Startseite Conducting polymer-silver composites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Conducting polymer-silver composites

  • Jaroslav Stejskal EMAIL logo
Veröffentlicht/Copyright: 3. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Preparations of hybrid composites composed of two conducting components, a conducting polymer and silver, are reviewed. They are produced mainly by the oxidation of aniline or pyrrole with silver ions. In another approach, polyaniline or polypyrrole are used for the reduction of silver ions to metallic silver. Other synthetic approaches are also reviewed. Products of oxidation of aniline derivatives, including phenylenediamines, are considered. Morphology of both the conducting polymers and the silver in composites displays a rich variety. Conductivity of the composites seldom exceeds 1000 S cm−1 and seems to be controlled by percolation. Interfacial effects are also discussed. Potential applications of hybrid composites are outlined; they are likely to extend especially to conducting inks, printed electronics, noble-metal recovery, antimicrobial materials, catalysts, and sensors.

[1] Afzal, A. B., Akhtar, M. J., Nadeem, M., Ahmad, M., Hassan, M. M., Yasin, T., & Mehmood, M. (2009). Structural and electrical properties of polyaniline/silver nanocomposites. Journal of Physics D: Applied Physics, 42, 015411. DOI: 10.1088/0022-3727/42/1/015411. http://dx.doi.org/10.1088/0022-3727/42/1/01541110.1088/0022-3727/42/1/015411Suche in Google Scholar

[2] Afzal, A. B., & Akhtar, M. J. (2010). Effect of inorganic silver nanoparticles on structural and electrical properties of polyaniline/PVC blends. Journal of Inorganic and Organometallic Polymers and Materials, 20, 783–792. DOI: 10.1007/s10904-010-9405-2. http://dx.doi.org/10.1007/s10904-010-9405-210.1007/s10904-010-9405-2Suche in Google Scholar

[3] Afzal, A. B., & Akhtar, M. J. (2011). Investigation of ageing effects on the electrical properties of polayniline/silver nanocomposites. Chinese Physics B, 20, 058102. DOI: 10.1088/1674-1056/20/5/058102. http://dx.doi.org/10.1088/1674-1056/20/5/05810210.1088/1674-1056/20/5/058102Suche in Google Scholar

[4] Afzal, A. B., & Akhtar, M. J. (2012). Effects of silver nanoparticles on thermal properties of DBSA-doped polyaniline/PVC blends. Iranian Polymer Journal, 21, 489–496. DOI: 10.1007/s13726-012-0053-y. http://dx.doi.org/10.1007/s13726-012-0053-y10.1007/s13726-012-0053-ySuche in Google Scholar

[5] Alam, F., Ansari, S. A., Khan, W., Khan, M. E., & Naqvi, A. H. (2012). Synthesis, structural, optical and electrical properties of in-situ synthesized polyaniline/silver nanocomposites. Functional Materials Letters, 5, 1250026. DOI: 10.1142/s1793604712500269. http://dx.doi.org/10.1142/S179360471250026910.1142/S1793604712500269Suche in Google Scholar

[6] Alqudami, A., Annapoorni, S., Sen, P., & Rawat, R. S. (2007). The incorporation of silver nanoparticles into polypyrrole: Conductivity changes. Synthetic Metals, 157, 53–59. DOI: 10.1016/j.synthmet.2006.12.006. http://dx.doi.org/10.1016/j.synthmet.2006.12.00610.1016/j.synthmet.2006.12.006Suche in Google Scholar

[7] Ansari, R., & Delavar, A. F. (2008). Sorption of silver ion from aqueous solutions using conducting electroactive polymers. Journal of the Iranian Chemical Society, 5, 657–668. DOI: 10.1007/bf03246147. http://dx.doi.org/10.1007/BF0324614710.1007/BF03246147Suche in Google Scholar

[8] Atmeh, M., & Alcock-Earley, B. E. (2011). A conducting polymer/Ag nanoparticle composite as a nitrate sensor. Journal of Applied Electrochemistry, 41, 1341–1347. DOI: 10.1007/s10800-011-0354-4. http://dx.doi.org/10.1007/s10800-011-0354-410.1007/s10800-011-0354-4Suche in Google Scholar

[9] Au, K. M., Lu, Z. H., Matcher, S. J., & Armes, S. P. (2011). Polypyrrole nanoparticles: A potential optical coherence tomography contrast agent for cancer imaging. Advanced Materials, 23, 5792–5795. DOI: 10.1002/adma.201103190. http://dx.doi.org/10.1002/adma.20110319010.1002/adma.201103190Suche in Google Scholar PubMed

[10] Ayad, M. M., & Zaki, E. (2009). Synthesis and characterization of silver-polypyrrole film composite. Applied Surface Science, 256, 787–791. DOI: 10.1016/j.apsusc.2009.08.060. http://dx.doi.org/10.1016/j.apsusc.2009.08.06010.1016/j.apsusc.2009.08.060Suche in Google Scholar

[11] Ayad, M. M., Prastomo, N., Matsuda, A., & Stejskal, J. (2010). Sensing of silver ions by nanotubular polyaniline film deposited on quartz-crystal in a microbalance. Synthetic Metals, 160, 42–46. DOI: 10.1016/j.synthmet.2009.09.030. http://dx.doi.org/10.1016/j.synthmet.2009.09.03010.1016/j.synthmet.2009.09.030Suche in Google Scholar

[12] Baibarac, M., Mihut, L., Louarn, G., Mevellec, J. Y., Wery, J., Lefrant, S., & Baltog, I. (1999). Interfacial chemical effect evidenced on SERS spectra of polyaniline thin films deposited on rough metallic supports. Journal of Raman Spectroscopy, 30, 1105–1113. DOI: 10.1002/(SICI)1097-4555(199912)30:12〈1105::AID-JRS507〉3.0.CO;2-3. http://dx.doi.org/10.1002/(SICI)1097-4555(199912)30:12<1105::AID-JRS507>3.0.CO;2-310.1002/(SICI)1097-4555(199912)30:12<1105::AID-JRS507>3.0.CO;2-3Suche in Google Scholar

[13] Barkade, S. S., Naik, J. B., & Sonawane, S. H. (2011). Ultrasound assisted miniemulsion synthesis of polyaniline/Ag nanocomposite and its application for ethanol vapour sensing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 378, 94–98. DOI: 10.1016/j.colsurfa.2011.02. 002. http://dx.doi.org/10.1016/j.colsurfa.2011.02.00210.1016/j.colsurfa.2011.02.002Suche in Google Scholar

[14] Bashyam, R., & Zelenay, P. (2006). A class of non-precious metal composite catalysts for fuel cells. Nature, 443, 63–66. DOI: 10.1038/nature05118. http://dx.doi.org/10.1038/nature0511810.1038/nature05118Suche in Google Scholar

[15] Bedre, M. D., Basavaraja, S., Salwe, B. D., Shivakumar, V., Arunkumar, L., & Venkataraman, A. (2009). Preparation and characterization of Pani and Pani-Ag nanocomposites via interfacial polymerization. Polymer Composites, 30, 1668–1677. DOI: 10.1002/pc.20740. http://dx.doi.org/10.1002/pc.2074010.1002/pc.20740Suche in Google Scholar

[16] Blinova, N. V., Stejskal, J., Trchová, M., Ćirić-Marjanović, G., & Sapurina, I. (2007a). Polymerization of aniline on polyaniline membranes. Journal of Physical Chemistry B, 111, 2440–2448. DOI: 10.1021/jp067370f. http://dx.doi.org/10.1021/jp067370f10.1021/jp067370fSuche in Google Scholar

[17] Blinova, N. V., Stejskal, J., Trchová, M., Prokeš, J., & Omastová, M. (2007b). Polyaniline and polypyrrole: A comparative study of the preparation. European Polymer Journal, 43, 2331–2341. DOI: 10.1016/j.eurpolymj.2007.03.045. http://dx.doi.org/10.1016/j.eurpolymj.2007.03.04510.1016/j.eurpolymj.2007.03.045Suche in Google Scholar

[18] Blinova, N. V., Stejskal, J., Trchová, M., Sapurina, I., & Ćirić-Marjanović, G. (2009). The oxidation of aniline with silver nitrate to polyaniline-silver composites. Polymer, 50, 50–56. DOI: 10.1016/j.polymer.2008.10.040. http://dx.doi.org/10.1016/j.polymer.2008.10.04010.1016/j.polymer.2008.10.040Suche in Google Scholar

[19] Blinova, N. V., Bober, P., Hromádková, J., Trchová, M., Stejskal, J., & Prokeš, J. (2010). Polyaniline-silver composites prepared by the oxidation of aniline with silver nitrate in acetic acid solutions. Polymer International, 59, 437–446. DOI: 10.1002/pi.2718. http://dx.doi.org/10.1002/pi.271810.1002/pi.2718Suche in Google Scholar

[20] Bober, P., Stejskal, J., Trchová, M., Hromádková, J., & Prokeš, J. (2010a). Polyaniline-coated silver nanowires. Reactive & Functional Polymers, 70, 656–662. DOI: 10.1016/j.reactfunctpolym.2010.05.009. http://dx.doi.org/10.1016/j.reactfunctpolym.2010.05.00910.1016/j.reactfunctpolym.2010.05.009Suche in Google Scholar

[21] Bober, P., Stejskal, J., Trchová, M., Prokeš, J., & Sapurina, I. (2010b). Oxidation of aniline with silver nitrate accelerated by p-phenylenediamine: A new route to conducting composites. Macromolecules, 43, 10406–10413. DOI: 10.1021/ma101474j. http://dx.doi.org/10.1021/ma101474j10.1021/ma101474jSuche in Google Scholar

[22] Bober, P., Stejskal, J., Trchová, M., & Prokeš, J. (2011a). Polyaniline-silver composites prepared by the oxidation of aniline with mixed oxidants, silver nitrate and ammonium peroxydisulfate: The control of silver content. Polymer, 52, 5947–5952. DOI: 10.1016/j.polymer.2011.10.025. http://dx.doi.org/10.1016/j.polymer.2011.10.02510.1016/j.polymer.2011.10.025Suche in Google Scholar

[23] Bober, P., Stejskal, J., Trchová, M., & Prokeš, J. (2011b). The preparation of conducting polyaniline-silver and poly (p-phenylenediamine)-silver nanocomposites in liquid and frozen reaction mixtures. Journal of Solid State Electrochemistry, 15, 2361–2368. DOI: 10.1007/s10008-011-1414-8. http://dx.doi.org/10.1007/s10008-011-1414-810.1007/s10008-011-1414-8Suche in Google Scholar

[24] Bober, P., Trchová, M., Prokeš, J., Varga, M., & Stejskal, J. (2011c). Polyaniline-silver composites prepared by the oxidation of aniline with silver nitrate in solutions of sulfonic acids. Electrochimica Acta, 56, 3580–3585. DOI: 10.1016/j.electacta.2010.08.041. http://dx.doi.org/10.1016/j.electacta.2010.08.04110.1016/j.electacta.2010.08.041Suche in Google Scholar

[25] Borthakur, L. J., Sharma, S., & Dolui, S. K. (2011). Studies on Ag/polypyrrole composite deposited on the surface of styrene-methyl acrylate copolymer microparticles and their electrical and electrochemical properties. Journal of Materials Science: Materials in Electronics, 22, 949–958. DOI: 10.1007/s10854-010-0242-4. http://dx.doi.org/10.1007/s10854-010-0242-410.1007/s10854-010-0242-4Suche in Google Scholar

[26] Bouazza, S., Alonzo, V., & Hauchard, D. (2009). Synthesis and characterization of Ag nanoparticles-polyaniline composite powder material. Synthetic Metals, 159, 1612–1619. DOI: 10.1016/j.synthmet.2009.04.025. http://dx.doi.org/10.1016/j.synthmet.2009.04.02510.1016/j.synthmet.2009.04.025Suche in Google Scholar

[27] Cao, Y., Smith, P., & Heeger, A. J. (1993). Counter-ion induced processibility of conducting polyaniline. Synthetic Metals, 57, 3514–3519. DOI: 10.1016/0379-6779(93)90468-c. http://dx.doi.org/10.1016/0379-6779(93)90468-C10.1016/0379-6779(93)90468-CSuche in Google Scholar

[28] Chang, S. J., Chen, K., Hua, Q., Ma, Y. S., & Huang, W. X. (2011). Evidence for the growth mechanism of silver nanocubes and nanowires. Journal of Physical Chemistry C, 115, 7979–7986. DOI: 10.1021/jp2010088. http://dx.doi.org/10.1021/jp201008810.1021/jp2010088Suche in Google Scholar

[29] Chang, G.H., Luo, Y. L., Lu, W. B., Qin, X.Y., Asiri, A.M., Al-Youbi, A. O., & Sun, X. P. (2012a). Ag nanoparticles decorated polyaniline nanofibers: synthesis, characterization, and applications toward catalytic reduction of 4-nitrophenol and electrochemical detection of H2O2 and glucose. Catalysis Science & Technology, 2, 800–806. DOI: 10.1039/c2cy00454b. http://dx.doi.org/10.1039/c2cy00454b10.1039/c2cy00454bSuche in Google Scholar

[30] Chang, M. C., Kim, T. J., Park, H. W., Kang, M. J., Reichmanis, E., & Yoon, H. S. (2012b). Imparting chemical stability in nanoparticulate silver via a conjugated polymer casing approach. ACS Applied Materials & Interfaces, 4, 4357–4365. DOI: 10.1021/am3009967. http://dx.doi.org/10.1021/am300996710.1021/am3009967Suche in Google Scholar PubMed

[31] Chao, D. M., Cui, L., Zhang, J. F., Liu, X. C., Li, Y. X., Zhang, W. J., & Wang, C. (2009). Preparation of oligoaniline derivative/polyvinylpyrrolidone nanofibers containing silver nanoparticles. Synthetic Metals, 159, 537–540. DOI: 10.1016/j.synthmet.2008.11.013. http://dx.doi.org/10.1016/j.synthmet.2008.11.01310.1016/j.synthmet.2008.11.013Suche in Google Scholar

[32] Chatterjee, S., Garai, A., & Nandi, A. K. (2011). Mechanism of polypyrrole and silver nanorod formation in lauric acidcetyl trimethyl ammonium bromide coacervate gel template: Physical and conductivity properties. Synthetic Metals, 161, 62–71. DOI: 10.1016/j.synthmet.2010.10.035. http://dx.doi.org/10.1016/j.synthmet.2010.10.03510.1016/j.synthmet.2010.10.035Suche in Google Scholar

[33] Chen, A. H., Wang, H. Q., & Li, X. Y. (2005a). One-step process to fabricate Ag-polypyrrole coaxial nanocables. Chemical Communications, 2005, 1863–1864. DOI: 10.1039/b417744d. http://dx.doi.org/10.1039/b417744d10.1039/B417744DSuche in Google Scholar PubMed

[34] Chen, A. H., Kamata, K., Nakagawa, M., Iyoda, T., Wang, H. Q., & Li, X. Y. (2005b). Formation process of silver-polypyrrole coaxial nanocables synthesized by redox reaction between AgNO3 and pyrrole in the presence of poly(vinylpyrrolidone). Journal of Physical Chemistry B, 109, 18283–18288. DOI: 10.1021/jp053247x. http://dx.doi.org/10.1021/jp053247x10.1021/jp053247xSuche in Google Scholar PubMed

[35] Chen, A. H., Xie, H. X., Wang, H. Q., Li, H. Y., & Li, X. Y. (2006). Fabrication of Ag/polypyrrole coaxial nanocables through common ions adsorption effect. Synthetic Metals, 156, 346–350. DOI: 10.1016/j.synthmet.2005.12.017. http://dx.doi.org/10.1016/j.synthmet.2005.12.01710.1016/j.synthmet.2005.12.017Suche in Google Scholar

[36] Chen, R., Zhao, S. Z., Han, G. Y., & Dong, J. H. (2008). Fabrication of the silver/polypyrrole/polyacrylonitrile composite nanofibrous mats. Materials Letters, 62, 4031–4034. DOI: 10.1016/j.matlet.2008.05.054. http://dx.doi.org/10.1016/j.matlet.2008.05.05410.1016/j.matlet.2008.05.054Suche in Google Scholar

[37] Chen, H. M., & Liu, R. S. (2011a). Architecture of metallic nanostructures: Synthesis strategy and specific applications. Journal of Physical Chemistry C, 115, 3513–3527. DOI: 10.1021/jp108403r. http://dx.doi.org/10.1021/jp108403r10.1021/jp108403rSuche in Google Scholar

[38] Chen, F., & Liu, P. (2011b). Conducting polyaniline nanoparticles and their dispersion for waterborn corrosion protection coating. ACS Applied Materials & Interfaces, 3, 2694–2702. DOI: 10.1021/am200488m. http://dx.doi.org/10.1021/am200488m10.1021/am200488mSuche in Google Scholar PubMed

[39] Cheng, D. M., Xia, H. B., & Cahn, H. S. O. (2006). Fabrication of polymeric hollow nanospheres, hollow nanocubes and hollow plates. Nanotechnology, 17, 1661–1667. DOI: 10.1088/0957-4484/17/6/021. http://dx.doi.org/10.1088/0957-4484/17/6/02110.1088/0957-4484/17/6/021Suche in Google Scholar PubMed

[40] Cheng, Q. L., Pavlinek, V., He, Y., Yan, Y. F., Li, C. Z., & Saha, P. (2011). Template-free synthesis of hollow poly(oanisidine) microspheres and their electrorheological characteristics. Smart Materials and Structures, 20, 065014. DOI: 10.1088/0964-1726/20/6/065014. http://dx.doi.org/10.1088/0964-1726/20/6/06501410.1088/0964-1726/20/6/065014Suche in Google Scholar

[41] Chi, K. W., Song, Y. H., Cha, E. H., Jin, S. H., & Lee, C. W. (2010). Reversible colorimetric changes of a nanoporous polyaniline conducting particles system for sensing metal ions, Synthetic Metals, 160, 946–949. DOI: 10.1016/j.synthmet.2010.02.005. http://dx.doi.org/10.1016/j.synthmet.2010.02.00510.1016/j.synthmet.2010.02.005Suche in Google Scholar

[42] Choi, M. J., & Jang, J. S. (2008). Heavy metal ion adsorption onto polypyrrole-impregnated porous carbon. Journal of Colloid and Interface Science, 325, 287–289. DOI: 10.1016/j.jcis.2008.05.047. http://dx.doi.org/10.1016/j.jcis.2008.05.04710.1016/j.jcis.2008.05.047Suche in Google Scholar PubMed

[43] Choudhury, A. (2009). Polyaniline/silver nanocomposites: Dielectric properties and ethanol vapour sensitivity. Sensors and Actuators B: Chemical, 138, 318–325. DOI: 10.1016/j.snb.2009.01.019. http://dx.doi.org/10.1016/j.snb.2009.01.01910.1016/j.snb.2009.01.019Suche in Google Scholar

[44] Choudhury, A., Kar, P., Mukherjee, M., & Adhikari, B. (2009). Polyaniline/silver nanocomposite based acetone vapour sensor. Sensor Letters, 7, 592–598. DOI: 10.1166/sl.2009.1115. http://dx.doi.org/10.1166/sl.2009.111510.1166/sl.2009.1115Suche in Google Scholar

[45] Ćirić-Marjanović, G., Trchová, M., Konyushenko, E. N., Holler, P., & Stejskal, J. (2008). Chemical oxidative polymerization of aminodiphenylamines. Journal of Physical Chemistry B, 112, 6976–6987. DOI: 10.1021/jp710963e. http://dx.doi.org/10.1021/jp710963e10.1021/jp710963eSuche in Google Scholar PubMed

[46] Ćirić-Marjanović, G., Marjanović, B., Bober, P., Rozlívková, Z., Stejskal, J., Trchová, M., & Prokeš, J. (2011). The oxidative polymerization of p-phenylenediamine with silver nitrate: Toward highly conducting micro/nanostructured silver/conjugated polymer composites. Journal of Polymer Science Part A: Polymer Chemistry, 49, 3387–3403. DOI: 10.1002/pola.24775. http://dx.doi.org/10.1002/pola.2477510.1002/pola.24775Suche in Google Scholar

[47] Correa, C. M., Faez, R., Bizeto, M. A., & Camilo, F. F. (2012). One-pot synthesis of a polyaniline-silver nanocomposite prepared in ionic liquid. RSC Advances, 2, 3088–3093. DOI: 10.1039/c2ra00992g. http://dx.doi.org/10.1039/c2ra00992g10.1039/c2ra00992gSuche in Google Scholar

[48] Crespilho, F. N., Iost, R. M., Travain, S. A., Oliveira, O. N., Jr., & Zucolotto, V. (2009). Enzyme immobilization on Ag nanoparticles/polyaniline nanocomposites. Biosensors and Bioelectronics, 24, 3073–3077. DOI: 10.1016/j.bios.2009.03. 026. http://dx.doi.org/10.1016/j.bios.2009.03.026Suche in Google Scholar

[49] Dallas, P., Niarchos, D., Vrbanic, D., Boukos, N., Pejovnik, S., Trapalis, C., & Petridis, D. (2007). Interfacial polymerization of pyrrole and in situ synthesis of polypyrrole/silver nanocomposites. Polymer, 48, 2007–2013. DOI: 10.1016/j.polymer.2007.01.058. http://dx.doi.org/10.1016/j.polymer.2007.01.05810.1016/j.polymer.2007.01.058Suche in Google Scholar

[50] Dawn, A., & Nandi, A. K. (2006). Formation of silver nanoparticles in deoxyribonucleic acid-poly(o-methoxyaniline) hybrid: A novel nano-biocomposite. Journal of Physical Chemistry B, 110, 18291–18298. DOI: 10.1021/jp063269z. http://dx.doi.org/10.1021/jp063269z10.1021/jp063269zSuche in Google Scholar PubMed

[51] Dawn, A., Mukherjee, P., & Nandi, A. K. (2007). Preparation of size-controlled, highly populated, stable, and nearly monodispersed Ag nanoparticles in an organic medium from a simple interfacial redox process using a conducting polymer. Langmuir, 23, 5231–5237. DOI: 10.1021/la063229m. http://dx.doi.org/10.1021/la063229m10.1021/la063229mSuche in Google Scholar PubMed

[52] de Azevedo, W. M., de Barros, R. A., & da Silva, E. F. (2008a). Conductive polymer preparation under extreme or non-classical conditions. Journal of Materials Science, 43, 1400–1405. DOI: 10.1007/s10853-007-2278-2. http://dx.doi.org/10.1007/s10853-007-2278-210.1007/s10853-007-2278-2Suche in Google Scholar

[53] de Azevedo, W. M., de Mattos, I. L., Navarro, M., & da Silva, E. F., Jr. (2008b). Preparation and characterization of conducting polymer/silver hexacyanoferrate nanocomposite. Applied Surface Science, 255, 770–774. DOI: 10.1016/j.apsusc.2008.07.039. http://dx.doi.org/10.1016/j.apsusc.2008.07.03910.1016/j.apsusc.2008.07.039Suche in Google Scholar

[54] de Barros, R. A., Martins, C. R., & de Azevedo, W. M. (2005). Writing with conducting polymer. Synthetic Metals, 155, 35–38. DOI: 10.1016/j.synthmet.2005.05.014. http://dx.doi.org/10.1016/j.synthmet.2005.05.01410.1016/j.synthmet.2005.05.014Suche in Google Scholar

[55] de Barros, R. A., & de Azevedo, W. M. (2008). Polyaniline/silver nanocomposite preparation under extreme or nonclassical conditions. Synthetic Metals, 158, 922–926. DOI: 10.1016/j.synthmet.2008.06.021. http://dx.doi.org/10.1016/j.synthmet.2008.06.02110.1016/j.synthmet.2008.06.021Suche in Google Scholar

[56] de Barros, R. A., Areias, M. C. C., & de Azevedo, W. M. (2010). Conducting polymer photopolymerization mechanism: The role of nitrate anions (NO 3−). Synthetic Metals, 160, 61–64. DOI: 10.1016/j.synthmet.2009.09.033. http://dx.doi.org/10.1016/j.synthmet.2009.09.03310.1016/j.synthmet.2009.09.033Suche in Google Scholar

[57] de Barros, R. A., & de Azevedo, W. M. (2010). Solvent coassisted ultrasound technique for the preparation of silver nanowire/polyaniline composite. Synthetic Metals, 160, 1387–1391. DOI: 10.1016/j.synthmet.2010.04.006. http://dx.doi.org/10.1016/j.synthmet.2010.04.00610.1016/j.synthmet.2010.04.006Suche in Google Scholar

[58] Della Pina, C., Falletta, E., & Rossi, M. (2011). Conductive materials by metal catalyzed polymerization. Catalysis Today, 160, 11–27. DOI: 10.1016/j.cattod.2010.05.023. http://dx.doi.org/10.1016/j.cattod.2010.05.02310.1016/j.cattod.2010.05.023Suche in Google Scholar

[59] D’Eramo, F., Silber, J. J., Arévalo, A. H., & Sereno, L. E. (2000). Electrochemical detection of silver ions and the study of metal-polymer interactions on a polybenzidine film electrode. Journal of Electroanalytical Chemistry, 494, 60–68. DOI: 10.1016/s0022-0728(00)00329-6. http://dx.doi.org/10.1016/S0022-0728(00)00329-610.1016/S0022-0728(00)00329-6Suche in Google Scholar

[60] Dimeska, R., Murray, P. S., Ralph, S. F., & Wallace, G. G. (2006). Electroless recovery of silver by inherently conducting polymer powders, membranes and composite materials. Polymer, 47, 4520–4530. DOI: 10.1016/j.polymer.2006.03.112. http://dx.doi.org/10.1016/j.polymer.2006.03.11210.1016/j.polymer.2006.03.112Suche in Google Scholar

[61] Dispenza, C., Sabatino, M. A., Chmielewska, D., LoPresti, C., & Battaglia, G. (2012). Inherently fluorescent polyaniline nanoparticles in a dynamic landscape. Reactive & Functional Polymers, 72, 185–197. DOI: 10.1016/j.reactfunctpolym.2012.01.001. http://dx.doi.org/10.1016/j.reactfunctpolym.2012.01.00110.1016/j.reactfunctpolym.2012.01.001Suche in Google Scholar

[62] Drury, A., Chaure, S., Kröll, M., Nicolosi, V., Chaure, N., & Blau, W. J. (2007). Fabrication and characterization of silver/polyaniline composite nanowires in porous anodic alumina. Chemistry of Materials, 19, 4252–4258. DOI: 10.1021/cm071102s. http://dx.doi.org/10.1021/cm071102s10.1021/cm071102sSuche in Google Scholar

[63] Du, J. M., Liu, Z. M., Han, B. X., Li, Z. H., Zhang, J. L., & Huang, Y. (2005). One-pot synthesis of macroporous polyaniline microspheres and Ag/polyaniline core-shell particles. Microporous and Mesoporous Materials, 84, 254–260. DOI: 10.1016/j.micromeso.2005.05.036. http://dx.doi.org/10.1016/j.micromeso.2005.05.03610.1016/j.micromeso.2005.05.036Suche in Google Scholar

[64] Efros, A. L., & Shklovski, B. I. (1976). Critical behaviour of conductivity and dielectric constant near the metal-non-metal transition threshold. Physica Status Solidi B, 76, 475–485. DOI: 10.1002/pssb.2220760205. http://dx.doi.org/10.1002/pssb.222076020510.1002/pssb.2220760205Suche in Google Scholar

[65] Feng, X. M. (2010). Synthesis of Ag/polypyrrole core-shell nanospheres by a seeding method. Chinese Journal of Chemistry, 28, 1359–1362. DOI: 10.1002/cjoc.201090232. http://dx.doi.org/10.1002/cjoc.20109023210.1002/cjoc.201090232Suche in Google Scholar

[66] Feng, X. M., Huang, H. P., Ye, Q. Q., Zhu, J. J., & Hou, W. H. (2007a). Ag/polypyrrole core-shell nanostructures: Interface polymerization, characterization, and modification by gold nanoparticles. Journal of Physical Chemistry C, 111, 8463–8468. DOI: 10.1021/jp071140z. http://dx.doi.org/10.1021/jp071140z10.1021/jp071140zSuche in Google Scholar

[67] Feng, X. M., Sun, Z. Z., Hou, W. H., & Zhu, J. J. (2007b). Synthesis of functional polypyrrole/Prussian blue and polypyrrole/Ag composite microtubes by using a reactive template. Nanotechnology, 18, 195603. DOI: 10.1088/0957-4484/18/19/195603. http://dx.doi.org/10.1088/0957-4484/18/19/19560310.1088/0957-4484/18/19/195603Suche in Google Scholar

[68] Feng, X. M., Huang, H. P., Xu, L., Zhu, J. J., & Hou, W. H. (2008). Shape-controlled synthesis of polypyrrole/Ag nanostructures in the presence of chitosan. Journal of Nanoscience and Nanotechnology, 8, 443–447. DOI: 10.1166/jnn.2008.028. http://dx.doi.org/10.1166/jnn.2008.05410.1166/jnn.2008.028Suche in Google Scholar

[69] Firoz Babu, K., Dhandapani, P., Maruthamuthu, S., & Anbu Kulandainathan, M. (2012). One pot synthesis of polypyrrole silver nanocomposite on cotton fabrics for multifunctional property. Carbohydrate Polymers, 90, 1557–1563. DOI: 10.1016/j.carbpol.2012.07.030. http://dx.doi.org/10.1016/j.carbpol.2012.07.03010.1016/j.carbpol.2012.07.030Suche in Google Scholar PubMed

[70] Fujii, S., Nishimura, Y., Aichi, A., Matsuzawa, S., Nakamura, Y., Akamatsu, K., & Nawafune, H. (2010). Facile one-step route to polyaniline-silver nanocomposite particles and their application as a colored particulate emulsifier. Synthetic Metals, 160, 1433–1437. DOI: 10.1016/j.synthmet.2010.04.024. http://dx.doi.org/10.1016/j.synthmet.2010.04.02410.1016/j.synthmet.2010.04.024Suche in Google Scholar

[71] Fuke, M. V., Vijayan, A., Kanitkar, P., & Aiyer, R. C. (2009a). Optical humidity sensing characteristics of Ag-polyaniline nanocomposite. IEEE Sensors Journal, 9, 648–653. DOI: 10.1109/jsen.2009.2020662. http://dx.doi.org/10.1109/JSEN.2009.202066210.1109/JSEN.2009.2020662Suche in Google Scholar

[72] Fuke, M. V., Vijayan, A., Kanitkar, P., Kulkarni, M., Kale, B. B., & Aiyer, R. C. (2009b). Ag-polyaniline nanocomposite cladded planar optical waveguide based humidity sensor. Journal of Materials Science: Materials in Electronics, 20, 695–703. DOI: 10.1007/s10854-008-9787-x. http://dx.doi.org/10.1007/s10854-008-9787-x10.1007/s10854-008-9787-xSuche in Google Scholar

[73] Fuke, M. V., Kanitkar, P., Kulkarni, M., Kale, B. B., & Aiyer, R. C. (2010). Effect of particle size variation of Ag nanoparticles in polyaniline composite on humidity sensing. Talanta, 81, 320–326. DOI: 10.1016/j.talanta.2009.12.003. http://dx.doi.org/10.1016/j.talanta.2009.12.00310.1016/j.talanta.2009.12.003Suche in Google Scholar PubMed

[74] Gao, Y., Shan, D., Cao, F., Gong, J., Li, X., Ma, H. Y., Su, Z. M., & Qu, L. Y. (2009). Silver/polyaniline composite nanotubes: One-step synthesis and electrocatalytic activity of neurotransmitter dopamine. Journal of Physical Chemistry C, 113, 15175–15181. DOI: 10.1021/jp904788d. http://dx.doi.org/10.1021/jp904788d10.1021/jp904788dSuche in Google Scholar

[75] Gao, L., Lv, S., & Xing, S. X. (2012). Facile route to achieve silver@ polyaniline nanofibers. Synthetic Metals, 162, 948–952. DOI: 10.1016/j.synthmet.2012.04.026. http://dx.doi.org/10.1016/j.synthmet.2012.04.02610.1016/j.synthmet.2012.04.026Suche in Google Scholar

[76] Garai, A., Chatterjee, S., & Nandi, A. K. (2010). Nanocomposites of silver nanoparticle and dinonylnaphthalene disulfonic acid-doped thermoreversible polyaniline gel. Polymer Engineering & Science, 50, 446–454. DOI: 10.1002/pen.21545. http://dx.doi.org/10.1002/pen.2154510.1002/pen.21545Suche in Google Scholar

[77] Ghorbani, M., Lashkenari, M. S., & Eisazadeh, H. (2011). Synthesis and thermal stability studies of polyaniline/silver nanocomposite based on reduction of silver ions using polyaniline. High Performance Polymers, 23, 513–517. DOI: 10.1177/0954008311419049. http://dx.doi.org/10.1177/095400831141904910.1177/0954008311419049Suche in Google Scholar

[78] Gizdavic-Nikolaidis, M. R., Bennett, J. R., Swift, S., Easteal, A. J., & Ambrose, M. (2011). Broad spectrum of antimicrobial activity of functionalized polyanilines. Acta Biomaterialia, 7, 4204–4209. DOI: 10.1016/j.actbio.2011.07.018. http://dx.doi.org/10.1016/j.actbio.2011.07.01810.1016/j.actbio.2011.07.018Suche in Google Scholar PubMed

[79] Gniadek, M., Bak, E., Stojek, Z., & Donten, M. (2010a). Metalion driven synthesis of polyaniline composite doped with metallic nanocrystals at the boudary of two immiscible liquids. Journal of Solid State Electrochemistry, 14, 1303–1310. DOI: 10.1007/s10008-009-0939-6. http://dx.doi.org/10.1007/s10008-009-0939-610.1007/s10008-009-0939-6Suche in Google Scholar

[80] Gniadek, M., Donten, M., & Stojek Z. (2010b). Electroless formation of conductive polymer-metal nanostructured composites at boundry of two immiscible solvents. Morphology and properties. Electrochimica Acta, 55, 7737–7744. DOI: 10.1016/j.electacta.2009.10.064. http://dx.doi.org/10.1016/j.electacta.2009.10.06410.1016/j.electacta.2009.10.064Suche in Google Scholar

[81] Grinou, A., Bak, H. S., Yun, Y. S., & Jin, H. J. (2012). Polyaniline/silver nanoparticle-doped multiwalled carbon nanotube composites. Journal of Dispersion Science and Technology, 33, 750–755. DOI: 10.1080/01932691.2011.567862. http://dx.doi.org/10.1080/01932691.2011.56786210.1080/01932691.2011.567862Suche in Google Scholar

[82] Guo, S. J., & Wang, E. K. (2008). One pot, facile synthesis of hierarchical silver nanostrip assembling architecture. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317, 673–678. DOI: 10.1016/j.colsurfa.2007.12.002. http://dx.doi.org/10.1016/j.colsurfa.2007.12.00210.1016/j.colsurfa.2007.12.002Suche in Google Scholar

[83] Gupta, K., Jana, P. C., & Meikap, A. K. (2010). Optical and electrical properties of polyaniline-silver nanocomposite. Synthetic Metals, 160, 1566–1573. DOI: 10.1016/j.synthmet. 2010.05.026. http://dx.doi.org/10.1016/j.synthmet.2010.05.02610.1016/j.synthmet.2010.05.026Suche in Google Scholar

[84] Han, J., Fang, P., Jiang, W. J., Li, L., & Guo, R. (2012). Ag-Nanoparticle-loaded mesoporous silica: Spontaneous formation of Ag nanoparticles and mesoporous silica SBA-15 by a one-pot strategy and their catalytic applications. Langmuir, 28, 4768–4775. DOI: 10.1021/la204503b. http://dx.doi.org/10.1021/la204503b10.1021/la204503bSuche in Google Scholar PubMed

[85] He, J. J., Han, X. J., Yan, J., Kang, L. L., Zhang, B., Du, Y. C., Dong, C. K., Wang, H. L., & Xu, P. (2012a). Fast fabrication of homogeneous silver nanostructures on hydrazine treated polyaniline films for SERS applications. CrystEngComm, 14, 4952–4954. DOI: 10.1039/c2ce25257k. http://dx.doi.org/10.1039/c2ce25257k10.1039/c2ce25257kSuche in Google Scholar

[86] He, Z. W., Lü, Q. F., & Zhang, J. Y. (2012b). Facile preparation of hierarchical polyaniline-lignin composite with a reactive silver-ion adsorbability. ACS Applied Materials & Interfaces, 4, 369–374. DOI: 10.1021/am201447s. http://dx.doi.org/10.1021/am201447s10.1021/am201447sSuche in Google Scholar PubMed

[87] Hosseini, M., & Momeni, M. M. (2010). Silver nanoparticles dispersed in polyaniline matrix coated on titanium substrate as a novel electrode for electro-oxidation of hydrazine. Journal of Materials Science, 45, 3304–3310. DOI: 10.1007/s10853-010-4347-1. http://dx.doi.org/10.1007/s10853-010-4347-110.1007/s10853-010-4347-1Suche in Google Scholar

[88] Huang, M. R., Li, X. G., & Li, S. X. (2005). The synthesis of polydiaminonaphthalene and its highly reactive adsorption for heavy metal ions. Progress in Chemistry, 17, 299–309. Suche in Google Scholar

[89] Huang, L. M., Huang, G. C., & Wen, T. C. (2006a). Role of anions in the polymerization of 2,5-dimethylaniline in the presence of poly(styrene sulfonic acid). Journal of Polymer Science: Part A: Polymer Chemistry, 44, 6624–6632. DOI: 10.1002/pola.21745. http://dx.doi.org/10.1002/pola.2174510.1002/pola.21745Suche in Google Scholar

[90] Huang, L. M., Tsai, C. C., Wen, T. C., & Gopalan, A. (2006b). Simultaneous synthesis of silver nanoparticles and poly(2,5-dimethoxyaniline) in poly(styrene sulfonic acid). Journal of Polymer Science: Part A: Polymer Chemistry, 44, 3843–3852. DOI: 10.1002/pola.21479. http://dx.doi.org/10.1002/pola.2147910.1002/pola.21479Suche in Google Scholar

[91] Huang, L. M., & Wen, T. C. (2007). One-step synthesis of silver nanoparticles and poly(2,5-dimethoxyaniline) in poly(styrene sulfonic acid). Materials Science and Engineering A, 445–446, 7–13. DOI: 10.1016/j.msea.2006.05.121. http://dx.doi.org/10.1016/j.msea.2006.05.12110.1016/j.msea.2006.05.121Suche in Google Scholar

[92] Huang, L. M., Liao, W. H., Ling, H. C., & Wen, T. C. (2009). Simultaneous synthesis of polyaniline nanofibers and metal (Ag and Pt) nanoparticles. Materials Chemistry and Physics, 116, 474–478. DOI: 10.1016/j.matchemphys.2009.04.035. http://dx.doi.org/10.1016/j.matchemphys.2009.04.03510.1016/j.matchemphys.2009.04.035Suche in Google Scholar

[93] Huang, Z. H., Shi, L., Zhu, Q. R., Zou, J. T., & Chen, T. (2010). Fabrication of polyaniline/silver nanocomposite under γ-ray irradiation. Chinese Journal of Chemical Physics, 23, 701–706. DOI: 10.1088/1674-0068/23/06/701-706. http://dx.doi.org/10.1088/1674-0068/23/06/701-70610.1088/1674-0068/23/06/701-706Suche in Google Scholar

[94] Humpolicek, P., Kasparkova, V., Saha, P., & Stejskal, J. (2012a). Biocompatibility of polyaniline. Synthetic Metals, 162, 722–727. DOI: 10.1016/j.synthmet.2012.02.024. http://dx.doi.org/10.1016/j.synthmet.2012.02.02410.1016/j.synthmet.2012.02.024Suche in Google Scholar

[95] Humpoliček, P., Kašpárková, Z., & Ševčíkověká, P. (2012b). Proliferace buněk na vodivém polymeru, polyanilinu. Chemické Listy, 106, 380–383. (in Czech) Suche in Google Scholar

[96] Ihalainen, P., Määttänen, A., Järnström, J., Tobjörk, D., Österbacka, R., & Peltonen, J. (2012). Influence of surface properties of coated papers on printed electronics. Industrial & Engineering Chemistry Research, 51, 6025–6036. DOI: 10.1021/ie202807v. http://dx.doi.org/10.1021/ie202807v10.1021/ie202807vSuche in Google Scholar

[97] Ijeri, V. S., Nair, J. R., Gerbaldi, C., Gonnelli, R. S., Bodoardo, S., & Bongiovanni, R. M. (2010). An elegant and facile single-step UV-curing approach to surface nano-silvering of polymer composites. Soft Matter, 6, 4666–4668. DOI: 10.1039/c0sm00530d. http://dx.doi.org/10.1039/c0sm00530d10.1039/c0sm00530dSuche in Google Scholar

[98] Ivanov, S., & Tsakova, V. (2005). Electroless versus electrodriven deposition of silver crystals in polyaniline. Role of silver anion complexes. Electrochimica Acta, 50, 5616–5623. DOI: 10.1016/j.electacta.2005.03.040. http://dx.doi.org/10.1016/j.electacta.2005.03.04010.1016/j.electacta.2005.03.040Suche in Google Scholar

[99] Jia, Q. M., Shan, S. Y., Jiang, L. H., & Wang, Y. M. (2010a). Effect of Ag+ on the morphologies and properties of polyaniline. Rare Metal Materials and Engineering, 39(Supplement 1), 538–543. Suche in Google Scholar

[100] Jia, Q. M., Shan, S. Y., Jiang, L. H., & Wang, Y. M. (2010b). One-step synthesis of polyaniline nanofibers decorated with silver. Journal of Applied Polymer Science, 115, 26–31. DOI: 10.1002/app.30373. http://dx.doi.org/10.1002/app.3037310.1002/app.30373Suche in Google Scholar

[101] Jia, Q. M., Shan, S. Y., Jiang, L. H., Wang, Y. M., & Li, D. (2012). Synergetic antimicrobial effects of polyaniline combined with silver nanoparticles. Journal of Applied Polymer Science, 125, 3560–3566. DOI: 10.1002/app.36257. http://dx.doi.org/10.1002/app.3625710.1002/app.36257Suche in Google Scholar

[102] Jiménez, P., Castell, P., Sainz, R., Ansón, A., Martínez, M. T., Benito, A. M., & Maser, W. K. (2010). Carbon nanotube effect on polyaniline morphology in water dispersible composites. Journal of Physical Chemistry B, 114, 1579–1585. DOI: 10.1021/jp909093e. http://dx.doi.org/10.1021/jp909093e10.1021/jp909093eSuche in Google Scholar PubMed

[103] Jing, S. G., Xing, S. X., Yu, L. X., Wu, Y., & Zhao, C. (2007a). Synthesis and characterization of Ag/polyaniline core-shell nanocomposites based on silver nanoparticles colloid. Materials Letters, 61, 2794–2797. DOI: 10.1016/j.matlet.2006.10.032. http://dx.doi.org/10.1016/j.matlet.2006.10.03210.1016/j.matlet.2006.10.032Suche in Google Scholar

[104] Jing, S. G., Xing, S. X., Yu, L. X., & Zhao, C. (2007b). Synthesis and characterization of Ag/polypyrrole nanocomposites based on silver nanoparticles colloid. Materials Letters, 61, 4528–4530. DOI: 10.1016/j.matlet.2007.02.045. http://dx.doi.org/10.1016/j.matlet.2007.02.04510.1016/j.matlet.2007.02.045Suche in Google Scholar

[105] Joo, J., & Lee, C. Y. (2000). High frequency electromagnetic interference shielding response of mixtures and multilayer films based on conducting polymers. Journal of Applied Physics, 88, 513–518. DOI: 10.1063/1.373688. http://dx.doi.org/10.1063/1.37368810.1063/1.373688Suche in Google Scholar

[106] Jung, Y. J., Govindaiah, P., Choi, S. W., Cheong, I. W., & Kim, J. H. (2011). Morphology and conducting property of Ag/poly(pyrrole) composite nanoparticles: Effect of polymeric stabilizers. Synthetic Metals, 161, 1991–1995. DOI: 10.1016/j.synthmet.2011.07.009. http://dx.doi.org/10.1016/j.synthmet.2011.07.00910.1016/j.synthmet.2011.07.009Suche in Google Scholar

[107] Kabir, L., Mandal, A. R., & Mandal, S. K. (2008). Humiditysensing properties of conducting polypyrrole-silver nanocomposites. Journal of Experimental Nanoscience, 3, 297–305. DOI: 10.1080/17458080802512494. http://dx.doi.org/10.1080/1745808080251249410.1080/17458080802512494Suche in Google Scholar

[108] Kang, Y. O., Choi, S. H., Gopalan, A., Lee, K. P., Kang, H. D., & Song, Y. S. (2006). Tuning of morphology of Ag nanoparticles in the Ag/polyaniline nanocomposites prepared by γ-ray irradiation. Journal of Non-Crystalline Solids, 352, 463–468. DOI: 10.1016/j.jnoncrysol.2006.01.043. http://dx.doi.org/10.1016/j.jnoncrysol.2006.01.04310.1016/j.jnoncrysol.2006.01.043Suche in Google Scholar

[109] Kanwal, F., Ishaq, S., & Jamil, T. (2009). Synthesis and characterization of silver hexacyanoferrate (II)/polyaniline composites. Journal of the Chemical Society of Pakistan, 31, 907–910. Suche in Google Scholar

[110] Kar, P., Pradhan, N. C., & Adhikari, B. (2011). Doping of processable conducting poly(m-aminophenol) with silver nanoparticles. Polymers for Advanced Technologies, 22, 1060–1066. DOI: 10.1002/pat.1622. http://dx.doi.org/10.1002/pat.162210.1002/pat.1622Suche in Google Scholar

[111] Karim, M. R., Lim, K. T., Lee, C. J., Bhuiyan, M. T. I., Kim, H. J., Park, L. S., & Lee, M. S. (2007). Synthesis of coreshell silver-polyaniline nanocomposites by gamma radiolysis method. Journal of Polymer Science, Part A: Polymer Chemistry, 45, 5741–5747. DOI: 10.1002/pola.22323. http://dx.doi.org/10.1002/pola.2232310.1002/pola.22323Suche in Google Scholar

[112] Karim, M. R., Yeum, J. H., Lee, M. Y., Lee, M. S., & Lim, K. T. (2009). UV-curing synthesis of sulfonated polyanilinesilver nanocomposites by an in situ reduction method. Polymers for Advanced Technologies, 20, 639–644. DOI: 10.1002/pat.1317. http://dx.doi.org/10.1002/pat.131710.1002/pat.1317Suche in Google Scholar

[113] Kate, K. H., Damkale, S. R., Khanna, P. K., & Jain, G. H. (2011). Nano-silver mediated polymerization of pyrrole: Syn thesis and gas sensing properties of polypyrrole (PPy)/Ag nano-composite. Journal of Nanoscience and Nanotechnology, 11, 7863–7869. DOI: 10.1166/jnn.2011.4708. http://dx.doi.org/10.1166/jnn.2011.470810.1166/jnn.2011.4708Suche in Google Scholar PubMed

[114] Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. (2003). The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. Journal of Physical Chemistry B, 107, 668–677. DOI: 10.1021/jp026731y. http://dx.doi.org/10.1021/jp026731y10.1021/jp026731ySuche in Google Scholar

[115] Kelly, F. M., Johnston, J. H., Borrmann, T., & Richardson, M. J. (2007). Functionalised hybrid materials of conducting polymers with individual fibres of cellulose. European Journal of Inorganic Chemistry, 35, 5571–5577. DOI: 10.1002/ejic.200700608. http://dx.doi.org/10.1002/ejic.20070060810.1002/ejic.200700608Suche in Google Scholar

[116] Khanna, P. K., Singh, N., Charan, S., & Viswanath, A. K. (2005). Synthesis of Ag/polyaniline nanocomposite via an in situ photo-redox mechanism. Materials Chemistry and Physics, 92, 214–219. DOI: 10.1016/j.matchemphys.2005.01.011. http://dx.doi.org/10.1016/j.matchemphys.2005.01.01110.1016/j.matchemphys.2005.01.011Suche in Google Scholar

[117] Kim, K. S., Kim, I. J., & Park, S. J. (2010a). Influence of Ag doped graphene on electrochemical behaviours and specific capacitance of polypyrrole-based nanocomposites. Synthetic Metals, 160, 2355–2360. DOI: 10.1016/j.synthmet.2010.09.011. http://dx.doi.org/10.1016/j.synthmet.2010.09.01110.1016/j.synthmet.2010.09.011Suche in Google Scholar

[118] Kim, H. J., Park, S. H., & Park, H. J. (2010b). Synthesis of a new electrically conducting nanosized Ag-polyaniline-silica complex using γ-radiolysis and its biosensing applications. Radiation Physics and Chemistry, 79, 894–899. DOI: 10.1016/j.radphyschem.2010.02.005. http://dx.doi.org/10.1016/j.radphyschem.2010.02.00510.1016/j.radphyschem.2010.02.005Suche in Google Scholar

[119] Kim, K. S., & Park, S. J. (2011). Influence of silver-decorated multi-walled carbon nanotubes on electrochemical performance of polyaniline-based electrodes. Journal of Solid State Electrochemistry, 184, 2724–2730. DOI: 10.1016/j.jssc.2011.08.010. http://dx.doi.org/10.1016/j.jssc.2011.08.01010.1016/j.jssc.2011.08.010Suche in Google Scholar

[120] Kim, H. J., Park, S. H., & Park, H. J. (2011). Hydrogen peroxide sensor based on electrically conducting nanosized Agpolyaniline-silica complex. Sensor Letters, 9, 59–63. DOI: 10.1166/sl.2011.1419. http://dx.doi.org/10.1166/sl.2011.141910.1166/sl.2011.1419Suche in Google Scholar

[121] Kim, H. J., Choi, S. H., & Park, H. J. (2012). Nano-Ag complexes prepared by γ-radiolysis and their structures and physical properties. Radiation Physics and Chemistry, 81, 1612–1620. DOI: 10.1016/j.radphyschem.2012.04.013. http://dx.doi.org/10.1016/j.radphyschem.2012.04.01310.1016/j.radphyschem.2012.04.013Suche in Google Scholar

[122] Konyushenko, E. N., Stejskal, J., Trchová, M., Hradil, J., Kovářová, J. Prokeš, J., Cieslar, M., Hwang, J. Y., Chen, K. H., & Sapurina, I. (2006). Multi-wall carbon nanotubes coated with polyaniline. Polymer, 47, 5715–5723. DOI: 10.1016/j.polymer.2006.05.059. http://dx.doi.org/10.1016/j.polymer.2006.05.05910.1016/j.polymer.2006.05.059Suche in Google Scholar

[123] Konyushenko, E. N., Kazantseva, N. E., Stejskal, J., Trchová, M., Kovářová, J., Sapurina, I., Tomishko, M. M., Demicheva, O. V., & Prokeš, J. (2008a). Ferromagnetic behaviour of polyaniline-coated multi-wall carbon nanotubes contaning nickel nanoparticles. Journal of Magnetism and Magnetic Materials, 320, 231–240. DOI: 10.1016/j.jmmm.2007.05.036. http://dx.doi.org/10.1016/j.jmmm.2007.05.03610.1016/j.jmmm.2007.05.036Suche in Google Scholar

[124] Konyushenko, E. N., Stejskal, J., Trchová, M., Blinova, N. V., & Holler, P. (2008b). Polymerization of aniline in ice. Synthetic Metals, 158, 927–933. DOI: 10.1016/j.synthmet.2008.06.015. http://dx.doi.org/10.1016/j.synthmet.2008.06.01510.1016/j.synthmet.2008.06.015Suche in Google Scholar

[125] Konyushenko, E. N., Trchová, M., Stejskal, J., & Sapurina, I. (2010). The role of acidity profile in the nanotubular growth of polyaniline. Chemical Papers, 64, 56–64. DOI: 10.2478/s11696-009-0101-z. http://dx.doi.org/10.2478/s11696-009-0101-z10.2478/s11696-009-0101-zSuche in Google Scholar

[126] Kovałchuk, E. P., Ogenko, V. M., Reshetnyak, O. V., Pereviznyk, O. B., Davydenko, N., & Marchuk, I. E. (2010). Surface modification of silver microparticles with 4-thioaniline. Electrochimica Acta, 55, 5154–5162. DOI: 10.1016/j. electacta.2010.04.023. http://dx.doi.org/10.1016/j.electacta.2010.04.02310.1016/j.electacta.2010.04.023Suche in Google Scholar

[127] Krishna, J. B. M., Abhaya, S., Amarendra, G., Sundar, C. S., Saha, A., & Ghosh, B. (2008). Positron beam studies on polyaniline and Ag-coated polyaniline. Applied Surface Science, 255, 248–250. DOI:10.1016/j.apsusc.2008.05.189. http://dx.doi.org/10.1016/j.apsusc.2008.05.18910.1016/j.apsusc.2008.05.189Suche in Google Scholar

[128] Křivka, I., Prokeš, J., Tobolková, E., & Stejskal, J. (1999). Application of percolation concepts to electrical conductivity of polyaniline-inorganic salt composites. Journal of Materials Chemistry, 9, 2425–2428. DOI: 10.1039/a904687i. http://dx.doi.org/10.1039/a904687i10.1039/a904687iSuche in Google Scholar

[129] Křížko, E. N., Trchová, M., & Stejskal, J. (2011). NMR investigation of aniline oligomers produced in the oxidation of aniline in alkaline medium. Polymer International, 60, 1296–1302. DOI: 10.1002/pi.3079. 10.1002/pi.3079Suche in Google Scholar

[130] Krutyakov, Y. A., Kudrinsky, A. A., Olenin, A. Y., & Lisichkin, G. V. (2010). Synthesis of highly stable silver colloids stabilized with water soluble sulfonated polyaniline. Applied Surface Science, 256, 7037–7042. DOI: 10.1016/j.apsusc.2010. 05.020. http://dx.doi.org/10.1016/j.apsusc.2010.05.02010.1016/j.apsusc.2010.05.020Suche in Google Scholar

[131] Lee, C. Y., Song, H. G., Jang, K. S., Oh, E. J., Epstein, A. J., & Joo, J. (1999). Electromagnetic interference shielding efficiency of polyaniline mixtures and multilayer films. Synthetic Metals, 102, 1346–1349. DOI: 10.1016/s0379-6779(98)00234-3. http://dx.doi.org/10.1016/S0379-6779(98)00234-310.1016/S0379-6779(98)00234-3Suche in Google Scholar

[132] Lee, C. Y., Lee, D. E., Jeong, C. K., Hong, Y. K., Shim, J. H., Joo, J., Kim, M. S., Lee, J. Y., Jeong, S. H., Byun, S. W., Zang, D. S., & Yang, H. G. (2002). Electromagnetic interference shielding by using conductive polypyrrole and metal compound coated on fabrics. Polymers for Advanced Technologies, 13, 577–583. DOI: 10.1002/pat227. http://dx.doi.org/10.1002/pat.227Suche in Google Scholar

[133] Lee, H. T., & Liu, Y. C. (2005). Catalytic electrooxidation pathway for the polymerization of polypyrrole in the presence of ultrafine silver nanoparticles. Polymer, 46, 10727–10732. DOI: 10.1016/j.polymer.2005.09.031. http://dx.doi.org/10.1016/j.polymer.2005.09.03110.1016/j.polymer.2005.09.031Suche in Google Scholar

[134] Lee, K., Cho, S., Sung, H. P., Heeger, A. J., Lee, C. W., & Lee, S. H. (2006). Metallic transport in polyaniline. Nature, 441, 65–68. DOI: 10.1038/nature04705. http://dx.doi.org/10.1038/nature0470510.1038/nature04705Suche in Google Scholar PubMed

[135] Lee, C. W., Jin, S. H., Yoon, K. S., Jeong, H. M., & Chi, K. W. (2009). Efficient oxidation of hydroquinone and alcohols by tailor-made solid polyaniline catalyst. Tetrahedron Letters, 50, 559–561. DOI: 10.1016/j.tetlet.2008.11.062. http://dx.doi.org/10.1016/j.tetlet.2008.11.06210.1016/j.tetlet.2008.11.062Suche in Google Scholar

[136] Lee, Y. J., Kim, E. H., Kim, K. J., Lee, B. H., & Choe, S. J. (2012). Polyaniline effect on the conductivity of the PMMA/Ag hybrid composite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 396, 195–202. DOI: 10.1016/j.colsurfa.2011.12.071. http://dx.doi.org/10.1016/j.colsurfa.2011.12.07110.1016/j.colsurfa.2011.12.071Suche in Google Scholar

[137] Leyva, M. E., Garcia, F. G., Alencar de Queiroz, A. A., & Soares, D. A. W. (2011). Electrical properties of the DGEBA/PANI-Ag composites. Journal of Materials Science: Materials in Electronics, 22, 376–383. DOI: 10.1007/s10854-010-0146-3. http://dx.doi.org/10.1007/s10854-010-0146-310.1007/s10854-010-0146-3Suche in Google Scholar

[138] Li, X. G., Liu, R., & Huang, M. R. (2005). Facile synthesis and highly reactive silver ion adsorption of novel microparticles of sulfodiphenylamine and diaminonaphthalene copolymers. Chemistry of Materials, 17, 5411–5419. DOI: 10.1021/cm050813s. http://dx.doi.org/10.1021/cm050813s10.1021/cm050813sSuche in Google Scholar

[139] Li, W. G., Jia, Q. X., & Wang, H. L. (2006). Facile synthesis of metal nanoparticles using conducting polymer colloids. Polymer, 47, 23–26. DOI: 10.1016/j.polymer.2005.11.032. http://dx.doi.org/10.1016/j.polymer.2005.11.03210.1016/j.polymer.2005.11.032Suche in Google Scholar

[140] Li, J., Tang, H. Q., Zhang, A. Q., Shen, X. T., & Zhu, L. H. (2007). A new strategy for the synthesis of polyaniline nanostructures: From nanofibers to nanowires. Macromolecular Rapid Communications, 28, 740–745: DOI: 10.1002/marc.200600810. http://dx.doi.org/10.1002/marc.20060081010.1002/marc.200600810Suche in Google Scholar

[141] Li, X., Gao, Y., Gong, J., Zhang, L., & Qu, L. Y. (2009a). Polyaniline/Ag composite nanotubes prepared through UV rays irradiation via fiber template approach and their NH3 gas sensitivity. Journal of Physical Chemistry C, 113, 69–73. DOI: 10.1021/jp807535v. http://dx.doi.org/10.1021/jp807535v10.1021/jp807535vSuche in Google Scholar

[142] Li, X., Gao, Y., Liu, F. H., Gong, J., & Qu, L. Y. (2009b). Synthesis of polyaniline/Ag composite nanospheres through UV rays irradiation method. Materials Letters, 63, 467–469. DOI: 10.1016/j.matlet.2008.11.027. http://dx.doi.org/10.1016/j.matlet.2008.11.02710.1016/j.matlet.2008.11.027Suche in Google Scholar

[143] Li, X. G., Ma, X. L., Sun, J., & Huang, M. R. (2009c). Powerful reactive sorption of silver(I) and mercury(II) onto poly (o-phenylenediamine) microparticles. Langmuir, 25, 1675–1684. DOI: 10.1021/la802410p. http://dx.doi.org/10.1021/la802410p10.1021/la802410pSuche in Google Scholar PubMed

[144] Li, B., Xu, Y. L., Chen, J., Chen, G. R., Zhao, C. J., Qian, X. Z., & Wang, M. (2009d). Synthesis and characterization of Ag/PPy composite films via enhanced redox reaction of metal ions. Applied Surface Science, 256, 235–238. DOI: 10.1016/j.apsusc.2009.08.006. http://dx.doi.org/10.1016/j.apsusc.2009.08.00610.1016/j.apsusc.2009.08.006Suche in Google Scholar

[145] Li, X. G., Feng, H., & Huang, M. R. (2010). Redox sorption and recovery of silver ions as silver nanocrystals on poly(aniline-co-5-sulfo-2-anisidine) nanosorbents. Chemistry — A European Journal, 16, 10113–10123. DOI: 10.1002/chem.201000506. http://dx.doi.org/10.1002/chem.20100050610.1002/chem.201000506Suche in Google Scholar PubMed

[146] Li, Z. H., & Wang, Y. W. (2010). Characterization of polyaniline/Ag nanocomposites using H2O2 and ultrasound radiation for enhancing rate. Polymer Composites, 31, 1662–1668. DOI: 10.1002/pc.20956. http://dx.doi.org/10.1002/pc.2095610.1002/pc.20956Suche in Google Scholar

[147] Li, B. T., Tang, L. M., Chen, K., Xia, Y., & Jin, X. (2011). Coordinated organogel templated fabrication of silver/polypyrrole composite nanowires. Chinese Chemical Letters, 22, 123–126. DOI: 10.1016/j.cclet.2010.06.034. http://dx.doi.org/10.1016/j.cclet.2010.06.03410.1016/j.cclet.2010.06.034Suche in Google Scholar

[148] Li, Z. F., Blum, F. D., Bertino, M. F., & Kim, C. S. (2012a). Amplified response and enhanced selectivity of metal-PANI fiber composite based vapor sensors. Sensors and Actuators B: Chemical, 161, 390–395. DOI: 10.1016/j.sab.2011.10.049. http://dx.doi.org/10.1016/j.snb.2011.10.049Suche in Google Scholar

[149] Li, Z. H., Lin, W., Lu, J. T., Laven, J., & Foyet, A. (2012b). Reversed micelle synthesis of Ag/polyaniline nanocomposites via an in situ ultraviolet photo-redox mechanism. Polymer Composites, 33, 451–458. DOI: 10.1002/pc.21211. http://dx.doi.org/10.1002/pc.2121110.1002/pc.21211Suche in Google Scholar

[150] Liang, X. X., Sun, M. X., Li, L. C., Qiao, R., Chen, K., Xiao, Q. S., & Xu, F. (2012). Preparation and antibacterial activities of polyaniline/Cu0.05Zn0.95O nanocomposites. Dalton Transactions, 41, 2804–2811. DOI: 10.1039/c2dt11823h. http://dx.doi.org/10.1039/c2dt11823h10.1039/c2dt11823hSuche in Google Scholar PubMed

[151] Liao, F., Wang, Z. F., & Hu, X. Q. (2011a). Shape-controllable synthesis of dendritic silver nanostructures at room temperature. Colloid Journal, 73, 504–508. DOI: 10.1134/s1061933 x11040053. http://dx.doi.org/10.1134/S1061933X1104005310.1134/S1061933X11040053Suche in Google Scholar

[152] Liao, F., Wang, Z. F., & Hu, X. Q. (2011b). Growth of different morphologies of silver submicrostructures: The effect of concentrations and pH. Ionics, 17, 177–182. DOI: 10.1007/s11581-010-0499-x. http://dx.doi.org/10.1007/s11581-010-0499-x10.1007/s11581-010-0499-xSuche in Google Scholar

[153] Liao, F., Wang, Z. F., & Sun, X. P. (2012). A novel method self-assemle silver nanowires at room temperature. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 42, 325–328. DOI: 10.1080/15533174.2011.610767. http://dx.doi.org/10.1080/15533174.2011.61076710.1080/15533174.2011.610767Suche in Google Scholar

[154] Lim, C. W., Song, K., & Kim, S. H. (2012). Synthesis of PPy/silica nanocomposites with cratered surfaces and their application in heavy metal extraction. Journal of Industrial and Engineering Chemistry, 18, 24–28. DOI: 10.1016/j.jiec.2011.11.115. http://dx.doi.org/10.1016/j.jiec.2011.11.11510.1016/j.jiec.2011.11.115Suche in Google Scholar

[155] Liu, Z. C., Su, Y., & Varahramyan, K. (2005). Inkjet-printed silver conductors using silver nitrate ink and their electrical contacts with conducting polymers. Thin Solid Films, 478, 275–279. DOI: 10.1016/j.tsf.2004.11.077. http://dx.doi.org/10.1016/j.tsf.2004.11.07710.1016/j.tsf.2004.11.077Suche in Google Scholar

[156] Luo, C. H., Peng, H., Zhang, L. J., Lu, G. L., Wang, Y. T., & Travas-Sejdic, J. (2011). Formation of nano-/microstructures of polyaniline and its derivatives. Macromolecules, 44, 6899–6907. DOI: 10.1021/ma201350m. http://dx.doi.org/10.1021/ma201350m10.1021/ma201350mSuche in Google Scholar

[157] Lyutov, V., & Tsakova, V. (2011). Silver particles-modified polysulfonic acid-doped polyaniline layers: electroless deposition of silver in slightly acidic and neutral solutions. Journal of Solid State Electrochemistry, 15, 2553–2561. DOI: 10.1007/s10008-011-1451-3. http://dx.doi.org/10.1007/s10008-011-1451-310.1007/s10008-011-1451-3Suche in Google Scholar

[158] Mack, N. H., Bailey, J. A., Doorn, S. K., Chen, C. A., Gau, H. M., Xu, P., Williams, D. J., Akhadov, E. A., & Wang, H. L. (2011). Mechanistic study of silver nanoparticle formation on conducting polymer surfaces. Langmuir, 27, 4979–4985. DOI: 10.1021/la103644j. http://dx.doi.org/10.1021/la103644j10.1021/la103644jSuche in Google Scholar PubMed

[159] Mahmoudian, M. R., Alias, Y., Basirun, W. J., & Ebadi, M. (2012). Preparation of ultra-thin polypyrrole nanosheets decorated with Ag nanoparticles and their application in hydrogen peroxide detection. Electrochimica Acta, 72, 46–52. DOI: 10.1016/j.electacta.2012.03.144. http://dx.doi.org/10.1016/j.electacta.2012.03.14410.1016/j.electacta.2012.03.144Suche in Google Scholar

[160] Mai, L. Q., Xu, X., Han, C. H., Luo, Y. Z., Xu, L., Wu, Y. A., & Zhao, Y. L. (2011). Rational synthesis of silver vanadium oxides/polyaniline triaxial nanowires with enhanced electrochemical property. Nano Letters, 11, 4992–4996. DOI: 10.1021/nl202943b. http://dx.doi.org/10.1021/nl202943b10.1021/nl202943bSuche in Google Scholar PubMed

[161] Manesh, K. M., Gopalan, A. I., Lee, K. P., & Shanmugasundaram, K. (2010). Silver nanoparticles distributed into polyaniline bridged silica network: A functional nanocatalyst having synergetic influence for catalysis. Catalysis Communications, 11, 913–918. DOI: 10.1016/j.catcom.2010.03.013. http://dx.doi.org/10.1016/j.catcom.2010.03.01310.1016/j.catcom.2010.03.013Suche in Google Scholar

[162] Manivel, A., & Anandan, S. (2011). Silver nanoparticles embedded phosphomolybdate-polyaniline hybrid electrode for electrocatalytic reduction of H2O2. Journal of Solid State Electrochemistry, 15, 153–160. DOI: 10.1007/s10008-010-1080-2. http://dx.doi.org/10.1007/s10008-010-1080-210.1007/s10008-010-1080-2Suche in Google Scholar

[163] Manivel, A., Sivakumar, R., Anandan, S., & Ashokkumar, M. (2012). Ultrasound-assisted synthesis of hybrid phosphomolybdate-polybenzidine containing silver nanoparticles for electrocatalytic detection of chlorate, bromate and iodate ions in aqueous solution. Electrocatalysis, 3, 22–29. DOI: 10.1007/s12678-011-0072-z. http://dx.doi.org/10.1007/s12678-011-0072-z10.1007/s12678-011-0072-zSuche in Google Scholar

[164] Martins, C. R., de Almeida, Y. M., do Nascimento, G. C., & de Azevedo, W. M. (2006). Metal nanoparticles incorporation during the photopolymerization of polypyrrole. Journal of Materials Science, 41, 7413–7418. DOI: 10.1007/s10853-006-0795-z. http://dx.doi.org/10.1007/s10853-006-0795-z10.1007/s10853-006-0795-zSuche in Google Scholar

[165] Mazur, M., Michota-Kamińska, A., & Bukowska, J. (2007). Facile electrochemical fabrication of polymeric templates for spatially selective deposition of metals. Electrochemistry Communications, 9, 2418–2422. DOI: 10.1016/j.elecom.2007. 07.018. http://dx.doi.org/10.1016/j.elecom.2007.07.01810.1016/j.elecom.2007.07.018Suche in Google Scholar

[166] Mo, Z. L., Zuo, D. D., Chen, H., Sun, Y. X., & Zhang, P. (2007). Synthesis of graphite nanosheets/AgCl/polypyrrole composites via two-step inverse microemulsion method. European Polymer Journal, 43, 300–306. DOI: 10.1016/j.eurpolymj.2006.11.023. http://dx.doi.org/10.1016/j.eurpolymj.2006.11.02310.1016/j.eurpolymj.2006.11.023Suche in Google Scholar

[167] Mukherjee, P., & Nandi, A. K. (2009). Electronic properties of poly(o-methoxy aniline)-silver nanocomposite thin films: influence of nanoparticle size and density. Journal of Materials Chemistry, 19, 781–786. DOI: 10.1039/b813203h. 10.1039/B813203HSuche in Google Scholar

[168] Muñoz-Rojas, D., Oró-Solé, J., Ayyad, O., & Gómez-Romero, P. (2008a). Facile one-pot synthesis of self-assembled silver@polypyrrole core/shell nanosnakes. Small, 4, 1301–1306. DOI: 10.1002/smll.200701199. http://dx.doi.org/10.1002/smll.20070119910.1002/smll.200701199Suche in Google Scholar PubMed

[169] Muñoz-Rojas, D., Oró-Solé, J., & Gómez-Romero, P. (2008b). From nanosnakes to nanosheets: A matrix-mediated shape evolution. Journal of Physical Chemistry C, 112, 20312–20318. DOI: 10.1021/jp808187w. http://dx.doi.org/10.1021/jp808187w10.1021/jp808187wSuche in Google Scholar

[170] Muñoz-Rojas, D., Oró-Solé, J., Ayyad, O., & Gómez-Romero, P. (2011). Shaping hybrid nanostructures with polymer matrices: the formation mechanism of silver-polypyrrole core/shell nanostructures. Journal of Materials Chemistry, 21, 2078–2086. DOI: 10.1039/c0jm01449d. http://dx.doi.org/10.1039/c0jm01449d10.1039/C0JM01449DSuche in Google Scholar

[171] Nadagouda, M. N., & Varma, R. S. (2007). Room temperature bulk synthesis of silver nanocables wrapped with polypyrrole. Macromolecular Rapid Communications, 28, 2106–2111. DOI: 10.1002/marc.200700495. http://dx.doi.org/10.1002/marc.20070049510.1002/marc.200700495Suche in Google Scholar

[172] Nadagouda, M. N., & Varma, R. S. (2008). Green synthesis of Ag and Pd nanospheres, nanowires, and nanorods using vitamin B2: Catalytic polymerization of aniline and pyrrole. Journal of Nanomaterials, 2008, 782358. DOI: 10.1155/2008/782358. http://dx.doi.org/10.1155/2008/78235810.1155/2008/782358Suche in Google Scholar

[173] Narang, J., Chauhan, N., Jain, P., & Pundir, C. S. (2012). Silver nanoparticles/multiwalled carbon nanotube/polyaniline film for amperometric glutathione biosensor. International Journal of Biological Macromolecules, 50, 672–678. DOI: 10.1016/j.ijbiomac.2012.01.023. http://dx.doi.org/10.1016/j.ijbiomac.2012.01.02310.1016/j.ijbiomac.2012.01.023Suche in Google Scholar PubMed

[174] Neelgund, G. M., Hrehorova, E., Joyce, M., & Bliznyuk, V. (2008). Synthesis and characterization of polyaniline derivatives and silver nanoparticle composites. Polymer International, 57, 1083–1089. DOI: 10.1002/pi.2445. http://dx.doi.org/10.1002/pi.244510.1002/pi.2445Suche in Google Scholar

[175] Nesher, G., Serror, M., Avnir, D., & Marom, G. (2011). Silver coated vapor-grown-carbon nanofibers for effective reinforcement of polypropylene-polyaniline. Composites Science and Technology, 71, 152–159. DOI: 10.1016/j.compscitech.2010.11.005. http://dx.doi.org/10.1016/j.compscitech.2010.11.00510.1016/j.compscitech.2010.11.005Suche in Google Scholar

[176] Nguyen, V. H., & Shim, J. J. (2011). Facile synthesis and characterization of carbon nanotubes/silver nanohybrids coated with polyaniline. Synthetic Metals, 161, 2078–2082. DOI: 10.1016/j.synthmet.2011.07.017. http://dx.doi.org/10.1016/j.synthmet.2011.07.01710.1016/j.synthmet.2011.07.017Suche in Google Scholar

[177] Ocypa, M., Ptacińska, M., Michalska, A., Maksymiuk, K., & Hall, E. A. H. (2006). Electroless silver deposition on polypyrrole and poly(3,4-ethylenedioxythiophene): The reaction/diffusion balance. Journal of Electroanalytical Chemistry, 596, 157–168. DOI: 10.1016/j.jelechem.2006.07.032. http://dx.doi.org/10.1016/j.jelechem.2006.07.03210.1016/j.jelechem.2006.07.032Suche in Google Scholar

[178] Oliveira, M. M., Zanchet, D., Ugarte, D., & Zarbin, A. J. G. (2004) Synthesis and characterization of silver nanoparticle/polyaniline nanocomposites. Progress in Colloid and Polymer Science, 128, 49–60. DOI: 10.1007/b97108. 10.1007/b97108Suche in Google Scholar

[179] Oliveira, M. M., Castro, E. G., Canestraro, C. D., Zanchet, D., Ugarte, D., Roman, L. S., & Zarbin, A. J. G. (2006). A simple two-phase route to silver nanoparticles/polyaniline structures. Journal of Physical Chemistry B, 110, 17063–17069. DOI: 10.1021/jp060861f. http://dx.doi.org/10.1021/jp060861f10.1021/jp060861fSuche in Google Scholar

[180] Omastová, M., Trchová, M., Kovářová, J., & Stejskal, J. (2003). Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synthetic Metals, 138, 447–455. DOI: 10.1016/s0379-6779(02)00498-8. http://dx.doi.org/10.1016/S0379-6779(02)00498-810.1016/S0379-6779(02)00498-8Suche in Google Scholar

[181] Palaniappan, S., & Rajender, B. (2010). A novel polyanilinesilver nitrate-p-toluenesulfonic acid salt as recyclable catalyst in the stereoselective synthesis of β-amino ketones: “One-pot” synthesis in water medium. Advanced Synthesis & Catalysis, 352, 2507–2514. DOI: 10.1002/adsc.201000346. http://dx.doi.org/10.1002/adsc.20100034610.1002/adsc.201000346Suche in Google Scholar

[182] Park, E. Y., Kim, H. Y., Song, J. Y., Oh, H. T., Song, H., & Jang, J. S. (2012). Synthesis of silver nanoparticles decorated polypyrrole nanotubes for antimicrobial application. Macromolecular Research, 20, 1096–1101. DOI: 10.1007/s13233-012-0150-y. http://dx.doi.org/10.1007/s13233-012-0150-y10.1007/s13233-012-0150-ySuche in Google Scholar

[183] Patil, D. S., Shaikh, J. S., Pawar, S. A., Devan, R. S., Ma, Y. R., Moholkar, A. V., Kim, J. H., Kalubarme, R. S., Park, C. J., & Patil, P. S. (2012). Investigations on silver/polyaniline electrodes for electrochemical supercapacitors. Physical Chemistry, Chemical Physics, 14, 11886–11895. DOI: 10.1039/c2cp41757j. http://dx.doi.org/10.1039/c2cp41757j10.1039/c2cp41757jSuche in Google Scholar

[184] Paulraj, P., Janaki, N., Sandhya, S., & Pandian, K. (2011). Single pot synthesis of polyaniline protected silver nanoparticles by interfacial polymerization and study its application on electrochemical oxidation of hydrazine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 377, 28–34. DOI: 10.1016/j.colsurfa.2010.12.001. http://dx.doi.org/10.1016/j.colsurfa.2010.12.00110.1016/j.colsurfa.2010.12.001Suche in Google Scholar

[185] Peng, Y. J., Qiu, L. H., Pan, C. T., Wang, C. C., Shang, S. M., & Yan, F. (2012). Facile preparation of water dispersible polypyrrole nanotube-supported silver nanoparticles for hydrogen peroxide reduction and surface-enhanced Raman scattering. Electrochimica Acta, 75, 399–405. DOI: 10.1016/j.electacta.2012.05.034. http://dx.doi.org/10.1016/j.electacta.2012.05.03410.1016/j.electacta.2012.05.034Suche in Google Scholar

[186] Pickup, N. L., Shapiro, J. S., & Wong, D. K. Y. (1998). Extraction of silver by polypyrrole films upon a base-acid treatment. Analytica Chimica Acta, 364, 41–51. DOI: 10.1016/s0003-2670(98)00144-5. http://dx.doi.org/10.1016/S0003-2670(98)00144-510.1016/S0003-2670(98)00144-5Suche in Google Scholar

[187] Pillalamarri, S. K., Blum, F. D., Tokuhiro, A. T., & Bertino, M. F. (2005). One-pot synthesis of polyaniline-metal nanocomposites. Chemistry of Materials, 17, 5941–5944. DOI: 10. 1021/cm050827y. http://dx.doi.org/10.1021/cm050827y10.1021/cm050827ySuche in Google Scholar

[188] Pintér, E., Patakfalvi, R., Fülei, T., Gingl, Z., Dékány, I., & Visy, C. (2005). Characterization of polypyrrole-silver nanocomposites prepared in the presence of different dopants. Journal of Physical Chemistry B, 109, 17474–17478. DOI: 10.1021/jp0517652. http://dx.doi.org/10.1021/jp051765210.1021/jp0517652Suche in Google Scholar

[189] Prabhakar, P. K., Raj, S., Anuradha, P. R., Sawant, S. N., & Doble, M. (2011). Biocompatibility studies on polyaniline and polyaniline-silver nanoparticle coated polyurethane composite. Colloids and Surfaces B: Biointerfaces, 86, 146–153: DOI 10.1016/j.colsurfb.2011.03.033. http://dx.doi.org/10.1016/j.colsurfb.2011.03.03310.1016/j.colsurfb.2011.03.033Suche in Google Scholar

[190] Prokeš, J., Křivka, I., & Stejskal, J. (1997). Control of electrical properties of polyaniline. Polymer International, 43, 117–125. DOI: 10.1002/(sici)1097-0126(199706)43:2〈117::aidpi713〉3.3.co;2-u. http://dx.doi.org/10.1002/(SICI)1097-0126(199706)43:2<117::AID-PI713>3.0.CO;2-210.1002/(SICI)1097-0126(199706)43:2<117::AID-PI713>3.0.CO;2-2Suche in Google Scholar

[191] Prokeš, J., & Stejskal, J. (2004). Polyaniline prepared in the presence of various acids: 2. Thermal stability of conductivity. Polymer Degradation and Stability, 86, 187–195. DOI: 10.1016/j.polymdegradstab.2004.04.012. http://dx.doi.org/10.1016/j.polymdegradstab.2004.04.01210.1016/j.polymdegradstab.2004.04.012Suche in Google Scholar

[192] Pron, A., & Rannou, P. (2002). Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. Progress in Polymer Science, 27, 135–190. 10.1016/s0079-6700(01)00043-0. http://dx.doi.org/10.1016/S0079-6700(01)00043-010.1016/S0079-6700(01)00043-0Suche in Google Scholar

[193] Ptschelin, V. (1935). Über die Sole des Emeraldins I. Die chemische Natur, die Gewinnung und die Eigenschaften der Sole. Colloid & Polymer Science, 70, 306–311. DOI: 10.1007/bf01442769. (in German) 10.1007/BF01442769Suche in Google Scholar

[194] Qaiser, A. A., Hyland, M. M., & Patterson, D. A. (2011). Surface and charge transport characterization of polyaniline-cellulose acetate composite mebranes. Journal of Physical Chemistry B, 115, 1652–1661. DOI: 10.1021/jp109455m. http://dx.doi.org/10.1021/jp109455m10.1021/jp109455mSuche in Google Scholar

[195] Qin, X. Y., Lu, W. B., Luo, Y. L., Chang, G. H., & Sun, X. P. (2011). Preparation of Ag nanoparticle-decorated polypyrrole colloids and their application for H2O2 detection. Electrochemistry Communications, 13, 785–787. DOI: 10.1016/j.elecom.2011.05.002. http://dx.doi.org/10.1016/j.elecom.2011.05.00210.1016/j.elecom.2011.05.002Suche in Google Scholar

[196] Qin, X.Y., Liu, S., Lu, W. B., Li, H.Y., Chang, G.H., Zhang, Y. W., Tian, J. Q., Luo, Y. L., Asiri, A. M., Al-Youbi, A. O., & Sun, X. P. (2012). Submicrometre-scale polyaniline colloidal spheres: photopolymerization preparation using fluorescent carbon nitride dots as a photocatalyst. Catalysis Science & Technology, 2, 711–714. DOI: 10.1039/c2cy00439a. http://dx.doi.org/10.1039/c2cy00439a10.1039/c2cy00439aSuche in Google Scholar

[197] Qiu, T., Xie, H. X., Zhang, J. R., Zahoor, A., & Li, X. Y. (2011). The synthesis of Ag/polypyrrole coaxial nanocables via ion adsorption method using different oxidants. Journal of Nanoparticle Research, 13, 1175–1182. DOI: 10.1007/s11051-010-0109-x. http://dx.doi.org/10.1007/s11051-010-0109-x10.1007/s11051-010-0109-xSuche in Google Scholar

[198] Reddy, K. R., Lee, K. P., Lee, Y. I., & Gopalan, A. I. (2008). Facile synthesis of conducting polymer-metal hydrid nanocomposite by in situ chemical oxidative polymerization with negatively charged metal nanoparticles. Materials Letters, 62, 1815–1818. DOI: 10.1016/j.matlet.2007.10.025. http://dx.doi.org/10.1016/j.matlet.2007.10.02510.1016/j.matlet.2007.10.025Suche in Google Scholar

[199] Reddy, K. R., Sin, B. C., Ryu, K. S., Kim, J. C., Chung, H. I., & Lee, Y. I. (2009). Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: Synthesis, morphological characteristics and electrical properties. Synthetic Metals, 159, 595–603. DOI: 10.1016/j.synthmet.2008.11.030. http://dx.doi.org/10.1016/j.synthmet.2008.11.03010.1016/j.synthmet.2008.11.030Suche in Google Scholar

[200] Routh, P., Mukherjee, P., & Nandi, A. K. (2010). RNA-poly(omethoxyaniline) hybrid templated growth of silver nanoparticles and nanojacketing: Physical and electronic properties. Langmuir, 26, 5093–5100. DOI: 10.1021/la903553t. http://dx.doi.org/10.1021/la903553t10.1021/la903553tSuche in Google Scholar PubMed

[201] Rozlívková, Z., Trchová, M., Exnerová, M., & Stejskal, J. (2011). The carbonization of granular polyaniline to produce nitrogen-containing carbon. Synthetic Metals, 161, 1122–1129. DOI: 10.1016/j.synthmet.2011.03.034. http://dx.doi.org/10.1016/j.synthmet.2011.03.03410.1016/j.synthmet.2011.03.034Suche in Google Scholar

[202] Sapurina, I., & Stejskal, J. (2008). The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polymer International, 57, 1295–1325. DOI: 10.1002/pi.2476. http://dx.doi.org/10.1002/pi.247610.1002/pi.2476Suche in Google Scholar

[203] Sapurina, I., & Stejskal, J. (2009). Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential application in electrocatalysis. Chemical Papers, 63, 579–585. DOI: 10.1478/s11696-009-0061-3. http://dx.doi.org/10.2478/s11696-009-0061-3Suche in Google Scholar

[204] Sapurina, I. Y., & Stejskal, J. (2010). The effect of pH on the oxidative polymerization of aniline and the morphology and properties of products. Russian Chemical Reviews, 79, 1123–1143. DOI: 10.1070/rc2010v079n12abeh004140. http://dx.doi.org/10.1070/RC2010v079n12ABEH00414010.1070/RC2010v079n12ABEH004140Suche in Google Scholar

[205] Sapurina, I. Y., & Stejskal, J. (2012). Oxidation of aniline with strong and weak oxidants. Russian Journal of General Chemistry, 82, 256–275. DOI: 10.1134/s1070363212020168. http://dx.doi.org/10.1134/S107036321202016810.1134/S1070363212020168Suche in Google Scholar

[206] Šeděnková, M., Stejskal, J., & Prokeš, J. (2009). Solid-state reduction of silver nitrate with polyaniline base leading to conducting materials. ACS Applied Materials & Interfaces, 1, 1906–1912. DOI: 10.1021/am900320t. http://dx.doi.org/10.1021/am900320t10.1021/am900320tSuche in Google Scholar PubMed

[207] Šeděnková, M., & Prokeš, J. (2011). Solid-state oxidation of aniline hydrochloride with various oxidants. Synthetic Metals, 161, 1353–1360. DOI: 10.1016/j.synthmet.2011.04.037. http://dx.doi.org/10.1016/j.synthmet.2011.04.03710.1016/j.synthmet.2011.04.037Suche in Google Scholar

[208] Sestrem, R. H., Ferreira, D. C., Landers, R., Temperini, M. L. A., & do Nascimento, G. M. (2010). Synthesis and spectroscopic characterization of polymer and oligomers of orthophenylenediamine. European Polymer Journal, 46, 484–493. DOI: 10.1016/j.eurpolymj.2009.12.007. http://dx.doi.org/10.1016/j.eurpolymj.2009.12.00710.1016/j.eurpolymj.2009.12.007Suche in Google Scholar

[209] Sezer, A., Gurudas, U., Collins, B., Mckinlay, A., & Bubb, D. M. (2009). Nonlinear optical properties of conducting polyaniline and polyaniline-Ag composite thin films. Chemical Physics Letters, 477, 164–168. DOI: 10.1016/j.cplett.2009. 06.070. http://dx.doi.org/10.1016/j.cplett.2009.06.07010.1016/j.cplett.2009.06.070Suche in Google Scholar

[210] Shahi, M., Moghimi, A., Naderizadeh, B., & Maddah, B. (2011). Electrospun PVA-PANI and PVA-PANI-AgNO3 composite nanofibers. Scientia Iranica, 18, 1327–1331. DOI: 10.1016/j.scient.2011.08.013. http://dx.doi.org/10.1016/j.scient.2011.08.01310.1016/j.scient.2011.08.013Suche in Google Scholar

[211] Sharma, J., & Imae, T. (2009). Recent advances in fabrication of anisotropic metallic nanostructures. Journal of Nanoscience and Nanotechnology, 9, 19–40. DOI: 10.1166/jnn.2009.j087. http://dx.doi.org/10.1166/jnn.2009.J08710.1166/jnn.2009.J087Suche in Google Scholar PubMed

[212] Shenashen, M. A., Ayad, M. M., Salahuddin, N., & Youssif, M. A. (2010). Usage of quartz crystal microbalance technique to study polyaniline films formation in the presence of pphenylenediamine. Reactive & Functional Polymers, 70, 843–848. DOI: 10.1016/j.reactfunctpolym.2010.07.005. http://dx.doi.org/10.1016/j.reactfunctpolym.2010.07.00510.1016/j.reactfunctpolym.2010.07.005Suche in Google Scholar

[213] Shenashen, M. A., Okamoto, T., & Haraguchi, M. (2011). Study the effect of phenylenediamine compounds on the chemical polymerization of aniline. Reactive & Functional Polymers, 71, 766–773. DOI: 10.1016/j.reactfunctpolym.2011.02.004. http://dx.doi.org/10.1016/j.reactfunctpolym.2011.02.00410.1016/j.reactfunctpolym.2011.02.004Suche in Google Scholar

[214] Shi, Z. Q., Wang, H. J., Dai, T. Y., & Lu, Y. (2010). Room temperature synthesis of Ag/polypyrrole core-shell nanoparticles and hollow composite capsules. Synthetic Metals, 160, 2121–2127. DOI: 10.1016/j.synthmet.2010.07.042. http://dx.doi.org/10.1016/j.synthmet.2010.07.04210.1016/j.synthmet.2010.07.042Suche in Google Scholar

[215] Shi, Z. Q., Zhou, H., Qing, X. T., Dai, T. Y., & Lu, Y. (2012). Facile fabrication and characterization of poly(tetrafluoroethylene)@ polypyrrole/nano-silver composite membranes with conducting and antimicrobial property. Applied Surface Science, 258, 6359–6365. DOI: 10.1016/j.apsusc.2012.03.040. http://dx.doi.org/10.1016/j.apsusc.2012.03.04010.1016/j.apsusc.2012.03.040Suche in Google Scholar

[216] Shin, D. Y., & Kim, I. (2009). Self-patterning of fine metal electrodes by means of the formation of isolated silver nanoclusters embedded in polyaniline. Nanotechnology, 20, 415301. DOI: 10.1088/0957-4484/20/41/415301. http://dx.doi.org/10.1088/0957-4484/20/41/41530110.1088/0957-4484/20/41/415301Suche in Google Scholar PubMed

[217] Shukla, V. K., Yadav, P., Yadav, R. S., Mishra, P., & Pandey, A. C. (2012). A new class of PANI-Ag core-shell nanorods with sensing dimensions. Nanoscale, 4, 3886–3893. DOI: 10.1039/c2nr30963g. http://dx.doi.org/10.1039/c2nr30963g10.1039/c2nr30963gSuche in Google Scholar PubMed

[218] Silva, C. H. B., Ferreira, D. C., Constantino, V. R. L., & Temperini, M. L. A. (2011). Characterization of the products of aniline peroxydisulfate oligo/polymerization in media with different pH by resonance Raman spectroscopy at 413.1 and 1064 nm excitation wavelengths. Journal of Raman Spectroscopy, 42, 1653–1659. DOI: 10.1002/jrs.2898. http://dx.doi.org/10.1002/jrs.289810.1002/jrs.2898Suche in Google Scholar

[219] Sim, S. Y., Gu, Y. J., Ahn, H. J., Yoon, C. S., & Im, S. S. (2009). Enhanced electrical conductivity of Ag-mercaptosuccinic acid-redoped polyaniline nanoparticles during thermal cycling above 200°. Polymer Degradation and Stability, 94, 208–212. DOI: 10.1016/j.polymdegradstab.2008.11.002. http://dx.doi.org/10.1016/j.polymdegradstab.2008.11.00210.1016/j.polymdegradstab.2008.11.002Suche in Google Scholar

[220] Sinai, O., & Avnir, D. (2011). Organics@metals as the basis for silver/doped-silver electrochemical cell. Chemistry of Materials, 23, 3289–3295. DOI: 10.1021/cm2000655. http://dx.doi.org/10.1021/cm200065510.1021/cm2000655Suche in Google Scholar

[221] Singh, R. P., Tiwari, A., & Pandey, A. C. (2011). Silver/polyaniline nanocomposite for the electrocatalytic hydrazine oxidation. Journal of Inorganic and Organometalic Polymers and Materials, 21, 788–792. DOI: 10.1007/s10904-011-9554-y. http://dx.doi.org/10.1007/s10904-011-9554-y10.1007/s10904-011-9554-ySuche in Google Scholar

[222] Song, W., Jia, H. Y., Cong, Q., & Zhao, B. (2007). Silver microflowers and large spherical particles: Controlled preparation and their wetting properties. Journal of Colloid and Interface Science, 311, 456–460. DOI: 10.1016/j.jcis.2007.03.058. http://dx.doi.org/10.1016/j.jcis.2007.03.05810.1016/j.jcis.2007.03.058Suche in Google Scholar

[223] Spitalsky, Z., Tasis, D., Papagelis, K., & Galiotis, C. (2010). Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science, 35, 357–401. DOI: 10.1016/j.progpolymsci.2009.09.003. http://dx.doi.org/10.1016/j.progpolymsci.2009.09.00310.1016/j.progpolymsci.2009.09.003Suche in Google Scholar

[224] Stamplecoskie, K. G., & Scaiano, J. C. (2011). Optimal size of silver nanoparticles for surface-enhanced Raman spectroscopy. Journal of Physical Chemistry C, 115, 1403–1409. DOI: 10.1021/jp106666t. http://dx.doi.org/10.1021/jp106666t10.1021/jp106666tSuche in Google Scholar

[225] Stejskal, J. (2001). Colloidal dispersions of conducting polymers. Journal of Polymer Materials, 18, 225–258. Suche in Google Scholar

[226] Stejskal, J., Kratochvíl, P., & Radhakrishnan, N. (1993). Polyaniline dispersions 2. UV-Vis absorption spectra. Synthetic Metals, 61, 225–231. DOI: 10.1016/0379-6779(93) 91266-5. http://dx.doi.org/10.1016/0379-6779(93)91266-510.1016/0379-6779(93)91266-5Suche in Google Scholar

[227] Stejskal, J., Kratochvíl, P., & Špírková, M. (1995). Accelerating effect of some cation radicals on the polymerization of aniline. Polymer, 36, 4135–4140. DOI: 10.1016/0032-3861(95)90996-f. http://dx.doi.org/10.1016/0032-3861(95)90996-F10.1016/0032-3861(95)90996-FSuche in Google Scholar

[228] Stejskal, J., Kratochvíl, P., & Helmstedt, M. (1996a). Polyaniline dispersions. 5. Poly(vinyl alcohol) and poly(N-vinylpyrrolidone) as steric stabilizers. Langmuir, 12, 3389–3392. DOI: 10.1021/la9506483. http://dx.doi.org/10.1021/la950648310.1021/la9506483Suche in Google Scholar

[229] Stejskal, J., Kratochvíl, P., & Jenkins, A. D. (1996b). The formation of polyaniline and the nature of its structures. Polymer, 37, 367–369. DOI: 10.1016/0032-3861(96)81113-x. http://dx.doi.org/10.1016/0032-3861(96)81113-X10.1016/0032-3861(96)81113-XSuche in Google Scholar

[230] Stejskal, J., & Gilbert, R. G. (2002). Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure and Applied Chemistry, 74, 857–867. DOI: 10.1351/pac200274050857. http://dx.doi.org/10.1351/pac20027405085710.1351/pac200274050857Suche in Google Scholar

[231] Stejskal, J., Omastová, M., Fedorova, S., Prokeš, J., & Trchová, M. (2003). Polyaniline and polypyrrole prepared in the presence of surfactants: a comparative conductivity study. Polymer, 44, 1353–1358. DOI: 10.1016/s0032-3861(02)00906-0. http://dx.doi.org/10.1016/S0032-3861(02)00906-010.1016/S0032-3861(02)00906-0Suche in Google Scholar

[232] Stejskal, J., Sapurina, I., Trchová, M., Konyushenko, E. N., & Holler, P. (2006). The genesis of polyaniline nanotubes. Polymer, 47, 8253–8262. DOI: 10.1016/j.polymer.2006.10.007. http://dx.doi.org/10.1016/j.polymer.2006.10.00710.1016/j.polymer.2006.10.007Suche in Google Scholar

[233] Stejskal, J., Prokeš, J., & Trchová, M. (2008a). Reprotonation of polyaniline: A route to various conducting polymer materials. Reactive & Functional Polymers, 68, 1355–1361. DOI: 10.1016/j.reactfunctpolym.2008.06.012. http://dx.doi.org/10.1016/j.reactfunctpolym.2008.06.01210.1016/j.reactfunctpolym.2008.06.012Suche in Google Scholar

[234] Stejskal, J., Sapurina, I., Trchová, M., & Konyushenko, E. N. (2008b). Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules, 41, 3530–3536. DOI: 10.1021/ma702601q. http://dx.doi.org/10.1021/ma702601q10.1021/ma702601qSuche in Google Scholar

[235] Stejskal, J., Trchová, M., Kovářová, J., Prokeš, J., & Omastová, M. (2008c). Polyaniline-coated cellulose fibers decorated with silver nanoparticles. Chemical Papers, 62, 181–186. DOI: 10.2478/s11696-008-0009-z. http://dx.doi.org/10.2478/s11696-008-0009-z10.2478/s11696-008-0009-zSuche in Google Scholar

[236] Stejskal, J., Bogomolova, O. E., Blinova, N. V., Trchová, M., Šeděnkovš, J., & Sapurina, I. (2009a). Mixed electron and proton conductivity of polyaniline films in aqueous solutions of acids: Beyond the 1000 S cm−1 limit. Polymer International, 58, 872–879. DOI: 10.1002/pi.2605. http://dx.doi.org/10.1002/pi.260510.1002/pi.2605Suche in Google Scholar

[237] Stejskal, J., Prokeš, J., & Sapurina, I. (2009b). The reduction of silver ions with polyaniline: The effect of the type of polyaniline and the mole ratio of reagents. Materials Letters, 63, 709–711. DOI: 10.1016/j.matlet.2008.12.026. http://dx.doi.org/10.1016/j.matlet.2008.12.02610.1016/j.matlet.2008.12.026Suche in Google Scholar

[238] Stejskal, J., Trchová, M., Brožovš, J. (2009c). Reduction of silver nitrate by polyaniline nanotubes to produce silver-polyaniline composites. Chemical Papers, 63, 77–83. DOI: 10.2478/s11696-008-0086-z. http://dx.doi.org/10.2478/s11696-008-0086-z10.2478/s11696-008-0086-zSuche in Google Scholar

[239] Stejskal, J., Trchová, M., Kovářová, J., Brožová, L., & Prokeš, J. (2009d). The reduction of silver nitrate with various polyaniline salts to polyaniline-silver composites. Reactive & Functional Polymers, 69, 86–90. DOI: 10.1016/j.reactfunctpolym.2008.11.004. http://dx.doi.org/10.1016/j.reactfunctpolym.2008.11.00410.1016/j.reactfunctpolym.2008.11.004Suche in Google Scholar

[240] Stejskal, J., Sapurina, I., & Trchová, M. (2010). Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science, 35, 1420–1481. DOI: 10.1016/j.progpolymsci.2010.07.006. http://dx.doi.org/10.1016/j.progpolymsci.2010.07.00610.1016/j.progpolymsci.2010.07.006Suche in Google Scholar

[241] Stejskal, J., & Trchová, M. (2012). Aniline oligomers versus polyaniline. Polymer International, 61, 240–251. DOI: 10.1002/pi.3179. http://dx.doi.org/10.1002/pi.317910.1002/pi.3179Suche in Google Scholar

[242] Sulimenko, T., Stejskal, J., & Prokeš, J. (2001). Poly(phenylenediamine) dispersions. Journal of Colloid and Interface Science, 236, 328–334. DOI: 10.1006/jcis.2000.7415. http://dx.doi.org/10.1006/jcis.2000.741510.1006/jcis.2000.7415Suche in Google Scholar

[243] Sun, X. P. (2010). Morphology and size-controllable preparation of silver nanostructures through a wet-chemical route at room temperature. Inorganic Materials, 46, 679–682. DOI: 10.1134/s0020168510060208. http://dx.doi.org/10.1134/S002016851006020810.1134/S0020168510060208Suche in Google Scholar

[244] Sun, X. P., Dong, S. J., & Wang, E. K. (2005). Rapid preparation and characterization of uniform, large, spherical Ag particles through a simple wet-chemical route. Journal of Colloid and Interface Science, 290, 130–133. DOI: 10.1016/j.jcis.2005.04.016. http://dx.doi.org/10.1016/j.jcis.2005.04.01610.1016/j.jcis.2005.04.016Suche in Google Scholar

[245] Sun, X. P., & Hagner, M. (2007). Novel preparation of snowflake-like dendritic nanostructures of Ag and Au at room temperature via a wet-chemical route. Langmuir, 23, 9147–9150. DOI: 10.1021/la701519x. http://dx.doi.org/10.1021/la701519x10.1021/la701519xSuche in Google Scholar

[246] Sun, Y. Y., Guo, G. H., Yang, B. H., He, M. H., Tian, Y., Cheng, J. C., & Liu, Y. Q. (2012). Simple synthesis of polyaniline microtubes for the application on silver microrods preparation. Journal of Materials Research, 27, 457–462. DOI: 10.1557/jmr.2011.408. http://dx.doi.org/10.1557/jmr.2011.40810.1557/jmr.2011.408Suche in Google Scholar

[247] Tamboli, M. S., Kulkarni, M. V., Patil, R. H., Gade, W. N., Navale, S. C., & Kale, B. B. (2012). Nanowires of silver-polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent. Colloids and Surfaces B: Biointerfaces, 92, 35–41. DOI: 10.1016/j.colsurfb.2011.11.006. http://dx.doi.org/10.1016/j.colsurfb.2011.11.00610.1016/j.colsurfb.2011.11.006Suche in Google Scholar

[248] Tan, Y. W., Li, Y. F., & Zhu, D. B. (2003). Preparation of silver nanocrystals in the presence of aniline. Journal of Colloid and Interface Science, 258, 244–251. DOI: 10.1016/s0021-9797(02)00151-0. http://dx.doi.org/10.1016/S0021-9797(02)00151-010.1016/S0021-9797(02)00151-0Suche in Google Scholar

[249] Tchmutin, I. A., Ponomarenko, A. T., Krinichnaya, E. P., Kozub, G. I., & Efimov, O. N. (2003). Electrical properties of composites based on conjugated polymers and conductive fillers. Carbon, 41, 1391–1395. DOI: 10.1016/s0008-6223(03)00067-8. http://dx.doi.org/10.1016/S0008-6223(03)00067-810.1016/S0008-6223(03)00067-8Suche in Google Scholar

[250] Thanjam, S., Philips, M. F., Komathi, S., Manisankar, P., Sivakumar, C., Gopalan, A., & Lee, K. P. (2011). Course of poly(4-aminodiphenylamine)/Ag nanocomposite formation through UV-vis spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79, 1256–1266. DOI: 10.1016/j.saa.2011.04.052. http://dx.doi.org/10.1016/j.saa.2011.04.05210.1016/j.saa.2011.04.052Suche in Google Scholar PubMed

[251] Thanjam, I. S., Philips, M. F., Komathi, S., Manisankar, P., Gopalan, A. I., & Lee, K. P. (2012a). Influence of medium on the nanostructures and properties of poly(4-aminodiphenylamine)-silver nanocomposites. Polymer International, 61, 539–544. DOI: 10.1002/pi.3200. http://dx.doi.org/10.1002/pi.320010.1002/pi.3200Suche in Google Scholar

[252] Thanjam, I. S., Philips, M. F., Lee, K. P., & Gopalan, A. (2012b). Preparation of poly(4-aminodiphenylamine)/silver nanoparticles composite and catalysis. Journal of Materials Science: Materials in Electronics, 23, 807–810. DOI: 10.1007/s10854-011-0496-5. http://dx.doi.org/10.1007/s10854-011-0496-510.1007/s10854-011-0496-5Suche in Google Scholar

[253] Tian, Y., Li, Z. Q., Ski, K., & Yang, F. L. (2008). Spontaneous and electrochemical reduction of silver by polypyrrole deposits. Separation Science and Technology, 43, 3891–3901. DOI: 10.1080/01496390802212625. http://dx.doi.org/10.1080/0149639080221262510.1080/01496390802212625Suche in Google Scholar

[254] Tian, J. Q., Liu, S., & Sun, X. P. (2010). Supramolecular microfibrils of o-phenylenediamine dimers: Oxidation-induced morphology change and the spontaneous formation of Ag nanoparticle decorated nanofibers. Langmuir, 26, 15112–15116. DOI: 10.1021/la103038m. http://dx.doi.org/10.1021/la103038m10.1021/la103038mSuche in Google Scholar PubMed

[255] Tian, J. Q., Li, H. L., Lu, W. B., Luo, Y. L., Wang, L., & Sun, X. P. (2011). Preparation of Ag nanoparticle-decorated poly(mphenylenediamine) microparticles and their application for hydrogen peroxide detection. Analyst, 136, 1806–1809. DOI: 10.1039/c0an00929f. http://dx.doi.org/10.1039/c0an00929f10.1039/c0an00929fSuche in Google Scholar PubMed

[256] Tran, H. D., Norris, I., D’Arcy, J. M., Tsang, H., Wang, Y., Mattes, B. R., & Kaner, R. B. (2008). Substituted polyaniline nanofibers produced via rapid initiated polymerization, Macromolecules, 41, 7405–7410. DOI: 10.1021/ma800122d. http://dx.doi.org/10.1021/ma800122d10.1021/ma800122dSuche in Google Scholar

[257] Trchová, M., Konyushenko, E. N., Stejskal, J., Kovářová, J., & Ćirić-Marjanović, G. (2009). The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-walled carbon nanotubes. Polymer Degradation and Stability, 94, 929–938. DOI: 10.1016/j.polymdegradstab.2009.03.001. http://dx.doi.org/10.1016/j.polymdegradstab.2009.03.00110.1016/j.polymdegradstab.2009.03.001Suche in Google Scholar

[258] Trchová, M., & Stejskal, J. (2010). The reduction of silver nitrate to metallic silver inside polyaniline nanotubes and on oligoaniline microspheres. Synthetic Metals, 160, 1479–1486. DOI: 10.1016/j.synthmet.2010.05.007. http://dx.doi.org/10.1016/j.synthmet.2010.05.00710.1016/j.synthmet.2010.05.007Suche in Google Scholar

[259] Trchová, M., Morávková, Z., Šeděnková, I., & Stejskal, J. (2012). Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline. Chemical Papers, 66, 415–445. DOI: 10.2478/s11696-012-0142-6. http://dx.doi.org/10.2478/s11696-012-0142-610.2478/s11696-012-0142-6Suche in Google Scholar

[260] Tsakova, V. (2008) How to affect number, size, and location of metal particles deposited in conducting polymer layers. Journal of Solid State Electrochemistry, 12, 1421–1434. DOI: 10.1007/s10008-007-0494-y. http://dx.doi.org/10.1007/s10008-007-0494-y10.1007/s10008-007-0494-ySuche in Google Scholar

[261] Visy, C., Pintér, E., Fülei, T., & Ptakfalvi, R. (2005). Characterization of electronically conducting polypyrrole based composite materials. Synthetic Metals, 152, 13–16. DOI: 10.1016/j.synthmet.2005.07.084. http://dx.doi.org/10.1016/j.synthmet.2005.07.08410.1016/j.synthmet.2005.07.084Suche in Google Scholar

[262] Vorotyntsev, M. A., Skompska, M., Rajchowska, A., Borysiuk, J., & Donten, M. (2011). A new strategy towards electroactive polymer-inorganic nanostructure composites. Silver nanoparticles inside polypyrrole matrix with pendant titanocene dichloride complexes. Journal of Electroanalytical Chemistry, 662, 105–115. DOI: 10.1016/j.jelechem.2011.03. 037. Suche in Google Scholar

[263] Wang, H. L., Li, W. G., Jia, Q. X., & Akhadov, E. (2007). Tailoring conducting polymer chemistry for the chemical deposi tion of metal particles and clusters. Chemistry of Materials, 19, 520–525. DOI: 10.1021/cm0619508. http://dx.doi.org/10.1021/cm061950810.1021/cm0619508Suche in Google Scholar

[264] Wang, S. B., & Shi, G. Q. (2007). Uniform silver/polypyrrole core-shell nanoparticles synthesized by hydrothermal reaction. Materials Chemistry and Physics, 102, 255–259. DOI: 10.1016/j.matchemphys.2006.12.014. http://dx.doi.org/10.1016/j.matchemphys.2006.12.01410.1016/j.matchemphys.2006.12.014Suche in Google Scholar

[265] Wang, W., Li, Q., Li, Y., Xu, H., & Zhai, J. P. (2009a). Electroless Ag coating of fly ash cenospheres using polyaniline activator. Journal of Physics D: Applied Physics, 42, 215306. DOI: 10.1088/0022-3727/42/21/215306. http://dx.doi.org/10.1088/0022-3727/42/21/21530610.1088/0022-3727/42/21/215306Suche in Google Scholar

[266] Wang, W. Q., Shi, G. Q., & Zhang, R. F. (2009b). Facile fabrication of silver/polypyrrole composites by the modified silver mirror reaction. Journal of Materials Science, 44, 3002–3005. DOI: 10.1007/s10853-009-3416-9. http://dx.doi.org/10.1007/s10853-009-3416-910.1007/s10853-009-3416-9Suche in Google Scholar

[267] Wang, W. Q., & Zhang, R. F. (2009). Silver-polypyrrole composites: Facile preparation and application in surfaceenhanced Raman spectroscopy. Synthetic Metals, 159, 1332–1335. DOI: 10.1016/j.synthmet.2009.03.002. http://dx.doi.org/10.1016/j.synthmet.2009.03.00210.1016/j.synthmet.2009.03.002Suche in Google Scholar

[268] Wang, W. Q., Li, W. L., Ye, J., & Zhang, R. F. (2010a). Surface enhanced Raman scattering of Rhodamine B adsorbed on polypyrrole-silver composites. Journal of Polymer Materials, 27, 351–357. Suche in Google Scholar

[269] Wang, W. Q., Li, W. L., & Zhang, R. F. (2010b). Controlled fabrication of surface-enhanced-Raman scattering-active silver nanostructures on polypyrrole films. Materials Chemistry and Physics, 124, 385–388. DOI: 10.1016/j.matchemphys.2010.06.051. http://dx.doi.org/10.1016/j.matchemphys.2010.06.05110.1016/j.matchemphys.2010.06.051Suche in Google Scholar

[270] Wang, W. Q., Li, W. L., Zhang, R. F., & Wang, J. J. (2010c). Synthesis and characterization of Ag@PPy yolk-shell nanocomposite. Synthetic Metals, 160, 2255–2259. DOI: 10.1016/j.synthmet.2010.08.016. http://dx.doi.org/10.1016/j.synthmet.2010.08.01610.1016/j.synthmet.2010.08.016Suche in Google Scholar

[271] Wang, Z. F., Liao, F., Guo, T. T., Yang, S. W., & Zeng, C. M. (2012a). Synthesis of crystalline silver nanoplates and their application for detection of nitrite in foods. Journal of Electroanalytical Chemistry, 664, 135–138. DOI: 10.1016/j.jelechem.2011.11.006. http://dx.doi.org/10.1016/j.jelechem.2011.11.00610.1016/j.jelechem.2011.11.006Suche in Google Scholar

[272] Wang, L., Zhu, H. Z., Song, Y. H., Liu, L., He, Z. F., Wan, L. L., Chen, S. H., Xiang, Y., Chen, S. S., & Chen, J. (2012b). Architecture of poly(o-phenylenediamine)-Ag nanoparticle composites for a hydrogen peroxide senor. Electrochimica Acta, 60, 314–320. DOI: 10.1016/j.electacta.2011.11.045. http://dx.doi.org/10.1016/j.electacta.2011.11.04510.1016/j.electacta.2011.11.045Suche in Google Scholar

[273] Wei, M., & Lu, Y. (2009). Templating fabrication of polypyrrole nanorods/nanofibers. Synthetic Metals, 159, 1061–1066. DOI: 10.1016/j.synthmet.2009.01.031. http://dx.doi.org/10.1016/j.synthmet.2009.01.03110.1016/j.synthmet.2009.01.031Suche in Google Scholar

[274] Wei, Y. Y., Liang, L., Yang, X. M., Pan, G. L., Yan, G. P., & Yu, X. H. (2010a). One-step UV-induced synthesis of polypyrrole/Ag nanocomposites at the water/ionic liquid interface. Nanoscale Research Letters, 5, 443–437. DOI: 10.1007/s11671-009-9501-9. 10.1007/s11671-009-9501-9Suche in Google Scholar PubMed PubMed Central

[275] Wei, Y. Y., Zhao, Y., Li, L., Yang, X. M., Yu, X. H., & Yan, G. P. (2010b). Magnetic ionic liquid-assisted syntesis of polypyrrole/AgCl nanocomposites. Polymers for Advanced Technologies, 21, 742–745. DOI: 10.1002/pat.1682. http://dx.doi.org/10.1002/pat.168210.1002/pat.1682Suche in Google Scholar

[276] Wessling, B., Thun, M., Arribas-Sanchez, C., Gleeson, S., Posdorfer, J., Rischka, M., & Zeysing, B. (2007). An organic metal/silver nanoparticle finish on copper for efficient passivation and solderability preservation. Nanoscale Research Letters, 2, 455–460. DOI: 10.1007/s11671-007-9086-0. http://dx.doi.org/10.1007/s11671-007-9086-010.1007/s11671-007-9086-0Suche in Google Scholar

[277] Wolz, A., Zils, S., Michel, M., & Roth, C. (2010). Structured multilayered electrodes of proton/electron conducting polymer for polymer electrolyte membrane fuel cells assembled by spray coating. Journal of Power Sources, 195, 8162–8167. DOI: 10.1016/j.jpowsour.2010.06.087. http://dx.doi.org/10.1016/j.jpowsour.2010.06.08710.1016/j.jpowsour.2010.06.087Suche in Google Scholar

[278] Wu, X. M., Qi, S. H., He, J., Chen, B., & Duan, G. C. (2010). Synthesis of high conductivity polyaniline/Ag/graphite nanosheet composites via ultrasonic technique. Journal of Polymer Research, 17, 751–757. DOI: 10.1007/s10965-009-9366-8. http://dx.doi.org/10.1007/s10965-009-9366-810.1007/s10965-009-9366-8Suche in Google Scholar

[279] Wu, X. M., Qi, S. H., & Duan, G. C. (2012). Polyaniline/graphite nanosheet, polyaniline/Ag/graphite nanosheet, polyaniline/Ni/graphite nanosheet composites and their electromagnetic properties. Synthetic Metals, 162, 1609–1614. DOI: 10.1016/j.synthmet.2012.07.012. http://dx.doi.org/10.1016/j.synthmet.2012.07.01210.1016/j.synthmet.2012.07.012Suche in Google Scholar

[280] Wudl, F., Angus, R. O., Jr., Lu, F. L., Allemand, P. M., Vachon, D., Nowak, M., Liu, Z. X., Schaffer, H., & Heeger, A. J. (1987). Poly p-phenyleneamineimine: synthesis and comparison to polyaniline. Journal of the American Chemical Society, 109, 3677–3684. DOI: 10.1021/ja00246a026. http://dx.doi.org/10.1021/ja00246a02610.1021/ja00246a026Suche in Google Scholar

[281] Xia, Y. Y. (2011). The prevalent synthesis of one-dimensional noble metal nanostructures based on sulfonated polyaniline at room temperature. Journal of Nanoparticle Research, 13, 1717–1721. DOI: 10.1007/s11051-010-9926-1. http://dx.doi.org/10.1007/s11051-010-9926-110.1007/s11051-010-9926-1Suche in Google Scholar

[282] Xing, S. X., & Zhao, G. K. (2007). One-step synthesis of polypyrrole-Ag nanofiber composites in dilute mixed CTAB/SDS aqueous solution. Materials Letters, 61, 2040–2044. DOI: 10.1016/j.matlet.2006.08.011. http://dx.doi.org/10.1016/j.matlet.2006.08.01110.1016/j.matlet.2006.08.011Suche in Google Scholar

[283] Xu, P., Jeon, S. H., Chen, H. T., Luo, H. M., Zou, G. F., Jia, Q. X., Anghel, M., Teuscher, C., Williams, D. J., Zhang, B., Han, X. J., & Wang, H. L. (2010a). Facile synthesis of electrical properties of silver wires through chemical reduction by polyaniline. Journal of Physical Chemistry C, 114, 22147–22154. DOI: 10.1021/jp109207d. http://dx.doi.org/10.1021/jp109207d10.1021/jp109207dSuche in Google Scholar

[284] Xu, P., Jeon, S. H., Mack, N. H., Doorn, S. K., Williams, D. J., Han, X. J., & Wang, H. L. (2010b). Field assisted synthesis of SERS-active silver nanoparticles using conducting polymers. Nanoscale, 2, 1436–1440. DOI: 10.1039/c0nr00106f. http://dx.doi.org/10.1039/c0nr00106f10.1039/c0nr00106fSuche in Google Scholar PubMed

[285] Xu, P., Mack, N. H., Jeon, S. H., Doorn, S. K., Han, X. J., & Wang, H. L. (2010c). Facile fabrication of homogeneous 3D silver nanostructures on gold-supported polyaniline membranes as promising SERS substrates. Langmuir, 26, 8882–8886. DOI: 10.1021/la904617p. http://dx.doi.org/10.1021/la904617p10.1021/la904617pSuche in Google Scholar PubMed

[286] Xu, P., Zhang, B., Mack, N. H., Doorn, S. K., Han, X. J., & Wang, H. L. (2010d). Synthesis and homogeneous silver nanosheet assemblies for surface enhanced Raman scattering applications. Journal of Materials Chemistry, 20, 7222–7226. DOI: 10.1039/c0jm01322f. http://dx.doi.org/10.1039/c0jm01322f10.1039/c0jm01322fSuche in Google Scholar

[287] Yan, J., Han, X. J., He, J. J., Kang, L. L., Zhang, B., Du, Y. C., Zhao, H. T., Dong, C. K., Wang, H. L., & Xu, P. (2012). Highly sensitive surface-enhanced Raman spectroscopy (SERS) platforms based on silver nanostructures fabricated on polyaniline membrane surfaces. Applied Materials & Interfaces, 4, 2752–2756. DOI: 10.1021/am300381v. http://dx.doi.org/10.1021/am300381v10.1021/am300381vSuche in Google Scholar PubMed

[288] Yang, X. M., & Lu, Y. (2005). Hollow nanometer-sized polypyrrole capsules with controllable shell thickness synthesized in the presence of chitosan. Polymer, 46, 5324–5328. DOI: 10.1016/j.polymer.2005.04.023. http://dx.doi.org/10.1016/j.polymer.2005.04.02310.1016/j.polymer.2005.04.023Suche in Google Scholar

[289] Yang, X. M., Li, L., & Yan, F. (2010a). Polypyrrole/silver composite nanotubes for gas sensors. Sensors and Actuators B: Chemical, 145, 495–500. DOI: 10.1016/j.snb.2009.12.065. http://dx.doi.org/10.1016/j.snb.2009.12.06510.1016/j.snb.2009.12.065Suche in Google Scholar

[290] Yang, X. M., Li, L., & Yan, F. (2010b). Fabrication of polypyrrole/Ag composite nanotubes via in situ reduction of AgNO3 on polypyrrole nanotubes. Chemistry Letters, 39, 118–119. DOI: 10.1246/cl.2010.118. http://dx.doi.org/10.1246/cl.2010.11810.1246/cl.2010.118Suche in Google Scholar

[291] Yang, X. M., Li, L., & Zhao, Y. (2010c). Ag/AgCl-decorated polypyrrole nanotubes and their sensory properties. Synthetic Metals, 160, 1822–1825. DOI: 10.1016/j.synthmet.2010.06.018. http://dx.doi.org/10.1016/j.synthmet.2010.06.01810.1016/j.synthmet.2010.06.018Suche in Google Scholar

[292] Yang, X., & Wang, E. (2011). A nanoparticle autocatalytic sensor for Ag+ and Cu2+ ions in aqueous solution with high sensitivity and selectivity and its application in test paper. Analytical Chemistry, 83, 5005–5011. DOI: 10.1021/ac2008465. http://dx.doi.org/10.1021/ac200846510.1021/ac2008465Suche in Google Scholar PubMed

[293] Yang, J. P., Yin, H. J., Jia, J. J., & Wei, Y. (2011). Facile synthesis of high-concentration, stable aqueous dispersions of uniform silver nanoparticles using aniline as a reductant. Langmuir, 27, 5047–5053. DOI: 10.1021/la200013z. http://dx.doi.org/10.1021/la200013z10.1021/la200013zSuche in Google Scholar PubMed

[294] Yang, Y. Q., Qi, S. H., Qin, Y. C., & Zhang, X. X. (2012a). Synthesis and characterization of silver-coated graphite nanosheets with pyrrole via in situ polymerization. Journal of Applied Polymer Science, 125, E388–E397. DOI: 10.1002/app.36383. http://dx.doi.org/10.1002/app.3638310.1002/app.36383Suche in Google Scholar

[295] Yang, M., Xiang, Z. J., & Wang, G. (2012b). A novel orchidlike polyaniline superstructure by solvent-thermal method. Journal of Colloid and Interface Science, 367, 49–54. DOI: 10.1016/j.jcis.2011.08.086. http://dx.doi.org/10.1016/j.jcis.2011.08.08610.1016/j.jcis.2011.08.086Suche in Google Scholar PubMed

[296] Yao, T. J., Wang, C. X., Wu, J., Lin, Q., Lv, H., Zhang, K., Yu, K., & Yang, B. (2009). Preparation of raspberry-like polypyrrole composites with applications in catalysis. Journal of Colloid and Interface Science, 338, 573–577. DOI: 10.1016/j.jcis.2009.05.001. http://dx.doi.org/10.1016/j.jcis.2009.05.00110.1016/j.jcis.2009.05.001Suche in Google Scholar PubMed

[297] Ye, S. J., & Lu, Y. (2008). Optical properties of Ag@polypyrrole nanoparticles calculated by Mie theory. Journal of Physical Chemistry C, 112, 8767–8772. DOI: 10.1021/jp077710c. http://dx.doi.org/10.1021/jp077710c10.1021/jp077710cSuche in Google Scholar

[298] Ye, S. J., Fang, L., & Lu, Y. (2009). Contribution of chargetransfer effect to surface-enhanced IR for Ag@PPy nanoparticles. Physical Chemistry Chemical Physics, 11, 2480–2484. DOI: 10.1039/b816070h. http://dx.doi.org/10.1039/b816070h10.1039/b816070hSuche in Google Scholar PubMed

[299] Yi, Q. F., & Song, L. H. (2012). Polyaniline-modified silver and binary silver-cobalt catalysts for oxygen reduction reaction. Electroanalysis, 24, 1655–1663. DOI: 10.1002/elan.201200 154. http://dx.doi.org/10.1002/elan.201200154Suche in Google Scholar

[300] Yin, H. J., & Yang, J. P. (2012). A novel strategy for the controlled synthesis of silver halide/polyaniline nanocomposites with different polyaniline morphologies. Macromolecular Materials and Engineering, 297, 203–208. DOI: 10.1002/mame.201100130. http://dx.doi.org/10.1002/mame.20110013010.1002/mame.201100130Suche in Google Scholar

[301] ZabrodskiĽ, A. G., Kompan, M. E., Malyshkin, V. G., & Sapurina, I. Y. (2006). Carbon supported polyaniline as anode catalyst: Pathway to platinum-free fuel cells. Technical Physics Letters, 32, 758–761. DOI: 10.1134/s1063785006090070. http://dx.doi.org/10.1134/S106378500609007010.1134/S1063785006090070Suche in Google Scholar

[302] Zhang, A. Q., Cui, C. Q., Lee, J. Y., & Loh, F. C. (1995). Interactions between polyaniline and silver cations. Journal of Electrochemical Society, 142, 1097–1104. DOI: 10.1149/1.2044136. http://dx.doi.org/10.1149/1.204413610.1149/1.2044136Suche in Google Scholar

[303] Zhang, A. Q., Cui, C. Q., & Lee, J. Y. (1996). Metalpolymer interactions in the Ag+|poly-o-aminophenol system. Journal of Electroanalytical Chemistry, 413, 143–151. DOI: 10.1016/0022-0728(96)04668-2. http://dx.doi.org/10.1016/0022-0728(96)04668-210.1016/0022-0728(96)04668-2Suche in Google Scholar

[304] Zhang, X. Y., & Manohar, S. K. (2005). Narrow pore-diameter polypyrrole nanotubes. Journal of the American Chemical Society, 127, 14156–14157. DOI: 10.1021/ja054789v. http://dx.doi.org/10.1021/ja054789v10.1021/ja054789vSuche in Google Scholar PubMed

[305] Zhang, W. M., Chen, J., Wagner, P., Swiegers, G. F., & Wallace, G. G. (2008). Polypyrrole/Co-tetraphenylporphyrin modified carbon fibre paper as a fuel cell electrocatalyst of oxygen reduction. Electrochemistry Communications, 10, 519–522. DOI: 10.1016/j.elecom.2008.01.032. http://dx.doi.org/10.1016/j.elecom.2008.01.03210.1016/j.elecom.2008.01.032Suche in Google Scholar

[306] Zhang, X. L., Xing, J. X., & Jin, F. (2010). Electrocatalytic study of silver/polypyrrole nanowire composite modified electrodes. Asian Journal of Chemistry, 22, 755–760. Suche in Google Scholar

[307] Zhang, L. Y., Chai, L. Y., Duan, J. Y., Li, G. L., Wang, H. Y., Yu, W. T., & Sang, P. L. (2011a). One-step and cost-effective synthesis of micrometer-sized saw-like silver nanosheets by oil/water interfacial method. Materials Letters, 65, 1295–1298, DOI: 10.1016/j.matlet.2011.01.062. http://dx.doi.org/10.1016/j.matlet.2011.01.06210.1016/j.matlet.2011.01.062Suche in Google Scholar

[308] Zhang, L. Y., Chai, L. Y., Liu, J., Wang, H. Y., Yu, W. T., & Sang, P. L. (2011b). pH manipulation: A facile method for lowering oxidation state and keeping good yield of poly (m-phenylenediamine) and its powerful Ag+ adsorption ability. Langmuir, 27, 13729–13738. DOI: 10.1021/la203162y. http://dx.doi.org/10.1021/la203162y10.1021/la203162ySuche in Google Scholar PubMed

[309] Zhang, Y. W., Wang, L., Tian, J. Q., Li, H. L., Luo, Y. L., & Sun, X. P. (2011c). Ag@poly(m-phenylenediamine) core-shell nanoparticles for highly selective, multiplex nucleic acid detection. Langmuir, 27, 2170–2175. DOI: 10.1021/la105092f. http://dx.doi.org/10.1021/la105092f10.1021/la105092fSuche in Google Scholar PubMed

[310] Zhang, X., Zhi, W. X., Yan, B., & Xu, X. X. (2012). α-Fe2O3/PPy/Ag functional hybrid nanomaterials with core/shell structure: Synthesis, characterization and catalytic activity. Powder Technology, 221, 177–182. DOI: 10.1016/j.powtec.2011.12.064. http://dx.doi.org/10.1016/j.powtec.2011.12.06410.1016/j.powtec.2011.12.064Suche in Google Scholar

[311] Zhao, C. J., Zhao, Q. T., Zhao, Q. Z., Qiu, J. R., Zhu, C. S., & Guo, S. W. (2007). Preparation and optical properties of Ag/PPy composite colloids. Journal of Photochemistry and Photobiology A: Chemistry, 187, 146–151. DOI: 10.1016/j.jphotochem.2006.10.006. http://dx.doi.org/10.1016/j.jphotochem.2006.10.00610.1016/j.jphotochem.2006.10.006Suche in Google Scholar

[312] Zhao, B. B., & Nan, Z. D. (2012a). Enhancement of electrical conductivity by incorporation of Ag into core/shell structure of Fe3O4/Ag/PPy/NPs. Materials Science and Engineering: C, 32, 804–810. DOI: 10.1016/j.msec.2012.01.030. http://dx.doi.org/10.1016/j.msec.2012.01.03010.1016/j.msec.2012.01.030Suche in Google Scholar

[313] Zhao, B. B., & Nan, Z. D. (2012b). Formation of self-assembled nanofiber-like Ag@PPy core/shell structures induced by SDBS. Materials Science and Engineering: C, 32, 1971–1975. DOI: 10.1016/j.msec.2012.05.029. http://dx.doi.org/10.1016/j.msec.2012.05.02910.1016/j.msec.2012.05.029Suche in Google Scholar PubMed

[314] Zhao, Y. C., Tomšík, E., Wang, J. X., Morávková, Z., Zhigunov, A., Stejskal, J., & Trchová, M. (2013). Self-assembly of aniline oligomers. Chemistry — An Asian Journal, 8, 129–137. DOI: 10.1002/asia.201200836. http://dx.doi.org/10.1002/asia.20120083610.1002/asia.201200836Suche in Google Scholar PubMed

[315] Zhou, H. H., Ning, X. H., Li, S. L., Chen, J. H., & Kuang, Y. F. (2006). Synthesis of polyaniline-silver nanocomposite film by unsymmetrical square wave current method. Thin Solid Films, 510, 164–168. DOI: 10.1016/j.tsf.2005.12.310. http://dx.doi.org/10.1016/j.tsf.2005.12.31010.1016/j.tsf.2005.12.310Suche in Google Scholar

[316] Zhou, Z., He, D. L., Guo, Y. N., Cui, Z. D., Wang, M. H., Li, G. X., & Yang, R. H. (2009). Fabrication of polyaniline-silver nanocomposites by chronopotentiometry in different ionic liquid microemulsion systems. Thin Solid Films, 517, 6767–6771. DOI: 10.1016/j.tsf.2009.05.043. http://dx.doi.org/10.1016/j.tsf.2009.05.04310.1016/j.tsf.2009.05.043Suche in Google Scholar

[317] Zięba, A., Drelinkiewicz, A., Konyushenko, E. N., & Stejskal, J. (2010). Activity and stability of polyaniline-sulfate-based solid acid catalysts for the transesterifacion of triglycerides and esterification of fatty acids with methanol. Applied Catalysis A: General, 383, 169–181. DOI: 10.1016/j.apcata.2010.05.042. http://dx.doi.org/10.1016/j.apcata.2010.05.04210.1016/j.apcata.2010.05.042Suche in Google Scholar

[318] Zujovic, Z. D., Laslau, C., & Travas-Sejdic, J. (2011a). Lamellar-structured nanoflakes comprised of stacked oligoaniline nanosheets. Chemistry — An Asian Journal, 6, 791–796. DOI: 10.1002/asia.201000703. http://dx.doi.org/10.1002/asia.20100070310.1002/asia.201000703Suche in Google Scholar PubMed

[319] Zujovic, Z. D., Wang, Y., Bowmaker, G. A., & Kaner, R. B. (2011b). Structure of ultralong polyaniline nanofibers using initiators. Macromolecules, 44, 2735–2742. DOI: 10.1021/ma102772t. http://dx.doi.org/10.1021/ma102772t10.1021/ma102772tSuche in Google Scholar

Published Online: 2013-5-3
Published in Print: 2013-8-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Recent trends and progress in research into structure and properties of polyaniline and polypyrrole — Topical Issue
  2. Printing polyaniline for sensor applications
  3. Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials
  4. Conducting polymer-silver composites
  5. Electrorheological response of polyaniline and its hybrids
  6. Effect of PPy/PEG conducting polymer film on electrochemical performance of LiFePO4 cathode material for Li-ion batteries
  7. Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration
  8. Self-assembly of aniline oligomers and their induced polyaniline supra-molecular structures
  9. Self-organization of polyaniline during oxidative polymerization: formation of granular structure
  10. Influence of ethanol on the chain-ordering of carbonised polyaniline
  11. X-ray absorption spectroscopy of nanostructured polyanilines
  12. Effect of cations on polyaniline morphology
  13. Preparation of polyaniline in the presence of polymeric sulfonic acids mixtures: the role of intermolecular interactions between polyacids
  14. Chemical degradation of polyaniline by reaction with Fenton’s reagent — a spectroelectrochemical study
  15. Thin mesoporous polyaniline films manifesting a water-promoted photovoltaic effect
  16. Polyamide grafted with polypyrrole: formation, properties, and stability
  17. Effect of ionic liquid on polyaniline chemically synthesised under falling-pH conditions
  18. Polyaniline doped with poly(acrylamidomethylpropanesulphonic acid): electrochemical behaviour and conductive properties in neutral solutions
  19. Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles
  20. Bi-hybrid coatings: polyaniline-montmorillonite filler in organic-inorganic polymer matrix
  21. Preparation of aqueous polyaniline-vesicle suspensions with class III peroxidases. Comparison between horseradish peroxidase isoenzyme C and soybean peroxidase
  22. Preparation, characterisation, and dielectric properties of polypyrrole-clay composites
  23. Multi-wall carbon nanotubes with nitrogen-containing carbon coating
  24. Conducting poly(o-anisidine)-coated steel electrodes for supercapacitors
  25. Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations
  26. Preparation of a miniaturised iodide ion selective sensor using polypyrrole and pencil lead: effect of double-coating, electropolymerisation time, and current density
  27. Role of polyaniline morphology in Pd particles dispersion. Hydrogenation of alkynes in the presence of Pd-polyaniline catalysts
  28. Nanostructured polyaniline-coated anode for improving microbial fuel cell power output
  29. Antibacterial properties of polyaniline-silver films
  30. Effect of compression pressure on mechanical and electrical properties of polyaniline pellets
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0304-6/pdf?lang=de
Button zum nach oben scrollen