Startseite Preparation, characterisation, and dielectric properties of polypyrrole-clay composites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Preparation, characterisation, and dielectric properties of polypyrrole-clay composites

  • Seyfullah Madakbaş EMAIL logo , Emrah Çakmakçı , Memet Kahraman und Kadir Esmer
Veröffentlicht/Copyright: 3. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, polypyrrole-clay (PPy-clay) composites were prepared by the in situ chemical oxidative polymerisation of pyrrole in the presence of clay. The chemical structures of the composites were characterised by FTIR and XRD analysis. The thermal properties of these novel composites were analysed by TGA and DSC measurements. Glass-transition temperatures and char yields increased with the increase in clay content in the nanocomposites. The interactions between PPy and clay were mainly between polypyrrole and the layers of clay. It was observed that, as the amount of clay in the composites increased, the dielectric permittivity decreased while the dielectric conductivity of the composite materials increased.

[1] Basavaraja, C., Kim, N. R., Jo, E. A., Pierson, R., Huh, D. S., & Venkataraman, A. (2009). Transport properties of polypyrrole films doped with sulphonic acids. Bulletin of the Korean Chemical Society, 30, 2701–2706. DOI: 10.5012/bkcs.2009.30.11.2701. http://dx.doi.org/10.5012/bkcs.2009.30.11.270110.5012/bkcs.2009.30.11.2701Suche in Google Scholar

[2] Boukerma, K., Piquemal, J. Y., Chehimi, M. M., Mravčáová M., Omastová, M., & Beaunier, P. (2006). Synthesis and interfacial properties of montmorillonite/polypyrrole nanocomposites. Polymer, 47, 569–576. DOI: 10.1016/j.polymer.2005.11.065. http://dx.doi.org/10.1016/j.polymer.2005.11.06510.1016/j.polymer.2005.11.065Suche in Google Scholar

[3] do Nascimento, G. M., & de Souza, M. A. (2010). Spectroscopy of nanostructured conducting polymers. In A. Eftekhari (Ed.), Nanostructured conductive polymers (pp. 355–356). Chichester, UK: Wiley. DOI: 10.1002/9780470661338.ch8. 10.1002/9780470661338.ch8Suche in Google Scholar

[4] Esmer, K., & Tarcan, E. (2001). The adsorption of the anionic and cationic surfactants by the different clay minerals: FTIR spectroscopic study. Spectroscopy Letters, 34, 443–451. DOI: 10.1081/sl-100105091. http://dx.doi.org/10.1081/SL-10010509110.1081/SL-100105091Suche in Google Scholar

[5] Karim, M. R., & Yeum, J. H. (2008). In situ intercalative polymerization of conducting polypyrrole/montmorillonite nanocomposites. Journal of Polymer Science Part B: Polymer Physics, 46, 2279–2285. DOI: 10.1002/polb.21559. http://dx.doi.org/10.1002/polb.2155910.1002/polb.21559Suche in Google Scholar

[6] Kasisomayajula, S. V., Qi, X., Vetter, C., Croes, K., Pavlacky, D., & Gelling, V. J. (2010). A structural and morphological comparative study between chemically synthesized and photopolymerized poly(pyrrole). Journal of Coatings Technology and Research, 7, 145–158. DOI: 10.1007/s11998-009-9186-0. http://dx.doi.org/10.1007/s11998-009-9186-010.1007/s11998-009-9186-0Suche in Google Scholar

[7] Ku, C. C., & Liepins, R. (1987). Electrical properties of polymers: Chemical principles. New York, NY, USA: Hanser. Suche in Google Scholar

[8] Lin, J., Tang, Q., Wu, J., & Sun, H. (2008). Synthesis, characterization, and properties of polypyrrole/expanded vermiculite intercalated nanocomposite. Journal of Applied Polymer Science, 110, 2862–2866. DOI: 10.1002/app.28871. http://dx.doi.org/10.1002/app.2887110.1002/app.28871Suche in Google Scholar

[9] Madakbas, S., Esmer, K., Kayahan, E., & Yumak, M. (2010). Synthesis and dielectric properties of poly(aniline)/Nabentonite nanocomposite. Science and Engineering of Composite Materials, 17, 145–153. DOI: 10.1515/secm.2010.17.3.145. http://dx.doi.org/10.1515/SECM.2010.17.3.14510.1515/SECM.2010.17.3.145Suche in Google Scholar

[10] Murphy, O. J., Hitchens, G. D., Hodko, D., Clarke, E. T., Miller, D. L., & Parker, D. L. (1999). U.S. Patent No. 5,855,755. Washington, DC, USA: U. S. Patent and Trademark Office. Suche in Google Scholar

[11] Omastová, M., & Mičušík, M. (2012). Polypyrrole coating of inorganic and organic materials by chemical oxidative polymerisation. Chemical Papers, 66, 392–414. DOI: 10.2478/s11696-011-0120-4. http://dx.doi.org/10.2478/s11696-011-0120-410.2478/s11696-011-0120-4Suche in Google Scholar

[12] Pant, H. C., Patra, M. K., Negi, S. C., Bhatia, A., Vadera, S. R., & Kumar, N. (2006). Studies on conductivity and dielectric properties of polyaniline-zinc sulphide composites. Bulletin of Materials Science, 29, 379–384. DOI: 10.1007/bf02704139. http://dx.doi.org/10.1007/BF0270413910.1007/BF02704139Suche in Google Scholar

[13] Partch, R., Gangoli, S. G., Matijević, E., Cal, W., & Arajs, S. (1991). Conducting polymer composites: I. Surface-induced polymerization of pyrrole on iron(III) and cerium(IV) oxide particles. Journal of Colloid and Interface Science, 144, 27–35. DOI: 10.1016/0021-9797(91)90234-y. http://dx.doi.org/10.1016/0021-9797(91)90234-Y10.1016/0021-9797(91)90234-YSuche in Google Scholar

[14] Peighambardoust, S. J., & Pourabbas, B. (2007). Synthesis and characterization of conductive polypyrrole/montmorillonite nanocomposites via one-pot emulsion polymerization. Macromolecular Symposia, 247, 99–109. DOI: 10.1002/masy.200750112. http://dx.doi.org/10.1002/masy.20075011210.1002/masy.200750112Suche in Google Scholar

[15] Rizvi, T. Z., & Shakoor, A. (2009). Electrical conductivity and dielectric properties of polypyrrole/Na+-montmorillonite (PPy/Na+-MMT) clay nanocomposites. Journal of Physics D: Applied Physics, 42, 095415. DOI: 10.1088/0022-3727/42/ 9/095415. http://dx.doi.org/10.1088/0022-3727/42/9/09541510.1088/0022-3727/42/9/095415Suche in Google Scholar

[16] Saafan, S. A., El-Nimr, M. K., & El-Ghazzawy, E. H. (2006). Study of dielectric properties of polypyrrole prepared using two different oxidizing agents. Journal of Applied Polymer Science, 99, 3370–3379. DOI: 10.1002/app.23054. http://dx.doi.org/10.1002/app.2305410.1002/app.23054Suche in Google Scholar

[17] Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K., & Heeger, A. J. (1977). Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. Journal of the Chemical Society, Chemical Communications, 1997, 578–580. DOI: 10.1039/c39770000578. http://dx.doi.org/10.1039/c3977000057810.1039/c39770000578Suche in Google Scholar

[18] Stejskal, J., & Gilbert, R. G. (2002). Polyaniline. Preparation of a conducting polymer. Pure and Applied Chemistry, 74, 857–867. DOI: 10.1351/pac200274050857. http://dx.doi.org/10.1351/pac20027405085710.1351/pac200274050857Suche in Google Scholar

[19] Vishnuvardhan, T. K., Kulkarni, V. R., Basavaraja, C., & Raghavendra, S. C. (2006). Synthesis, characterization and a.c. conductivity of polypyrrole/Y2O3 composites. Bulletin of Materials Science, 29, 77–83. DOI: 10.1007/bf02709360. http://dx.doi.org/10.1007/BF0270936010.1007/BF02709360Suche in Google Scholar

[20] Wang, T., Liu, W., Tian, J., Shao, X., & Sun, D., (2004). Structure characterization and conductive performance of polypyrrol-molybdenum disulfide ıntercalation materials. Polymer Composites, 25, 111–117. DOI: 10.1002/pc.20009. http://dx.doi.org/10.1002/pc.2000910.1002/pc.20009Suche in Google Scholar

[21] Yeh, J. M., Chin, C. P., & Chang, S. (2003). Enhanced corrosion protection coatings prepared from soluble electronically conductive polypyrrole-clay nanocomposite materials. Journal of Applied Polymer Science, 88, 3264–3272. DOI: 10.1002/app.12146. http://dx.doi.org/10.1002/app.1214610.1002/app.12146Suche in Google Scholar

Published Online: 2013-5-3
Published in Print: 2013-8-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Recent trends and progress in research into structure and properties of polyaniline and polypyrrole — Topical Issue
  2. Printing polyaniline for sensor applications
  3. Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials
  4. Conducting polymer-silver composites
  5. Electrorheological response of polyaniline and its hybrids
  6. Effect of PPy/PEG conducting polymer film on electrochemical performance of LiFePO4 cathode material for Li-ion batteries
  7. Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration
  8. Self-assembly of aniline oligomers and their induced polyaniline supra-molecular structures
  9. Self-organization of polyaniline during oxidative polymerization: formation of granular structure
  10. Influence of ethanol on the chain-ordering of carbonised polyaniline
  11. X-ray absorption spectroscopy of nanostructured polyanilines
  12. Effect of cations on polyaniline morphology
  13. Preparation of polyaniline in the presence of polymeric sulfonic acids mixtures: the role of intermolecular interactions between polyacids
  14. Chemical degradation of polyaniline by reaction with Fenton’s reagent — a spectroelectrochemical study
  15. Thin mesoporous polyaniline films manifesting a water-promoted photovoltaic effect
  16. Polyamide grafted with polypyrrole: formation, properties, and stability
  17. Effect of ionic liquid on polyaniline chemically synthesised under falling-pH conditions
  18. Polyaniline doped with poly(acrylamidomethylpropanesulphonic acid): electrochemical behaviour and conductive properties in neutral solutions
  19. Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles
  20. Bi-hybrid coatings: polyaniline-montmorillonite filler in organic-inorganic polymer matrix
  21. Preparation of aqueous polyaniline-vesicle suspensions with class III peroxidases. Comparison between horseradish peroxidase isoenzyme C and soybean peroxidase
  22. Preparation, characterisation, and dielectric properties of polypyrrole-clay composites
  23. Multi-wall carbon nanotubes with nitrogen-containing carbon coating
  24. Conducting poly(o-anisidine)-coated steel electrodes for supercapacitors
  25. Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations
  26. Preparation of a miniaturised iodide ion selective sensor using polypyrrole and pencil lead: effect of double-coating, electropolymerisation time, and current density
  27. Role of polyaniline morphology in Pd particles dispersion. Hydrogenation of alkynes in the presence of Pd-polyaniline catalysts
  28. Nanostructured polyaniline-coated anode for improving microbial fuel cell power output
  29. Antibacterial properties of polyaniline-silver films
  30. Effect of compression pressure on mechanical and electrical properties of polyaniline pellets
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0279-3/pdf
Button zum nach oben scrollen