in Google Scholar

[11] Konyushenko, E. N., Stejskal, J., Trchová, M., Hradil, J., Kovářová, J., Prokeš, J., Cieslar, M., Hwang, J. Y., Chen, K. H., & Sapurina, I. (2006). Multi-wall carbon nanotubes coated with polyaniline. Polymer, 47, 5715–5723. DOI: 10.1016/j.polymer.2006.05.059. http://dx.doi.org/10.1016/j.polymer.2006.05.05910.1016/j.polymer.2006.05.059Suche in Google Scholar

[12] Konyushenko, E. N., Kazantseva, N. E., Stejskal, J., Trchová, M., Kovářová, J., Sapurina, I., Tomishko, M. M., Demicheva, O. V., & Prokeš, J. (2008). Ferromagnetic behaviour of polyaniline-coated multi-wall carbon nanotubes containing nickel nanoparticles. Journal of Magnetism and Magnetic Materials, 320, 231–240. DOI: 10.1016/j.jmmm.2007.05.036. http://dx.doi.org/10.1016/j.jmmm.2007.05.03610.1016/j.jmmm.2007.05.036Suche in Google Scholar

[13] Laco, J. I. I., Villota, F. C., & Mestres, F. L. (2005). Corrosion protection of carbon steel with thermoplastic coatings and alkyd resins containing polyaniline as conductive polymer. Progress in Organic Coatings, 52, 151–160. DOI: 10.1016/j.porgcoat.2004.10.005. http://dx.doi.org/10.1016/j.porgcoat.2004.10.00510.1016/j.porgcoat.2004.10.005Suche in Google Scholar

[14] Meroufel, A., Deslouis, C., & Touzain, S. (2008). Electrochemical and anticorrosion performances of zinc-rich and polyaniline powder coatings. Electrochimica Acta, 53, 2331–2338. DOI: 10.1016/j.electacta.2007.09.056. http://dx.doi.org/10.1016/j.electacta.2007.09.05610.1016/j.electacta.2007.09.056Suche in Google Scholar

[15] Rout, T. K., Jha, G., Singh, A. K., Bandyopadhyay, N., & Mohanty, O. N. (2003). Development of conducting polyaniline coating: a novel approach to superior corrosion resistance. Surface and Coatings Technology, 167, 16–24. DOI: 10.1016/s0257-8972(02)00862-9. http://dx.doi.org/10.1016/S0257-8972(02)00862-910.1016/S0257-8972(02)00862-9Suche in Google Scholar

[16] Samui, A. B., Patankar, A. S., Rangarajan, J., & Deb, P. C. (2003). Study of polyaniline containing paint for corrosion prevention. Progress in Organic Coatings, 47, 1–7. DOI: 10.1016/s0300-9440(02)00117-0. http://dx.doi.org/10.1016/S0300-9440(02)00117-010.1016/S0300-9440(02)00117-0Suche in Google Scholar

[17] Samui, A. B., & Phadnis, S. M. (2005). Polyaniline-dioctyl phosphate salt for corrosion protection of iron. Progress in Organic Coatings, 54, 263–267. DOI: 10.1016/j.porgcoat.2005.07.002. http://dx.doi.org/10.1016/j.porgcoat.2005.07.00210.1016/j.porgcoat.2005.07.002Suche in Google Scholar

[18] Sathiyanarayanan, S., Jeyaram, R., Muthukrishnan, S., & Venkatachari, G. (2009). Corrosion protection mechanism of polyaniline blended organic coating on steel. Journal of the Electrochemical Society, 156, C127–C134. DOI: 10.1149/1.3073874. http://dx.doi.org/10.1149/1.307387410.1149/1.3073874Suche in Google Scholar

[19] Sathiyanarayanan, S., Karpakam, V., Kamaraj, K., Muthukrishnan, S., & Venkatachari, G. (2010). Sulphonate doped polyaniline containing coatings for corrosion protection of iron. Surface and Coatings Technology, 204, 1426–1431. DOI: 10.1016/j.surfcoat.2009.09.037. http://dx.doi.org/10.1016/j.surfcoat.2009.09.03710.1016/j.surfcoat.2009.09.037Suche in Google Scholar

[20] Špitálsky, Z., Matějka, L., Šlouf, M., Konyushenko, E. N., Kovářová, J., Zemek, J., & Kotek, J. (2009). Modification of carbon nanotubes and its effect on properties of carbon nanotube/epoxy nanocomposites. Polymer Composites, 30, 1378–1387. DOI: 10.1002/pc.20701. http://dx.doi.org/10.1002/pc.2070110.1002/pc.20701Suche in Google Scholar

[21] Stejskal, J., Kratochvíl, P., & Jenkins, A. D. (1996). The formation of polyaniline and the nature of its structures. Polymer, 37, 367–369. DOI: 10.1016/0032-3861(96)81113-x. http://dx.doi.org/10.1016/0032-3861(96)81113-X10.1016/0032-3861(96)81113-XSuche in Google Scholar

[22] Stejskal, J., & Gilbert, R. G. (2002). Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure and Applied Chemistry, 74, 857–867. DOI: 10.1351/pac200274050857. http://dx.doi.org/10.1351/pac20027405085710.1351/pac200274050857Suche in Google Scholar

[23] Stejskal, J., Bogomolova, O. E., Blinova, N. V., Trchová, M., Šeděnková, I., Prokeš, J., & Sapurina, I. (2009). Mixed electron and proton conductivity of polyaniline films in aqueous solutions of acids: beyond the 1000 S cm−1 limit. Polymer International, 58, 872–879. DOI: 10.1002/pi.2605. http://dx.doi.org/10.1002/pi.260510.1002/pi.2605Suche in Google Scholar

[24] Stejskal, J., Sapurina, I., & Trchová, M. (2010). Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science, 35, 1420–1481. DOI: 10.1016/j.progpolymsci.2010.07.006. http://dx.doi.org/10.1016/j.progpolymsci.2010.07.00610.1016/j.progpolymsci.2010.07.006Suche in Google Scholar

[25] Syed Azim, S., Sathiyanarayanan, S., & Venkatachari, G. (2006). Anticorrosive properties of PANI-ATMP polymer containing organic coating. Progress in Organic Coatings, 56, 154–158. DOI: 10.1016/j.porgcoat.2006.03.004. http://dx.doi.org/10.1016/j.porgcoat.2006.03.00410.1016/j.porgcoat.2006.03.004Suche in Google Scholar

[26] Talo, A., Passiniemi, P., Forsén, O., & Ylasaari, S. (1997). Polyaniline/epoxy coatings with good anti-corrosion properties. Synthetic Metals, 85, 1333–1334. DOI: 10.1016/s0379-6779(97)80258-5. http://dx.doi.org/10.1016/S0379-6779(97)80258-510.1016/S0379-6779(97)80258-5Suche in Google Scholar

Published Online: 2013-5-3
Published in Print: 2013-8-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Recent trends and progress in research into structure and properties of polyaniline and polypyrrole — Topical Issue
  2. Printing polyaniline for sensor applications
  3. Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials
  4. Conducting polymer-silver composites
  5. Electrorheological response of polyaniline and its hybrids
  6. Effect of PPy/PEG conducting polymer film on electrochemical performance of LiFePO4 cathode material for Li-ion batteries
  7. Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration
  8. Self-assembly of aniline oligomers and their induced polyaniline supra-molecular structures
  9. Self-organization of polyaniline during oxidative polymerization: formation of granular structure
  10. Influence of ethanol on the chain-ordering of carbonised polyaniline
  11. X-ray absorption spectroscopy of nanostructured polyanilines
  12. Effect of cations on polyaniline morphology
  13. Preparation of polyaniline in the presence of polymeric sulfonic acids mixtures: the role of intermolecular interactions between polyacids
  14. Chemical degradation of polyaniline by reaction with Fenton’s reagent — a spectroelectrochemical study
  15. Thin mesoporous polyaniline films manifesting a water-promoted photovoltaic effect
  16. Polyamide grafted with polypyrrole: formation, properties, and stability
  17. Effect of ionic liquid on polyaniline chemically synthesised under falling-pH conditions
  18. Polyaniline doped with poly(acrylamidomethylpropanesulphonic acid): electrochemical behaviour and conductive properties in neutral solutions
  19. Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles
  20. Bi-hybrid coatings: polyaniline-montmorillonite filler in organic-inorganic polymer matrix
  21. Preparation of aqueous polyaniline-vesicle suspensions with class III peroxidases. Comparison between horseradish peroxidase isoenzyme C and soybean peroxidase
  22. Preparation, characterisation, and dielectric properties of polypyrrole-clay composites
  23. Multi-wall carbon nanotubes with nitrogen-containing carbon coating
  24. Conducting poly(o-anisidine)-coated steel electrodes for supercapacitors
  25. Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations
  26. Preparation of a miniaturised iodide ion selective sensor using polypyrrole and pencil lead: effect of double-coating, electropolymerisation time, and current density
  27. Role of polyaniline morphology in Pd particles dispersion. Hydrogenation of alkynes in the presence of Pd-polyaniline catalysts
  28. Nanostructured polyaniline-coated anode for improving microbial fuel cell power output
  29. Antibacterial properties of polyaniline-silver films
  30. Effect of compression pressure on mechanical and electrical properties of polyaniline pellets
Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0273-9/html
Button zum nach oben scrollen