Home Crystal structure of 3-((3,4-dichloroisothiazol-5-yl)methoxy)benzo[d] isothiazole 1,1-dioxide, C11H6Cl2N2O3S2
Article Open Access

Crystal structure of 3-((3,4-dichloroisothiazol-5-yl)methoxy)benzo[d] isothiazole 1,1-dioxide, C11H6Cl2N2O3S2

  • Huang Cong , Xiao Shu-Zhen , Zhong Liang , Chen Shang-Xing EMAIL logo and Peng Da-Yong ORCID logo EMAIL logo
Published/Copyright: December 14, 2022

Abstract

C11H6Cl2N2O3S2, triclinic, P1‾ (no. 2), a = 6.974(3) Å, b = 8.132(3) Å, c = 12.349(5) Å, α = 86.123(4)°, β = 78.299(4)°, γ = 85.715(4)°, V = 682.9(4) Å3, Z = 2, R gt(F) = 0.0410, wR ref(F 2) = 0.1058, T = 296(2) K.

CCDC no.: 2221276

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size: 0.22 × 0.16 × 0.12 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.79 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θ max, completeness: 25.5°, 99%
N(hkl)measured, N(hkl)unique, R int: 5210, 2527, 0.017
Criterion for I obs, N(hkl)gt: I obs > 2σ(I obs), 2302
N(param)refined: 182
Programs: Bruker [1], SHELX [2, 3], Diamond [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.2730 (3) 0.6054 (3) −0.10741 (18) 0.0323 (5)
C2 0.2773 (4) 0.4946 (3) −0.1873 (2) 0.0410 (5)
H2 0.2900 0.5284 −0.2618 0.049*
C3 0.2616 (4) 0.3298 (3) −0.1513 (2) 0.0459 (6)
H3 0.2641 0.2511 −0.2029 0.055*
C4 0.2421 (4) 0.2798 (3) −0.0402 (2) 0.0437 (6)
H4 0.2334 0.1683 −0.0188 0.052*
C5 0.2356 (3) 0.3940 (3) 0.0396 (2) 0.0368 (5)
H5 0.2209 0.3612 0.1143 0.044*
C6 0.2517 (3) 0.5572 (3) 0.00376 (17) 0.0299 (4)
C7 0.2475 (3) 0.7053 (3) 0.06823 (17) 0.0312 (5)
C8 0.2138 (4) 0.8298 (3) 0.23837 (19) 0.0415 (6)
H8A 0.1102 0.9077 0.2215 0.050*
H8B 0.3372 0.8828 0.2197 0.050*
C9 0.1716 (4) 0.7736 (3) 0.3580 (2) 0.0443 (6)
C10 0.0039 (4) 0.7969 (3) 0.4340 (2) 0.0476 (6)
C11 0.0230 (6) 0.7247 (4) 0.5385 (2) 0.0603 (8)
Cl1 −0.16202 (18) 0.73856 (15) 0.65283 (7) 0.0970 (4)
Cl2 −0.20521 (12) 0.90304 (12) 0.40853 (7) 0.0706 (3)
N1 0.2654 (3) 0.8465 (2) 0.01587 (15) 0.0377 (5)
N2 0.1917 (6) 0.6486 (4) 0.5453 (2) 0.0788 (9)
O1 0.1170 (3) 0.9013 (2) −0.15323 (16) 0.0571 (5)
O2 0.4735 (3) 0.8695 (2) −0.17635 (15) 0.0565 (5)
O3 0.2242 (2) 0.68105 (19) 0.17640 (12) 0.0368 (4)
S1 0.28529 (9) 0.82249 (7) −0.11866 (5) 0.03810 (19)
S2 0.33857 (15) 0.66455 (12) 0.42339 (7) 0.0734 (3)

Source of materials

Under stirring, add (3,4-dichloroisothiazol-5-yl)methanol and 3-chlorobenzo[d]isothiazole-1,1-dioxide 1:1 into the round-bottomed flask in turn, add an appropriate amount of acetonitrile and triethylamine, and react at room temperature for 5 h. Crystals of the title compound were obtained by slow evaporation of 3-((3,4-dichloroisothiazol-5-yl)methoxy)benzo[d] isothiazole 1,1-dioxide in ethyl acetate within one week.

Experimental details

All H atoms were included in calculated positions and refined as riding atoms, with C–H = 0.90–0.97 Å with U iso(H) = 1.5 U eq(C) for methyl H atoms and 1.2 U eq(C) for all other H atoms.

Comment

In agricultural production, plant fungicides are widely used to control crop diseases [5, 6]. However, traditional plant fungicides generally pollute the environment [7], have high toxicity to animals [8], and have adverse effects such as resistance to bacteria [9]. The compound dichlobentiazox described in this paper belongs to benzothiazole fungicides [10, 11], which show good plant disease control activity in plants without chemical damage.

In the molecules of the title structure bond lengths and angles are very similar to those given in the literature for benzo[d]isothiazole 1,1-dioxide [12], [13], [14]. In the title structure, the atoms of isothiazole ring and benzo[d]isothiazole 1,1-dioxide ring are approximately planar, and the dihedral angle between the isothiazole ring and the C1–C6 phenyl ring is 73°. The torsion angles of C6–C7–O3–C8 and C7–O3–C8–C9 are −178° and 176°, respectively.


Corresponding authors: Chen Shang-Xing, East China Woody Fragrance and Flavor Engineering Research, Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of NFGA/Jiangxi Province/College of Forestry, Jiangxi Agricultural University, Nanchang 330045, People’s Republic of China, E-mail: ; and Peng Da-Yong, East China Woody Fragrance and Flavor Engineering Research, Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of NFGA, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang/College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, People’s Republic of China, E-mail:

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 31960295

Award Identifier / Grant number: 32160660

Funding source: Major Science and Technology R & D Special Project

Award Identifier / Grant number: 20203ABC28W016

Funding source: Jiangxi Province Training Program Leading Talents Project

Award Identifier / Grant number: 20204BCJ22022

Funding source: Central Finance Forestry Science and Technology Promotion Demonstration Fund Project

Award Identifier / Grant number: (JXTG(2021)01)

Acknowledgements

X-ray data were collected at Instrumental Analysis Center Nanchang Hangkong University, Nanchang, 330063, People’s Republic of China.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was supported by the National Natural Science Foundation of China (Grant No. 31960295, 32160660), Major Science and Technology R & D Special Project (20203ABC28W016), Jiangxi Province Training Program Leading Talents Project (20204BCJ22022) and Central Finance Forestry Science and Technology Promotion Demonstration Fund Project (JXTG(2021)01).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. APEX2, SAINT and SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2009.Search in Google Scholar

2. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar PubMed PubMed Central

4. Brandenburg, K. DIAMOND. Visual Crystal Structure Information System (Version 4.0); Crystal Impact: Bonn, Germany, 2015.Search in Google Scholar

5. Jeanmart, S., Edmunds, A. J. F., Lamberth, C., Pouliot, M., Morris, J. A. Synthetic approaches to the 2015–2018 new agrochemicals. Bioorg. Med. Chem. 2021, 39, 116162; https://doi.org/10.1016/j.bmc.2021.116162.Search in Google Scholar PubMed

6. Kim, J. Y., Lee, J. H., Lee, S. M., Chae, Y. S., Rhee, G. S., Chang, M. I. Establishment of analytical method for residues of ethychlozate, a plant growth regulator, in brown rice, mandarin, pepper, potato, and soybean using HPLC/FLD. Korean J. Environ. Agric. 2015, 34, 111–119; https://doi.org/10.5338/KJEA.2015.34.2.14.Search in Google Scholar

7. Maienfisch, P., Edmunds, A. J. F. Thiazole and isothiazole ring-containing compounds in crop protection. Adv. Heterocycl. Chem. 2017, 121, 35–88; https://doi.org/10.1016/bs.aihch.2016.04.010.Search in Google Scholar

8. Henary, M., Paranjpe, S., Owens, E. A. Substituted benzothiazoles: synthesis and medicinal characteristics. Heterocycl. Commun. 2013, 19, 89–99; https://doi.org/10.1515/hc-2013-0026.Search in Google Scholar

9. Umetsu, N., Shirai, Y. Development of novel pesticides in the 21st century. J. Pestic. Sci. 2020, 45, 54–74; https://doi.org/10.1584/jpestics.D20-201.Search in Google Scholar PubMed PubMed Central

10. Devendar, P., Yang, G. F. Sulfur-containing agrochemicals. Top. Curr. Chem. 2017, 375, 82; https://doi.org/10.1007/s41061-017-0169-9.Search in Google Scholar PubMed

11. Chen, L., Zhao, B., Fan, Z., Liu, X., Wu, Q., Li, H., Wang, H. Synthesis of novel 3,4-chloroisothiazole-based imidazoles as fungicides and evaluation of their mode of action. J. Agric. Food Chem. 2018, 66, 7319–7327; https://doi.org/10.1021/acs.jafc.8b02332.Search in Google Scholar PubMed

12. Araújo, N. C. P., Brigas, A. F., Cristiano, M. L. S., Frija, L. M. T., Guimaraes, E. M. O., Loureiro, R. M. S. Heteroaromatic benzyl ethers as intermediates for palladium-catalysed transfer hydrogenolysis of benzyl alcohols. J. Mol. Catal. A: Chem. 2004, 215, 113–120; https://doi.org/10.1016/j.molcata.2003.12.033.Search in Google Scholar

13. Robinson, R. I., Fryatt, R., Wilson, C., Woodward, S. Sulfonamide ligands attained through opening of saccharin derivatives. Eur. J. Org. Chem. 2006, 2006, 4483–4489; https://doi.org/10.1002/ejoc.200600508.Search in Google Scholar

14. Yoshimura, A., Koski, S. R., Fuchs, J. M., Saito, A., Nemykin, V. N., Zhdankin, V. V. Saccharin-based ú-oxo imidoiodane: a readily available and highly reactive reagent for electrophilic amination. Chem. Eur. J. 2015, 21, 5328–5331; https://doi.org/10.1002/chem.201500335.Search in Google Scholar PubMed

Received: 2022-10-29
Accepted: 2022-11-22
Published Online: 2022-12-14
Published in Print: 2023-01-27

© 2022 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of undecacalcium decaarsenide, Ca11As10
  4. Crystal structure of catena-poly[diiodido-(μ2-1,5-dimethyl-2-phenyl-4-((pyridin-4- ylmethylene)amino)-1,2-dihydro-3H -pyrazol-3-one-κ2 N: O)zinc(II)], C17H16I2N4OZn
  5. The crystal structure of 5,10,15,20-tetrakis(4-(tert-butyl)phenyl)porphyrin-21,23-diido-κ4 N 4-naphthalocyanido-κ4 N 4-neodymium(IV) - chloroform (1/6) C114H90N12Cl18Nd
  6. The crystal structure of 1-(4-bromophenyl)-3-(2-chlorobenzyl)urea, C14H12BrClN2O
  7. Crystal structure of bis[benzyl(methyl)carbamodithioato-κ 2 S,S′]-di-n-butyltin(IV), C26H38N2S4Sn
  8. Crystal structure of (E)-3-(2-(4-(diethylamino)-2-hydroxystyryl)-3,3-dimethyl-3H-indol-1-ium-1-yl)propane-1-sulfonate – methanol (1/2), C25H32N2O4S⋅2CH3OH
  9. Synthesis and crystal structure of {(N′,N″-(((ethane-1,2-diylbis(oxy))bis(2,1-phenylene))-bis(methaneylylidene))bis(2-hydroxybenzohydrazonato)-κ6 N 2 O 4}copper(II), C30H24CuN4O6
  10. The crystal structure of ((E)-2,4-dibromo-6-(((5-(nitro)-2-oxidophenyl)imino)methyl)phenolato-κ 3 N,O,O′)tris(pyridine-κN)manganese(II), C28H21Br2MnN5O4
  11. Synthesis and crystal structure of 1-((3R,10S,13R,17S)-10,13-dimethyl-3-(p-tolylamino)hexadecahydro-1H-cyclopenta-[a]phenanthren-17-yl)ethan-1-one, C28H41NO
  12. The crystal structure of 3-nitrobenzene-1,2-dicarboxylic acid—pyrazine-2-carboxamide(1/1), C13H10N4O7
  13. Crystal structure of poly[tetrakis(μ3-2-aminonicotinato-κ3N,O,O′)-(μ2-oxalato-κ4 O,O′:O″,O′″)-(μ4-oxalato-κ6 N:N′:O,O′:O″,O′″)dicopper(I)-disamarium(III)], [SmCu(C6N2H5O2)2(C2O4)] n
  14. The crystal structure of 2,3,4-trihydroxybenzoic- acid—pyrazine-2-carboxamide—water (1/1/1), C12H13N3O7
  15. Crystal structure of N-ethyl-4-[3-(trifluoromethyl)-phenyl]piperazine-1-carbothioamide, C14H18F3N3S
  16. The crystal structure of 3-anilino-1,4-diphenyl-4H-1,2,4-triazol-1-ium iodide, C20H17N4I
  17. The crystal structure of (tris(2-benzimidazolylmethyl)amine)-benzoato-copper(II) perchlorate monohydrate, CuC31H28N7O7Cl
  18. Crystal structure of [2-hydroxy-3-methyl-benzoato-k1 O-triphenyltin(IV)], C26H22O3Sn
  19. Crystal structure of diaqua-bis(4-(hydroxymethyl)-benzoato-k1 O)zinc(II), C16H18O8Zn
  20. The crystal structure of dicarbonyl-(N-nitroso-N-oxido-phenylamine-κ 2 O,O)-rhodium(I), C8H5N2O4Rh
  21. The crystal structure of oxalic acid – 2-ethoxybenzamide (2/1), C20H24N2O8
  22. The crystal structure of ethyl 7-ethyl-5-methyl-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxylate, C10H15N5O2
  23. Crystal structure of poly[(N,N-dimethylacetamide-κO) (μ4-2-nitroisophthalato-κ 4 O:O′:O″:O′″)manganese(II)], C11H10N2O7Mn
  24. Crystal structure of 14-O-acetyldelcosine, C26H41NO8
  25. The crystal structure of poly[(1,10-phenanthroline-κ2 N,N′)-(μ 4-2-chlorobenzene-1,3-dicarboxylato-κ5 O:O′:O″:O‴) cadmium(II)] monohydrate, C20H13CdClN2O5
  26. Crystal structure of propane-1,3-diylbis(diphenylphosphine sulfide) ethanol solvate, C27H26P2S2
  27. Crystal structure of bis{[(4-diethylamino-2-hydroxy-benzylidene)-hydrazinocarbonylmethyl]-trimethylammonium} tetrabromozincate, C32H54N8O4ZnBr4
  28. Synthesis and crystal structure of dimethyl 2,2′-(2,5-bis(4-hydroxyphenyl)-2,5-dihydrofuran-3,4-diyl)dibenzoate, C34H30O7
  29. Synthesis and crystal structure of 2-(2-oxo-2-phenylethyl)-4H-chromen-4-one, C17H12O3
  30. The crystal structure of tetra(imidazole-κ1 N)zinc(II) μ2-oxido-hexaoxido-divanadium(VI) C12H16N8O6V2Zn
  31. Crystal structure of S-2-(1-(5-methylpyridin-2-ylamino)octyl)-3-hydroxynaphthalene-1,4-dione, C24H28N2O3
  32. Crystal structure of bis(μ2-5-chloro-2-oxido-N-(1-oxido-2-oxo-2-phenylethylidene)-benzohydrazonato-κ5 N,O,O′:N′,O′′)-oktakis(pyridine-κ1 N)trinickel(II) – methanol – pyridine (1/1/1) C76H65N13Cl2Ni3O9
  33. The crystal structure of methyl 3,5-diaminobenzoate, C8H10N2O2
  34. Crystal structure of 10-(9H-carbazol-9-yl)-5H-dibenzo[a,d][7]annelen-5-one, C27H17NO
  35. Crystal structure of ethyl 1-(2-hydroxyethyl)-4-((4-methoxyphenyl)amino)-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxylate, C16H20N2O5
  36. The crystal structure of 1-(4-bromophenyl)-3-cycloheptylurea, C14H19BrN2O
  37. The crystal structure of 1,4-bis(1,2,3,4,5-pentamethylcyclopenta-2,4-dien-1-yl)-3,6-bis ((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methylene)-1,4-dialuminacyclohexane – benzene (1/2), C50H72Al2B2O4
  38. Crystal structure of bis(μ 3-diphenylphosphinato)-tetrakis(μ 2-diphenylphosphinato)-bis(diphenylphosphinato)-bis(μ 2-hydroxo)dicopper(II)-ditin(IV), C104H100O18P8Cu2Sn2
  39. Crystal structure of 3-((3,4-dichloroisothiazol-5-yl)methoxy)benzo[d] isothiazole 1,1-dioxide, C11H6Cl2N2O3S2
  40. Synthesis and crystal structure of 2-(2-(2-fluorophenyl)-2-oxoethyl)-4H-chromen-4-one, C17H11FO3
  41. The crystal structure of tris(carbonyl)-bis(carbonyl)-[μ-propane-1,2- dithiolato]-(benzyldiphenylphosphine)diiron (Fe—Fe), C27H23Fe2O5PS2
  42. Crystal structure of 1-(2-(4-chlorophenethyl)-2-hydroxy-3,3-dimethylbutyl)-1H-1,2,4-triazol-4-ium nitrate, C16H23N4O4Cl
  43. The crystal structure of 3,3′-disulfanediyldi(1H-1,2,4-triazol-5-amine) monohydrate, C4H8N8OS2
  44. The crystal structure of trans-[bis(4-methylpyridine-κN)bis(quinoline-2-carboxylato- κ 2 N,O)cadmium(II)], C32H26CdN4O4
  45. The crystal structure of ethyl 2′-hydroxy-4′,6′-dimethoxy-3-(4-methoxynaphthalen-1-yl)-5-oxo-2,3,4,5-tetrahydro-[1,1′-biphenyl]-4-carboxylate, C28H28O7
Downloaded on 10.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0509/html?lang=en
Scroll to top button