Preparation of polyaniline in the presence of polymeric sulfonic acids mixtures: the role of intermolecular interactions between polyacids
-
Oxana Gribkova
, Olga Omelchenko
Abstract
Polyaniline (PANI) was synthesized by chemical oxidation of aniline in the presence of mixtures of water-soluble poly(sulfonic acids) of different nature. Under these conditions, the use of polyacid templates leads to the formation of interpolymer complexes of PANI and polyacid mixtures. The obtained PANI complexes were characterized by UV, visible, near IR, and Fourier transform infrared spectroscopy. It was shown that the rigidity of the polyacid backbone and the composition of a polyacid mixture affect the electronic structure of PANI complexes and the duration of the induction period of aniline oxidation. Domination of the more rigid-backbone template in the synthesis of PANI complexes with mixtures of the rigid- and flexible-backbone polyacids was observed. According to the viscometry and FTIR spectroscopic data, the reason of the domination is the existence of the intermolecular interaction between the polyacids in the mixture. In this case, duration of the induction period of aniline oxidation was between these values for pure polyacids.
[1] Boyer, M. I., Quillard, S., Rebourt, E., Louarn, G., Buisson, J. P., Monkman, A., & Lefrant, S. (1998). Vibrational analysis of polyaniline: A model compound approach. The Journal of Physical Chemistry B, 102, 7382–7392. DOI: 10.1021/jp972652o. http://dx.doi.org/10.1021/jp972652o10.1021/jp972652oSearch in Google Scholar
[2] Boyer, M. L., Quillard, S., Louarn, G., Froyer, G., & Lefrant, S. (2000). Vibrational study of the FeCl3-doped dimer of polyaniline. A good model compound of emeraldine salt. The Journal of Physical Chemistry B, 104, 8952–8961. DOI: 10.1021/jp000946v. http://dx.doi.org/10.1021/jp000946v10.1021/jp000946vSearch in Google Scholar
[3] Elliott, A. (1969). Infra-red spectra and structure of organic long-chain polymers. London, UK: Edward Arnold. Search in Google Scholar
[4] Epstein, A. J., Ginder, J. M., Zuo, F., Woo, H. S., Tanner, D. B., Richter, A. F., Angelopoulos, M., Huang, W. S., & MacDiarmid, A. G. (1987). Insulator-to-metal transition in polyaniline: Effect of protonation in emeraldine. Synthetic Metals, 21, 63–70. DOI: 10.1016/0379-6779(87)90067-1. http://dx.doi.org/10.1016/0379-6779(87)90067-110.1016/0379-6779(87)90067-1Search in Google Scholar
[5] Fisher, L. W., Sochor, A. R., & Tan, J. S. (1977). Chain characteristics of poly(2-acrylamido-2-methylpropanesulfonate) polymers. 1. Light-Scattering and intrinsic-viscosity studies. Macromolecules, 10, 949–954. DOI: 10.1021/ma60059a012. http://dx.doi.org/10.1021/ma60059a01210.1021/ma60059a012Search in Google Scholar
[6] Gribkova, O. L., Nekrasov, A. A., Trchova, M., Ivanov, V. F., Sazikov, V. I., Razova, A. B., Tverskoy, V. A., & Vannikov, A. V. (2011). Chemical synthesis of polyaniline in the presence of poly(amidosulfonic acids) with different rigidity of the polymer chain. Polymer, 52, 2474–2484. DOI: 10.1016/j.polymer.2011.04.003. http://dx.doi.org/10.1016/j.polymer.2011.04.00310.1016/j.polymer.2011.04.003Search in Google Scholar
[7] Guseva, M. A., Isakova, A. A., Gribkova, O. L., Tverskoi, V. A., Ivanov, V. F., Vannikov, A. V., & Fedotov, Y. A. (2007). Matrix polymerization of aniline in the presence of polyamides containing sulfo acid groups. Polymer Science Series A, 49, 4–11. DOI: 10.1134/s0965545x07010026. http://dx.doi.org/10.1134/S0965545X0701002610.1134/S0965545X07010026Search in Google Scholar
[8] Hechavarría, L., Hu, H. L., & Rincon, M. E. (2003). Polyaniline-poly(2-acrylamido-2-methyl-1-propanosulfonic acid) composite thin films: structure and properties. Thin Solid Films, 441, 56–62. DOI: 10.1016/s0040-6090(03)00864-2. http://dx.doi.org/10.1016/S0040-6090(03)00864-210.1016/S0040-6090(03)00864-2Search in Google Scholar
[9] Hu, H. L., Saniger, J. M., & Bañuelos, J. G. (1999). Thin films of polyaniline-polyacrylic acid composite by chemical bath deposition. Thin Solid Films, 347, 241–247. DOI: 10.1016/s0040-6090(99)00039-5. http://dx.doi.org/10.1016/S0040-6090(99)00039-510.1016/S0040-6090(99)00039-5Search in Google Scholar
[10] Ivanov, V. F., Gribkova, O. L., Cheberyako, K. V., Nekrasov, A. A., Tverskoi, V. A., & Vannikov, A. V. (2004). Template synthesis of polyaniline in the precence of poly-(2-acrylamido-2-methyl-1-propanesulfonic acid). Russian Journal of Electrochemistry, 40, 299–304. DOI: 10.1023/b:ruel.0000019668.68527.cc. http://dx.doi.org/10.1023/B:RUEL.0000019668.68527.cc10.1023/B:RUEL.0000019668.68527.ccSearch in Google Scholar
[11] Ivanov, V. F., Isakova, A. A., Gribkova, O. L., Nekrasov, A. A., Bogdanov, A. N., Vannikov, A. V., & Tverskoi, V. A. (2009). Peculiarities of polyaniline matrix synthesis in the presence of mixtures of different types of matrices and investigation of properties of formed interpolymer complexes. Protection of Metals and Physical Chemistry of Surfaces, 45, 548–552. DOI: 10.1134/s2070205109050086. http://dx.doi.org/10.1134/S207020510905008610.1134/S2070205109050086Search in Google Scholar
[12] Ivanov, V. F., Gribkova, O. L., Omelchenko, O. D., Nekrasov, A. A., Tverskoy, V. A., & Vannikov, A. V. (2010). Effect of matrix domination in PANI interpolymer complexes with polyamidosulfonic acids. Journal of Solid State Electrochemistry, 14, 2011–2019. DOI: 10.1007/s10008-010-1049-1. http://dx.doi.org/10.1007/s10008-010-1049-110.1007/s10008-010-1049-1Search in Google Scholar
[13] Kang, E. T., Neoh, K. G., & Tan, K. L. (1998). Polyaniline: A polymer with many interesting intrinsic redox states. Progress in Polymer Science, 23, 277–324. DOI: 10.1016/s0079-6700(97)00030-0. http://dx.doi.org/10.1016/S0079-6700(97)00030-010.1016/S0079-6700(97)00030-0Search in Google Scholar
[14] Kirsh, Y. E., Fedotov, Y. A, Iudina, N. N., Artemov, D. Yu., Yanul’, N. A., & Nekrasova, T. N. (1991). On polyelectrolyte properties of sulfo-containing polyamides on the base of isoand terephthalic acids in aqueous solution. Polymer Science A, 33, 1127–1134. Search in Google Scholar
[15] Li, Y., Ying, B. Y., Hong, L. J., & Yang, M. J. (2010). Watersoluble polyaniline and its composite with poly(vinyl alcohol) for humidity sensing. Synthetic Metals, 160, 455–461. DOI: 10.1016/j.synthmet.2009.11.031. http://dx.doi.org/10.1016/j.synthmet.2009.11.03110.1016/j.synthmet.2009.11.031Search in Google Scholar
[16] Lin-Vien, D., Colthup, N. B., Fateley, W. G., & Grasselli, J. G. (1991). The handbook of infrared and Raman characteristic frequencies of organic molecules. San Diego, CA, USA: Academic Press. Search in Google Scholar
[17] MacDiarmid, A. G., & Epstein, A. J. (1994). The concept of secondary doping as applied to polyaniline. Synthetic Metals, 65, 103–116. DOI: 10.1016/0379-6779(94)90171-6. http://dx.doi.org/10.1016/0379-6779(94)90171-610.1016/0379-6779(94)90171-6Search in Google Scholar
[18] Nekrasov, A. A., Ivanov, V. F., & Vannikov, A. V. (2000). Analysis of the structure of polyaniline absorption spectra based on spectroelectrochemical data. Journal of Electroanalytical Chemistry, 482, 11–17. DOI: 10.1016/s0022-0728(00)00005-x. http://dx.doi.org/10.1016/S0022-0728(00)00005-X10.1016/S0022-0728(00)00005-XSearch in Google Scholar
[19] Omełchenko, O. D., Gribkova, O. L., Nekrasov, A. A., Tverskoi, V. A., Ivanov, V. F., & Vannikov, A. V. (2011). Nonadditive phenomena during polyaniline synthesis in the presence of mixtures of rigid-chain and flexible-chain polymer sulfoacids and their effect on properties of obtained interpolymer complexes. Protection of Metals and Physical Chemistry of Surfaces, 47, 503–511. DOI: 10.1134/s2070205111040149. http://dx.doi.org/10.1134/S207020511104014910.1134/S2070205111040149Search in Google Scholar
[20] Pashkin, I. I., Tverskoi, V. A., & Pravednikov, A. N. (1987). Charge-transfer complexes of unit-type heterogeneous trinitrofluorenone-containing polymers. Polymer Science A, 29, 1631–1637. Search in Google Scholar
[21] Pavlov, G. M., Zaitseva, I. I., Gubarev, A. S., Gavrilova, I. I., & Panarin, E. F. (2006). Diffusion-viscometric analysis and conformational characteristics of sodium polystyrenesulfonate molecules. Russian Journal of Applied Chemistry, 79, 1490–1493. DOI: 10.1134/s1070427206090187. http://dx.doi.org/10.1134/S107042720609018710.1134/S1070427206090187Search in Google Scholar
[22] Ping, Z. (1996). In situ FTIR-attenuated total reflection spectroscopic investigations on the base-acid transitions of polyaniline. Base-acid transition in the emeraldine form of polyaniline. Journal of the Chemical Society, Faraday Transactions, 92, 3063–3067. DOI: 10.1039/ft9969203063. http://dx.doi.org/10.1039/ft996920306310.1039/FT9969203063Search in Google Scholar
[23] Quillard, S., Louarn, G., Buisson, J. P., Boyer, M., Lapkowski, M., Pron, A., & Lefrant, S. (1997). Vibrational spectroscopic studies of the isotope effects in polyaniline. Synthetic Metals, 84, 805–806. DOI: 10.1016/s0379-6779(96)04155-0. http://dx.doi.org/10.1016/S0379-6779(96)04155-010.1016/S0379-6779(96)04155-0Search in Google Scholar
[24] Razova, A. B., Gribkova, O. L., Nekrasov, A. A., Ivanov, V. F., Tverskoi, V. A., & Vannikov, A. V. (2010). Influence of structure of polyacid on synthesis and properties of interpolymer polyaniline complexes. Protection of Metals and Physical Chemistry of Surfaces, 46, 540–545. DOI: 10.1134/s2070205110050060. http://dx.doi.org/10.1134/S207020511005006010.1134/S2070205110050060Search in Google Scholar
[25] Socrates, G. (2001). Infrared and Raman characteristic group frequencies. New York, NY, USA: Wiley. Search in Google Scholar
[26] Stejskal, J., Sapurina, I., & Trchová, M. (2010). Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science, 35, 1420–1481. DOI: 10.1016/j.progpolymsci.2010.07.006. http://dx.doi.org/10.1016/j.progpolymsci.2010.07.00610.1016/j.progpolymsci.2010.07.006Search in Google Scholar
[27] Sun, L. F., Liu, H. B., Clark, R., & Yang, S. C. (1997). Double-strand polyaniline. Synthetic Metals, 84, 67–68. DOI: 10.1016/s0379-6779(96)03839-8. http://dx.doi.org/10.1016/S0379-6779(96)03839-810.1016/S0379-6779(96)03839-8Search in Google Scholar
[28] Tarver, J., Yoo, J. E., Dennes, T. J., Schwartz, J., & Loo, Y. L. (2009). Polymer acid doped polyaniline is electrochemically stable beyond pH9. Chemistry of Materials, 21, 280–286. DOI: 10.1021/cm802314h. http://dx.doi.org/10.1021/cm802314h10.1021/cm802314hSearch in Google Scholar
[29] Tengstedt, C., Crispin, A., Hsu, C. H., Zhang, C., Parker, I. D., Salaneck, W. R., & Fahlman, M. (2005). Study and comparison of conducting polymer hole injection layers in light emitting devices. Organic Electronics, 6, 21–33. DOI: 10.1016/j.orgel.2005.02.001. http://dx.doi.org/10.1016/j.orgel.2005.02.00110.1016/j.orgel.2005.02.001Search in Google Scholar
[30] Trchová, M., & Stejskal, J. (2011). Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (IUPAC Technical report). Pure and Applied Chemistry, 83, 1803–1817. DOI: 10.1351/pac-rep-10-02-01. http://dx.doi.org/10.1351/PAC-REP-10-02-0110.1351/PAC-REP-10-02-01Search in Google Scholar
[31] Trchová, M., Morávková, Z., Šeděnková, I., & Stejskal, J. (2012). Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline. Chemical Papers, 66, 415–445. DOI: 10.2478/s11696-012-0142-6. http://dx.doi.org/10.2478/s11696-012-0142-610.2478/s11696-012-0142-6Search in Google Scholar
[32] Wessling, B. (2007). Conductive polymers as organic nanometals. In T. A. Skotheim, & J. R. Reynolds (Eds.), Handbook of conducting polymers: Conjugated polymers. Processing and applications (3rd ed., pp. 1–23). London, UK: Taylor & Francis. Search in Google Scholar
[33] Yang, S. M., Chen, W. M., & You, K. S. (1997). The properties of polyaniline-polyelectrolyte complexes. Synthetic Metals, 84, 77–78. DOI: 10.1016/s0379-6779(96)03844-1. http://dx.doi.org/10.1016/S0379-6779(96)03844-110.1016/S0379-6779(96)03844-1Search in Google Scholar
[34] Yoo, J. E., Cross, J. L., Bucholz, T. L., Lee, K. S., Espe, M. P., & Loo, Y. L. (2007). Improving the electrical conductivity of polymer acid-doped polyaniline by controlling the template molecular weight. Journal of Materials Chemistry, 17, 1268–1275. DOI: 10.1039/b618521e. http://dx.doi.org/10.1039/b618521e10.1039/b618521eSearch in Google Scholar
[35] Yoo, J. E., Bucholz, T. L., Jung, S., & Loo, Y. L. (2008). Narrowing the size distribution of the polymer acid improves PANI conductivity. Journal of Materials Chemistry, 18, 3129–3135. DOI: 10.1039/b802829j. http://dx.doi.org/10.1039/b802829j10.1039/b802829jSearch in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Recent trends and progress in research into structure and properties of polyaniline and polypyrrole — Topical Issue
- Printing polyaniline for sensor applications
- Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials
- Conducting polymer-silver composites
- Electrorheological response of polyaniline and its hybrids
- Effect of PPy/PEG conducting polymer film on electrochemical performance of LiFePO4 cathode material for Li-ion batteries
- Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration
- Self-assembly of aniline oligomers and their induced polyaniline supra-molecular structures
- Self-organization of polyaniline during oxidative polymerization: formation of granular structure
- Influence of ethanol on the chain-ordering of carbonised polyaniline
- X-ray absorption spectroscopy of nanostructured polyanilines
- Effect of cations on polyaniline morphology
- Preparation of polyaniline in the presence of polymeric sulfonic acids mixtures: the role of intermolecular interactions between polyacids
- Chemical degradation of polyaniline by reaction with Fenton’s reagent — a spectroelectrochemical study
- Thin mesoporous polyaniline films manifesting a water-promoted photovoltaic effect
- Polyamide grafted with polypyrrole: formation, properties, and stability
- Effect of ionic liquid on polyaniline chemically synthesised under falling-pH conditions
- Polyaniline doped with poly(acrylamidomethylpropanesulphonic acid): electrochemical behaviour and conductive properties in neutral solutions
- Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles
- Bi-hybrid coatings: polyaniline-montmorillonite filler in organic-inorganic polymer matrix
- Preparation of aqueous polyaniline-vesicle suspensions with class III peroxidases. Comparison between horseradish peroxidase isoenzyme C and soybean peroxidase
- Preparation, characterisation, and dielectric properties of polypyrrole-clay composites
- Multi-wall carbon nanotubes with nitrogen-containing carbon coating
- Conducting poly(o-anisidine)-coated steel electrodes for supercapacitors
- Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations
- Preparation of a miniaturised iodide ion selective sensor using polypyrrole and pencil lead: effect of double-coating, electropolymerisation time, and current density
- Role of polyaniline morphology in Pd particles dispersion. Hydrogenation of alkynes in the presence of Pd-polyaniline catalysts
- Nanostructured polyaniline-coated anode for improving microbial fuel cell power output
- Antibacterial properties of polyaniline-silver films
- Effect of compression pressure on mechanical and electrical properties of polyaniline pellets
Articles in the same Issue
- Recent trends and progress in research into structure and properties of polyaniline and polypyrrole — Topical Issue
- Printing polyaniline for sensor applications
- Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials
- Conducting polymer-silver composites
- Electrorheological response of polyaniline and its hybrids
- Effect of PPy/PEG conducting polymer film on electrochemical performance of LiFePO4 cathode material for Li-ion batteries
- Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration
- Self-assembly of aniline oligomers and their induced polyaniline supra-molecular structures
- Self-organization of polyaniline during oxidative polymerization: formation of granular structure
- Influence of ethanol on the chain-ordering of carbonised polyaniline
- X-ray absorption spectroscopy of nanostructured polyanilines
- Effect of cations on polyaniline morphology
- Preparation of polyaniline in the presence of polymeric sulfonic acids mixtures: the role of intermolecular interactions between polyacids
- Chemical degradation of polyaniline by reaction with Fenton’s reagent — a spectroelectrochemical study
- Thin mesoporous polyaniline films manifesting a water-promoted photovoltaic effect
- Polyamide grafted with polypyrrole: formation, properties, and stability
- Effect of ionic liquid on polyaniline chemically synthesised under falling-pH conditions
- Polyaniline doped with poly(acrylamidomethylpropanesulphonic acid): electrochemical behaviour and conductive properties in neutral solutions
- Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles
- Bi-hybrid coatings: polyaniline-montmorillonite filler in organic-inorganic polymer matrix
- Preparation of aqueous polyaniline-vesicle suspensions with class III peroxidases. Comparison between horseradish peroxidase isoenzyme C and soybean peroxidase
- Preparation, characterisation, and dielectric properties of polypyrrole-clay composites
- Multi-wall carbon nanotubes with nitrogen-containing carbon coating
- Conducting poly(o-anisidine)-coated steel electrodes for supercapacitors
- Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations
- Preparation of a miniaturised iodide ion selective sensor using polypyrrole and pencil lead: effect of double-coating, electropolymerisation time, and current density
- Role of polyaniline morphology in Pd particles dispersion. Hydrogenation of alkynes in the presence of Pd-polyaniline catalysts
- Nanostructured polyaniline-coated anode for improving microbial fuel cell power output
- Antibacterial properties of polyaniline-silver films
- Effect of compression pressure on mechanical and electrical properties of polyaniline pellets