Home Physical Sciences Crystal structure of poly[(di-ethylenediamine-κ2N,N′)cadmium(II) tetradedocyloxidohexavanadate] (V4+/V5+ = 2/1), C4H16CdN4O14V6
Article Open Access

Crystal structure of poly[(di-ethylenediamine-κ2N,N′)cadmium(II) tetradedocyloxidohexavanadate] (V4+/V5+ = 2/1), C4H16CdN4O14V6

  • Zi-Long Yue and Yu-Quan Feng ORCID logo EMAIL logo
Published/Copyright: June 19, 2025

Abstract

C4H16CdN4O14V6, orthorhombic, Pca21, a = 16.545(6) Å, b = 6.515(3) Å, c = 17.096(7) Å, V = 1842.9(13) Å3, Z = 4, Rgt(F) = 0.0306, wRref(F2) = 0.0796, T = 296 (2) K.

CCDC no.: 2454409

1 Source of materials

The title compound [Cd(C2H8N2)2][VIV4VV2O14] (Table 1) was prepared under the hydrothermal conditions. The mixture of Cd(NO3)2·4H2O (0.32 g), NH4VO3 (0.38 g), ethylenediamine (C10H8N2, 0.60 mL), glacial acetic acid (CH3COOH, 0.8 mL) and H2O (5.0 mL) was stirred for 2 h, transferred to a 50 mL Teflon-lined stainless steel vessels and heated at 150 °C for 5 days. The black block crystals were obtained, washed with deionized water and dried at RT (yield: ca. 72 % based on NH4VO3).

Table 1:

Data collection and handling.

Crystal: Block
Size: 0.26 × 0.24 × 0.19 mm
Wavelength:

μ:
MoKα radiation (0.71073 Å)

4.12 mm−1
Diffractometer, scan mode:

θmax, completeness:
Bruker APEX-II, φ and ω scans

26.0°, 99 %
N(hkl)measured, N(hkl)unique, Rint: 10909, 3577, 0.037
Criterion for Iobs, N(hkl)gt: Iobs > 2σ(Iobs), 3449
N(param)refined: 264
Programs: Bruker, 1 Olex2, 2 , 3 SHELX 4

2 Experimental details

H atoms from the organic ligand ethylenediamine were positioned geometrically and refined using a riding model, with C–H = 0.97 Å and N–H = 0.90 Å, with Uiso (H) = 1.2 times Ueq(C) and Ueq(N). The absolute structure was established by refinement of the Flack parameter (0.41(5) from 3577 selected quotients) according to the method from ref. 5 . The restrictive refinement of “twin −1 0 0 0 –1 0 0 0 –1” was applied to deal with the crystal structure (BASF 0.411).

3 Comment

In recent years, polyoxovanadates have attracted extensive attention due to their fascinating structural features, multiple valence states and flexible coordination geometry. 6 , 7 , 8 , 9 , 10 , 11 The use of vanadate anions as building blocks has become an effective strategy for the preparation of organic-inorganic hybrid polyoxovanadates. 12 , 13 Here, we have synthesized a novel Cd2+-based polyoxovanadate [Cd(C2H8N2)2][VIV4VV2O14] (V4+/V5+ = 2/1) by means of organic ligand ethylenediamine under hydrothermal conditions. X-ray single-crystal diffraction structural analysis reveals that its molecular structure is composed of one coordinating cation [Cd(C2H8N2)2]2+ and one vanadate anion [VIV4VV2O14]2−. A part of the title crystal structure is shown in the Figure. In order to determine the valence states of the V and Cd sites in the crystal structure, the oxidation state of each metal site in the crystal structure is obtained by the method of bond-valence calculation. The results show that the valence states of V(1) and V(6) sites are +V, the valence states of V(2), V(3), V(4) and V(5) sites are +IV, and the valence state of Cd site is +II. Within the vanadate anion [VIV4VV2 O14]2−, the V sites can be divided into two types depending to their coordination numbers: each V(1) and V(6) site adopts a 4-coordinated tetrahedral geometry with four surrounding oxygen atoms, while each V(2), V(3), V(4) and V(5) site is respectively coordinated with five surrounding oxygen atoms to lead to a 5-coordinated distorted square pyramidal geometry. The coordination geometries of V(1) and V(6) sites are similar as those of the reported vanadate compounds α-[Cu(mIM)4]V2O6, and β-[Cu(mIM)4]V2O6 (mIM = 1-methylimidazole), 14 while the coordination geometries of V(2), V(3), V(4) and V(5) sites are compared with those of known {V6O18} cluster-containing compounds [CuII(en)2]4{Na(H2O)(μ–OH)[B(OH)2]}2[(VVO)2(VIVO)10O6(B18O36(OH)6)]}·7H2O 15 and [CdII3(H2O)6][(VIVO)6(VVO)6(O6)(B18O36(OH)6)]·10H2O (en = ethylenediamine). 16 The lengths of the V–O bonds in the title compound range from 1.586(3) Å to 2.014(4) Å, and the bond angles of O–V–O range from 77.41(13)° to 152.22(16)°. These parameters of bond lengths and bond angles are within their reasonable ranges and can be compared with previously reported vanadate compounds. 12 , 13 , 14 The distorted {VO5} square pyramids are linked by bridging oxygen atoms [O(3), O(5), O(6), O(7) and O(9)], forming a tetranuclear {V4O14} cluster. Then, the tetranuclear clusters {V4O14} are further connected with the surrounding {VO4} units by the bridging oxygen atoms [O(3) and O(9)], resulting in the formation of the vanadate anion [VIV4VV2O14]2−. These adjacent vanadate anionic structural units are finally extend to a 2D layered anionic structure along the a, b and c axis by bridging oxygen atoms [O(1), O(5), O(4) and O(14)]. The adjacent anionic layers are linked to [Cd(C2H8N2)2]2+ cations by bridging oxygen atoms (O1 and O12), generating a 3D framework architecture. The bond lengths of Cd–O and Cd–N fall in the ranges of 2.372(4) Å–2.555(4) Å and 2.253(5) Å–2.278(6) Å, respectively. The bond angles of O–Cd–N, N–Cd–N fall in the ranges of 81.7(2)°–91.2(2)° and 76.5(2)°–179.3(2)°, respectively. The bond angle O–Cd–O is 176.73(13)°. These bond lengths and bond angles can be compared with the known related Cd-containing compounds [Cd(en)3]{[Cd(H2O)(en)]6[B20V12O60(OH)2]}·8H2O (en = ethylenediamine) 17 and poly[aqua-(pyridine-3-carboxylato-κ1N)(pyridine-3-carboxylato-κ2O,O′) cadmium(II)] dihydrate (C12H14N2O7Cd). 18 In addition, the N–H⋯O hydrogen bonds, which contribute to the stability of the crystal structure, can be observed in the title compound.


Corresponding author: Yu-Quan Feng, College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang 473061, China, E-mail:

Acknowledgments

This work was financially supported by the Natural Science Foundation of Henan (no. 252300421341) and the National Natural Science Foundation Project Cultivation Fund of Nanyang Normal University (no. 2025PY032).

References

1. Bruker Corporation, Bruker Smart Apex–II, Germany, 2008.Search in Google Scholar

2. Bourhis, L. J.; Dolomanov, O. V.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. The Anatomy of a Comprehensive Constrained, Restrained Refinement Program for the Modern Computing Environment – Olex2 Dissected. Acta Crystallogr. 2015, A71, 59–75; https://doi.org/10.1107/s2053273314022207.Search in Google Scholar

3. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. Olex2: a Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

4. Sheldrick, G. M. Crystal Structure Refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar PubMed PubMed Central

5. Flack, H. D. On Enantiomorph-polarity Estimation. Acta Crystallogr. 1983, A39, 876–881; https://doi.org/10.1107/s0108767383001762.Search in Google Scholar

6. Liu, Y.; Xuan, W.; Cui, Y. Engineering Homochiral Metal–Organic Frameworks for Heterogeneous Asymmetric Catalysis and Enantioselective Separation. Adv. Mater. 2010, 22, 4112–4135; https://doi.org/10.1002/adma.201000197.Search in Google Scholar PubMed

7. Hagrman, P.-J.; Finn, R.-C.; Zubieta, J. Molecular Manipulation of Solid State Structure: Influences of Organic Components on Vanadium Oxide Architectures. J. Solid State Sci. 2001, 3, 745–774; https://doi.org/10.1016/s1293-2558(01)01186-4.Search in Google Scholar

8. Jiang, H.-L.; Xu, Q. Porous Metal–Organic Frameworks as Platforms for Functional Applications. Chem. Commun. 2011, 47, 3351–3370; https://doi.org/10.1039/c0cc05419d.Search in Google Scholar PubMed

9. Meek, S.-T.; Grathouse, J.-A.; Allenford, M. Metal–Organic Frameworks: a Rapidly Growing Class of Versatile Nanoporous Materials. Adv. Mater. 2011, 23, 249–267; https://doi.org/10.1002/adma.201002854.Search in Google Scholar PubMed

10. Dhakshinamoorthy, A.; Alvaro, M.; Corma, A.; García, H. Delineating Similarities and Dissimilarities in the Use of Metal Organic Frameworks and Zeolites as Heterogeneous Catalysts for Organic Reactions. Dalton Trans. 2011, 40, 6344–6360; https://doi.org/10.1039/c1dt10354g.Search in Google Scholar PubMed

11. Rocha, J.; Carlos, L.-D.; Paz, F.-A.-A.; Ananias, D. Luminescent Multifunctional Lanthanides-based metal–organic Frameworks. Chem. Soc. Rev. 2011, 40, 926–940; https://doi.org/10.1039/c0cs00130a.Search in Google Scholar PubMed

12. Chen, H.; Yu, Z.; Bacsik, Z.; Zhao, H.; Yao, Q.; Sun, J. Construction of Mesoporous Frameworks with Vanadoborate Clusters. Angew. Chem., Int. Ed. 2014, 53, 3608–3611; https://doi.org/10.1002/anie.201311122.Search in Google Scholar PubMed

13. Chen, H.; Deng, Y.; Yu, Z.; Zhao, H.; Yao, Q.; Zou, X.; Bäckvall, J.-E.; Sun, J. 3D Open–Framework Vanadoborate as a Highly Effective Heterogeneous Pre-catalyst for the Oxidation of Alkylbenzenes. Chem. Mater. 2013, 25, 5031–5036; https://doi.org/10.1021/cm401400m.Search in Google Scholar

14. Li, J.; Huang, X.; Yang, S.; Xu, Y.; Hu, C. Controllable Synthesis, Characterization, and Catalytic Properties of Three Inorganic–Organic Hybrid Copper Vanadates in the Highly Selective Oxidation of Sulfides and Alcohols. Cryst. Growth Des. 2015, 15, 1907–1914; https://doi.org/10.1021/acs.cgd.5b00086.Search in Google Scholar

15. Feng, Y.-Q.; Ding, C.-H.; Fan, H.-T.; Zhong, Z.-G.; Qiu, D.-F.; Shi, H.-Z. Employing a New 12-connected Topological open-framework Copper Borovanadate as an Effective Heterogeneous Catalyst for Oxidation of benzyl-alkanes. Dalton Trans. 2015, 44, 18731–18736; https://doi.org/10.1039/c5dt03425f.Search in Google Scholar PubMed

16. Feng, Y.-Q.; Qiu, D.-F.; Fan, H.-T.; Li, M.; Huang, Q.-Z.; Shi, H.-Z. A New 3–D Open-Framework Cadmium Borovanadate with Plane-Shaped Channels and High Catalytic Activity for the Oxidation of Cyclohexanol. Dalton Trans. 2015, 44, 8792–8796; https://doi.org/10.1039/c5dt00873e.Search in Google Scholar PubMed

17. Feng, Y.-Q.; Wu, J.-H.; Zhong, Z.-G.; Meng, Z.-H.; Chen, S.-Y.; Liu, K.-C. Heptanuclear Cadmium Borovanadate Containing a Sandwich–Type Anionic Partial Structure {B20V12} as a Heterogeneous Photocatalyst for the Reduction of CO2 into CH4. Inorg. Chem. 2024, 63, 16515–16522; https://doi.org/10.1021/acs.inorgchem.4c02860.Search in Google Scholar PubMed

18. Feng, Y.-Q.; Chen, S.-Y.; Yue, Z.-L. Crystal Structure of poly[Aqua-(pyridine-3-carboxylato-κ1N)(pyridine-3-carboxylato-κ2 O,O′) cadmium(II)] Dihydrate. Z. Kristallogr. – N. Cryst. Struct. 2024, 239 (6), 1065–1067; https://doi.org/10.1515/ncrs-2024-0300.Search in Google Scholar

Received: 2025-04-04
Accepted: 2025-05-27
Published Online: 2025-06-19
Published in Print: 2025-10-27

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (S)-N-(10-((2,2-dimethoxyethyl)amino)-1,2,3-trimethoxy-9-oxo-5,6,7,9-tetrahydrobenzo[a]heptalen-7-yl)acetamide, C25H32N2O7
  4. The crystal structure of 6,6′-difluoro-3,3′-dimethyl-5,5′-di(10H-phenoxazin-10-yl)- [1,1′-biphenyl]-2,2′-dicarbonitrile, C40H24F2N4O2
  5. Crystal structure of poly[(di-ethylenediamine-κ2N,N′)cadmium(II) tetradedocyloxidohexavanadate] (V4+/V5+ = 2/1), C4H16CdN4O14V6
  6. The crystal structure of poly[bis(dimethylformamide-κ1N)-(μ4-2′,3,3″,5′-tetrakis(trifluoromethyl)-[1,1′:4′,1″-terphenyl]-4,4″-dicarboxylato-κ4 O,O′: O″,O‴)dicadmium(II)], C27H15CdF12NO5
  7. Crystal structure of bis(μ2-ferrocenylcarboxylato-O,O′)-(μ3-oxido-κ3O:O:O)-bis(μ2-salicyladoximato-κ2N,O,O′)-(μ2-isopropoxo)-tris(isopropoxy-κ1O trititanium(IV)), C48H55N2O13Fe2Ti3
  8. Crystal structure of 3-(diethylamino)-7,9,11-trimethyl-8-phenyl-6H,13H-12λ4,13λ4-chromeno[3′,4′:4,5]pyrrolo[1,2-c]pyrrolo[2,1-f][1,3,2]diazaborinin-6-one, C28H26BF2N3O2
  9. The crystal structure of catena-poly[aqua-μ2-2-nitro-benzene-1,3-dicarboxylato-κ2O,O′)-(1,10-phenanthroline-κ2N,N′)-zinc(II)], C20H13N3O7Zn
  10. Crystal structure of poly[diaqua-{μ3-1-(3-carboxylatophenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylato-κ4O,O′:O′′:O′′′′}manganese(II)] hydrate
  11. Crystal structure of N′-((1-hydroxycyclohexyl)(phenyl)methyl)-2-methoxybenzohydrazide methanol solvate, C22H28N2O4
  12. The cocrystal of caffeic acid — progesterone — water (1/2/1), C51H70O9
  13. Crystal structure of (((oxido(quinolin-6-yl)methoxy)triphenyl-λ5-stibanyl)oxy)(quinolin-7-yl)methanolate
  14. Crystal structure of [(E)-6′-(diethylamino)-2-(2-(((E)-pyren-1-ylmethylene)amino)ethyl)-4′-(2-((E)-1,3,3-trimethylindolin-2-ylidene)ethylidene)-1′,2′,3′,4′-tetrahydrospiro[isoindoline-1,9′-xanthen]-3-one]-methanol, solvate C57H56N4O3
  15. The crystal structure of 1-(acridin-9-yl)pyrrolidine-2,5-dione, C17H22N2O2
  16. Crystal structure of N-(4-acetylphenyl)-2-(6-methoxynaphthalen-2-yl)propanamide, C22H21NO3
  17. The crystal structure of 5,10,15,20-tetrakis(4-(1H-1,2,4-triazol-1-yl)phenyl)porphyrin, C52H34N16
  18. Crystal structure of hexacarbonyl-μ2-[phenylmethanedithiolato-κ4S:S,S′:S′]diiron (Fe–Fe) C13H6Fe2O6S2
  19. Crystal structure of diiodo-bis(1-((2-propyl-1H-benzo[d]imidazol-1-yl)methyl)-1H-benzo[d][1,2,3]triazole-κ1N)cadmium(II), C34H34CdI2N10
  20. Crystal structure of (E)-(3-(3-bromophenyl)acryloyl)ferrocene, C19H15BrFeO
  21. Crystal structure of catena-poly(μ2-6-chloropyridine-2-carboxylato-κ3N,O:O′)(6-chloropyridine-2-carboxylato-κ2O,N)copper(II), C12H6Cl2N2O4Cu
  22. Crystal structure of poly[diaqua-μ 3-(5-(3,5-dicarboxy-2,4,6-trimethylbenzyl)-2,4,6-trimethylisophthalato)-κ 6O,O′:O″,O‴:O‴′,O‴″) terbium(III)-monohydrate], C23H28TbO12
  23. Crystal structure of (E)-2-(((5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)methylene)amino)-3′,6′-dihydroxyspiro[isoindoline-1,9′-xanthen]-3-one – ethanol (1/2), C35H33ClN4O6
  24. The crystal structure of 3-(5-amino-3-phenylisoxazol-4-yl)-4-chloro-3-hydroxyindolin-2-one, C17H12ClN3O3
  25. The crystal structure of dimethylammonium 4-[2-(4-fluorophenyl)-4, 5-diphenyl-1H-imidazol-1-yl]benzenesulfonate, C29H26FN3O3S
  26. Crystal structure of (R)-2-ammonio-3-((5-carboxypentyl)thio)propanoate
  27. Crystal structure of 4-cyclohexyl-5-(thiophen-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione, C12H15N3S2
  28. The crystal structure of 4,6-bis(dimethylamino)-2-fluoroisophthalonitrile, C12H13FN4
  29. Hydrogen bonding in the crystal structure of nicotin-1,1′-dium tetrabromidomanganate(II)
  30. The crystal structure of bis(2-bromobenzyl)(2-((2-oxybenzylidene)amino)-4-methylpentanoato-κ3N, O,O′)tin(IV), C27H27Br2NO3Sn
  31. Crystal structure of (E)-(3-(p-tolyl)acryloyl)ferrocene, C20H18FeO
  32. Crystal structure of (E)-7-fluoro-2-((5-(4-methylpiperazin-1-yl)pyridin-2-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C21H22FN3O
  33. Crystal structure of (E)-7-methoxy-2-((5-(4-methylpiperazin-1-yl)pyridin-2-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C22H25N3O2
  34. The crystal structure of poly(bis(μ2-1,3,5-tri(1H-imidazol-1-yl)benzene-κ2N:N′)-(μ2-2,3,5,6-tetrafluoroterephthalato-κ2O:O′)-manganese(II), C38H24F4N12O4Mn
  35. Crystal structure of (3,4-dimethoxybenzyl)triphenylphosphonium bromide ethanol solvate, C29H32BrO3P
  36. Crystal structure of tetraethylammonium hydrogencarbonate – (diaminomethylene)thiourea – water (2/1/3)
  37. Crystal structure of N, N-Dimethyl-N′-tosylformimidamide, C10H14N2O2S
  38. The crystal structure of ethyl 2-methyl-5-oxo-4-(2-methoxyphenyl)-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C20H23N2O4
  39. Crystal structure of bis(μ2-1,5-bis[(E)-1-(2-hydroxyphenyl)ethylidene] thiocarbonohydrazide)-bis(dimethylformamide)-dizinc(II) dimethylformamide solvate, C40H46N10O6S2Zn2⋅C3H7NO
  40. Crystal structure of azido-κ1N{hydridotris(3-tert-butyl-5-methylpyrazol-1-yl)borato-κ3N,N′,N″}copper(II), C24H40BCuN9
  41. The crystal structure of fac-tricarbonyl(1,10-phenanthroline-κ2N,N′)-(azido-κ1N)rhenium(I), C15H8N5O3Re
  42. Crystal structure of 4-((triphenylphosphonio)methyl)pyridin-1-ium tetrachloridozincate(II), C24H22Cl4NPZn
Downloaded on 26.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2025-0169/html?lang=en
Scroll to top button