Home Physical Sciences The crystal structure of 4,6-bis(dimethylamino)-2-fluoroisophthalonitrile, C12H13FN4
Article Open Access

The crystal structure of 4,6-bis(dimethylamino)-2-fluoroisophthalonitrile, C12H13FN4

  • Shanlin Xu , Tianyuan Zhang and Gang Xiong ORCID logo EMAIL logo
Published/Copyright: July 8, 2025

Abstract

C12H13FN4, triclinic, P 1 (no. 2), a = 7.5580(3) Å, b = 8.4834(8) Å, c = 10.4451(7) Å, α = 71.478(7)°, β = 69.583(6)°, γ = 68.641(7)°, V = 570.42(8) Å3, Z = 2, Rgt(F) = 0.0565, wRref (F2) = 0.1668, T = 296 K.

CCDC no.: 2452805.

The molecular structure is shown in the figure. Table 1 contains the crystallographic data and the list of the atoms including atomic coordinates and displacement parameters can be found in the cif-file attached to this article.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size: 0.30 × 0.25 × 0.22 mm
Wavelength: CuKα radiation (1.54184 Å)
μ: 0.80 mm−1
Diffractometer, scan mode: Rigaku XtaLAB Synergy, ω scans
θmax, completeness: 65.0°, 97 %
N(hkl)measured, N(hkl)unique, Rint: 4145, 1879, 0.035
Criterion for Iobs, N(hkl)gt: Iobs > 2σ(Iobs), 1,647
N(param)refined: 159
Programs: Rigaku, 1 Olex2, 2 SHELX 3

1 Source of materials

The 1,3,5-trifluoro-2,4,6-triiodobenzene (1.02 g, 2 mmol) and copper(I) cyanide (1.08 g, 6 mmol) were placed in a 50 mL round bottomed flask with 20 mL of dry N,N-dimethylformamide (DMF). The mixture was refluxed for 24 h under N2 atmosphere. When the reaction was finished, 10 mL of concentrated ammonia water and 20 mL of dichloromethane were sequentially added to the reaction. After separation, the aqueous phase was extracted three times with dichloromethane, and the organic phases were combined. The organic phases were then washed three times with water, and finally dried with anhydrous sodium sulfate. Most of the dichloromethane was removed using a rotary evaporator, and after cooling and standing overnight, colorless block crystals were obtained. After filtration, about 186 mg were obtained with a yield of approximately 40 %.

2 Experimental details

The data were collected and processed using CrysAlisPRO. 1 The structures were solved using Olex2 software 2 and refined with the SHELXL. 3 The hydrogen atom positions were fixed geometrically at the calculated distances and allowed to ride on the parent atoms. The Uiso of the H-atoms were set to 1.2 and 1.5 times Ueq of the parent atoms with C–H = 0.96 Å (aliphatic) and C–H = 0.93 Å (aromatic).

3 Comment

The potential of organic cyanates in synthetic chemistry is extensive, with a wide range of applications in the production of carboxylic acid compounds, 3 amides, 4 aldehyde compounds, 5 ketone compounds, 6 and some heterocyclic compounds 7 under specific conditions. Furthermore, cyanoaromatic compounds, such as polycyanobenzenes, have been in the focus of extensive research due to their significant photophysical and electron transfer properties. 8 These compounds are frequently employed as photocatalysts in various applications. 9 , 10

In the asymmetric unit, there is one complete 4,6-bis(dimethylamino)-2-fluoroisophthalonitrile molecule. In this molcule the dimethylamine group is the decomposition product of DMF molecules under heat condition, which subsequently undergoes nucleophilic substitution to obtain the product. Cyan group is generated through the Rosenmund von Braun reaction between iodobenzene and cuprous cyanide. 11 The departure reaction of iodine atoms on the benzene ring occurred under copper catalysis during the reaction process. 12 After undergoing the above chemical reactions, the target product was finally obtained. The C–C bond distances on the aromatic ring range from 1.382(2) to 1.436(2) Å. C(sp2)–N bond distances are 1.359(2) and 1.361(2) Å. And C(sp3)–N bond distances range from 1.444(3) to 1.460(3) Å. C–N bond distances of cyano group are 1.153(2) and 1.148(2) Å. C(sp2)–F bond distance is 1.3526(19) Å. All bond distances are within the normal range. 13 , 14


Corresponding author: Gang Xiong, Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang, 110142, China, E-mail:

References

1. Agilent Technologies. CrysAlisPRO Software System (Version 171.38.43f); Agilent Technologies UK Ltd: Oxford, UK, 2015.Search in Google Scholar

2. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. https://doi.org/10.1107/S0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/S2053229614024218.Search in Google Scholar PubMed PubMed Central

4. Daw, P.; Sinha, A.; Rahaman, S. M. W.; Dinda, S.; Bera, J. K. Bifunctional Water Activation for Catalytic Hydration of Organonitriles. Organometallics 2012, 31 (9), 3790–3797. https://doi.org/10.1021/om300297y.Search in Google Scholar

5. Paul, B.; Maji, M.; Kundu, S. Atom-Economical and Tandem Conversion of Nitriles to N-Methylated Amides Using Methanol and Water. ACS Catal. 2019, 9 (11), 10469–10476. https://doi.org/10.1021/acscatal.9b03916.Search in Google Scholar

6. Wang, K. Z.; Jiang, P. B.; Yang, M.; Ma, P.; Qin, J. H.; Huang, X. K.; Ma, L.; Li, R. Metal-Free Nitrogen-Doped Carbon Nanosheets: A Catalyst for the Direct Synthesis of Imines Under Mild Conditions. Green Chem. 2019, 21, 2448–2461. https://doi.org/10.1039/C9GC00908F.Search in Google Scholar

7. Hatano, M.; Kuwano, K.; Asukai, R.; Nagayoshi, A.; Hoshihara, H.; Hirata, T.; Umezawa, M.; Tsubaki, S.; Yoshikawa, T.; Sakata, K. Zinc Chloride-Catalyzed Grignard Addition Reaction of Aromatic Nitriles. Chem. Sci. 2024, 15, 8569–8577. https://doi.org/10.1039/D4SC01659A.Search in Google Scholar

8. Yan, L. W.; Gou, S. H.; Ye, Z. B.; Zhang, S. H.; Ma, L. H. Self-Healing and Moldable Material with the Deformation Recovery Ability from Self-Assembled Supramolecular Metallogels. Chem. Commun. 2014, 50, 12847–12850. https://doi.org/10.1039/C4CC06154C.Search in Google Scholar PubMed

9. Li, Y.; Ren, T.; Dong, W.-J. Tuning Photophysical Properties of Triphenylamine and Aromatic Cyano Conjugate-Based Wavelength-Shifting Compounds by Manipulating Intramolecular Charge Transfer Strength. J. Photochem. Photobiol. A: Chem. 2013, 251, 1–9. https://doi.org/10.1016/j.jphotochem.2012.10.002.Search in Google Scholar

10. Bryden, M. A.; Millward, F.; Matulaitis, T.; Chen, D.; Villa, M.; Cetin, S.; Ceroni, P. ; Zysman-Colman, E. Moving Beyond Cyanoarene Thermally Activated Delayed Fluorescence Compounds as Photocatalysts: An Assessment of the Performance of a Pyrimidyl Sulfone Photocatalyst in Comparison to 4CzIPN. J. Org. Chem. 2023, 88 (10), 6364–6373. https://doi.org/10.1021/acs.joc.2c01137.Search in Google Scholar PubMed PubMed Central

11. Chen, S. P.; Pan, T.; Jiang, Q.; Li, J.; Chen, J. M.; Sheng, W. B. Regioselectivity for Nucleophilic Substitutions of Aryl Halides with DMF in Deep Eutectic Solvent. Tetrahedron 2025, 176, 134543. https://doi.org/10.1016/j.tet.2025.134543.Search in Google Scholar

12. Leadbeater, N. E.; Torenius, H. M.; Tye, H. Ionic Liquids as Reagents and Solvents in Conjunction with Microwave Heating: Rapid Synthesis of Alkyl Halides from Alcohols and Nitriles from Aryl Halides. Tetrahedron 2003, 59 (13), 2253–2258. https://doi.org/10.1016/S0040-4020(03)00214-X.Search in Google Scholar

13. Nguyen, T. T.; Phan, N. T. S. A Metal-Organic Framework Cu2(BDC)2(DABCO) as an Efficient and Reusable Catalyst for Ullmann-Type N-Arylation of Imidazoles. Catal. Lett. 2014, 144 (11), 1877–1883. https://doi.org/10.1007/S10562-014-1355-9.Search in Google Scholar

14. Matthew, R.; Cargill, A.; Katharine, E.; Linton, A.; Graham, S. A.; Dmitrii, S.; Yufit, B.; Judith, A. K.; Howard, B. Annelation Reactions of Pentafluorobenzonitrile. Tetrahedron 2010, 66 (13), 2356–2362. https://doi.org/10.1016/j.tet.2010.01.104.Search in Google Scholar

Received: 2025-05-22
Accepted: 2025-07-02
Published Online: 2025-07-08
Published in Print: 2025-10-27

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (S)-N-(10-((2,2-dimethoxyethyl)amino)-1,2,3-trimethoxy-9-oxo-5,6,7,9-tetrahydrobenzo[a]heptalen-7-yl)acetamide, C25H32N2O7
  4. The crystal structure of 6,6′-difluoro-3,3′-dimethyl-5,5′-di(10H-phenoxazin-10-yl)- [1,1′-biphenyl]-2,2′-dicarbonitrile, C40H24F2N4O2
  5. Crystal structure of poly[(di-ethylenediamine-κ2N,N′)cadmium(II) tetradedocyloxidohexavanadate] (V4+/V5+ = 2/1), C4H16CdN4O14V6
  6. The crystal structure of poly[bis(dimethylformamide-κ1N)-(μ4-2′,3,3″,5′-tetrakis(trifluoromethyl)-[1,1′:4′,1″-terphenyl]-4,4″-dicarboxylato-κ4 O,O′: O″,O‴)dicadmium(II)], C27H15CdF12NO5
  7. Crystal structure of bis(μ2-ferrocenylcarboxylato-O,O′)-(μ3-oxido-κ3O:O:O)-bis(μ2-salicyladoximato-κ2N,O,O′)-(μ2-isopropoxo)-tris(isopropoxy-κ1O trititanium(IV)), C48H55N2O13Fe2Ti3
  8. Crystal structure of 3-(diethylamino)-7,9,11-trimethyl-8-phenyl-6H,13H-12λ4,13λ4-chromeno[3′,4′:4,5]pyrrolo[1,2-c]pyrrolo[2,1-f][1,3,2]diazaborinin-6-one, C28H26BF2N3O2
  9. The crystal structure of catena-poly[aqua-μ2-2-nitro-benzene-1,3-dicarboxylato-κ2O,O′)-(1,10-phenanthroline-κ2N,N′)-zinc(II)], C20H13N3O7Zn
  10. Crystal structure of poly[diaqua-{μ3-1-(3-carboxylatophenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylato-κ4O,O′:O′′:O′′′′}manganese(II)] hydrate
  11. Crystal structure of N′-((1-hydroxycyclohexyl)(phenyl)methyl)-2-methoxybenzohydrazide methanol solvate, C22H28N2O4
  12. The cocrystal of caffeic acid — progesterone — water (1/2/1), C51H70O9
  13. Crystal structure of (((oxido(quinolin-6-yl)methoxy)triphenyl-λ5-stibanyl)oxy)(quinolin-7-yl)methanolate
  14. Crystal structure of [(E)-6′-(diethylamino)-2-(2-(((E)-pyren-1-ylmethylene)amino)ethyl)-4′-(2-((E)-1,3,3-trimethylindolin-2-ylidene)ethylidene)-1′,2′,3′,4′-tetrahydrospiro[isoindoline-1,9′-xanthen]-3-one]-methanol, solvate C57H56N4O3
  15. The crystal structure of 1-(acridin-9-yl)pyrrolidine-2,5-dione, C17H22N2O2
  16. Crystal structure of N-(4-acetylphenyl)-2-(6-methoxynaphthalen-2-yl)propanamide, C22H21NO3
  17. The crystal structure of 5,10,15,20-tetrakis(4-(1H-1,2,4-triazol-1-yl)phenyl)porphyrin, C52H34N16
  18. Crystal structure of hexacarbonyl-μ2-[phenylmethanedithiolato-κ4S:S,S′:S′]diiron (Fe–Fe) C13H6Fe2O6S2
  19. Crystal structure of diiodo-bis(1-((2-propyl-1H-benzo[d]imidazol-1-yl)methyl)-1H-benzo[d][1,2,3]triazole-κ1N)cadmium(II), C34H34CdI2N10
  20. Crystal structure of (E)-(3-(3-bromophenyl)acryloyl)ferrocene, C19H15BrFeO
  21. Crystal structure of catena-poly(μ2-6-chloropyridine-2-carboxylato-κ3N,O:O′)(6-chloropyridine-2-carboxylato-κ2O,N)copper(II), C12H6Cl2N2O4Cu
  22. Crystal structure of poly[diaqua-μ 3-(5-(3,5-dicarboxy-2,4,6-trimethylbenzyl)-2,4,6-trimethylisophthalato)-κ 6O,O′:O″,O‴:O‴′,O‴″) terbium(III)-monohydrate], C23H28TbO12
  23. Crystal structure of (E)-2-(((5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)methylene)amino)-3′,6′-dihydroxyspiro[isoindoline-1,9′-xanthen]-3-one – ethanol (1/2), C35H33ClN4O6
  24. The crystal structure of 3-(5-amino-3-phenylisoxazol-4-yl)-4-chloro-3-hydroxyindolin-2-one, C17H12ClN3O3
  25. The crystal structure of dimethylammonium 4-[2-(4-fluorophenyl)-4, 5-diphenyl-1H-imidazol-1-yl]benzenesulfonate, C29H26FN3O3S
  26. Crystal structure of (R)-2-ammonio-3-((5-carboxypentyl)thio)propanoate
  27. Crystal structure of 4-cyclohexyl-5-(thiophen-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione, C12H15N3S2
  28. The crystal structure of 4,6-bis(dimethylamino)-2-fluoroisophthalonitrile, C12H13FN4
  29. Hydrogen bonding in the crystal structure of nicotin-1,1′-dium tetrabromidomanganate(II)
  30. The crystal structure of bis(2-bromobenzyl)(2-((2-oxybenzylidene)amino)-4-methylpentanoato-κ3N, O,O′)tin(IV), C27H27Br2NO3Sn
  31. Crystal structure of (E)-(3-(p-tolyl)acryloyl)ferrocene, C20H18FeO
  32. Crystal structure of (E)-7-fluoro-2-((5-(4-methylpiperazin-1-yl)pyridin-2-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C21H22FN3O
  33. Crystal structure of (E)-7-methoxy-2-((5-(4-methylpiperazin-1-yl)pyridin-2-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C22H25N3O2
  34. The crystal structure of poly(bis(μ2-1,3,5-tri(1H-imidazol-1-yl)benzene-κ2N:N′)-(μ2-2,3,5,6-tetrafluoroterephthalato-κ2O:O′)-manganese(II), C38H24F4N12O4Mn
  35. Crystal structure of (3,4-dimethoxybenzyl)triphenylphosphonium bromide ethanol solvate, C29H32BrO3P
  36. Crystal structure of tetraethylammonium hydrogencarbonate – (diaminomethylene)thiourea – water (2/1/3)
  37. Crystal structure of N, N-Dimethyl-N′-tosylformimidamide, C10H14N2O2S
  38. The crystal structure of ethyl 2-methyl-5-oxo-4-(2-methoxyphenyl)-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C20H23N2O4
  39. Crystal structure of bis(μ2-1,5-bis[(E)-1-(2-hydroxyphenyl)ethylidene] thiocarbonohydrazide)-bis(dimethylformamide)-dizinc(II) dimethylformamide solvate, C40H46N10O6S2Zn2⋅C3H7NO
  40. Crystal structure of azido-κ1N{hydridotris(3-tert-butyl-5-methylpyrazol-1-yl)borato-κ3N,N′,N″}copper(II), C24H40BCuN9
  41. The crystal structure of fac-tricarbonyl(1,10-phenanthroline-κ2N,N′)-(azido-κ1N)rhenium(I), C15H8N5O3Re
  42. Crystal structure of 4-((triphenylphosphonio)methyl)pyridin-1-ium tetrachloridozincate(II), C24H22Cl4NPZn
Downloaded on 26.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2025-0246/html?lang=en
Scroll to top button