Home Physical Sciences Synthesis and crystal structure of 2-(2-(2-fluorophenyl)-2-oxoethyl)-4H-chromen-4-one, C17H11FO3
Article Open Access

Synthesis and crystal structure of 2-(2-(2-fluorophenyl)-2-oxoethyl)-4H-chromen-4-one, C17H11FO3

  • Yi Liu , Feng Liu , Yang Chen , Xiaolong Yan and Tao Xiao ORCID logo EMAIL logo
Published/Copyright: December 2, 2022

Abstract

C17H11FO3, monoclinic, P21/c (no. 14), a = 9.1987(2) Å, b = 17.5458(3) Å, c = 8.5802(2) Å, β = 108.193(3)°, V = 1315.60(5) Å3, Z = 4, R gt (F) = 0.0346, wR ref (F 2) = 0.1196, T = 293(2) K.

CCDC no.: 2221273

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size: 0.20 × 0.20 × 0.10 mm
Wavelength: Cu Kα radiation (1.54178 Å)
μ: 0.90 mm−1
Diffractometer, scan mode: SuperNova, ω
θ max, completeness: 74.4°, >99%
N(hkl)measured, N(hkl)unique, R int: 8927, 2636, 0.025
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 2282
N(param)refined: 191
Programs: CrysAlis Pro [1], Shelx [2, 3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
O1 0.13907 (9) 0.21053 (4) 0.96057 (10) 0.0208 (2)
C1 0.24833 (12) 0.24545 (6) 0.90922 (13) 0.0189 (3)
O2 0.16022 (11) 0.44262 (5) 0.92851 (12) 0.0308 (2)
C2 0.25961 (12) 0.32140 (6) 0.89753 (14) 0.0207 (3)
H2A 0.3371 0.3416 0.8617 0.025*
O3 0.47612 (10) 0.18074 (5) 1.15504 (10) 0.0272 (2)
C3 0.15398 (13) 0.37269 (7) 0.93941 (14) 0.0212 (3)
F 0.49913 (10) 0.09392 (4) 0.71310 (9) 0.0345 (2)
C4 0.03775 (12) 0.33442 (6) 0.99640 (13) 0.0188 (3)
C5 −0.07314 (13) 0.37558 (7) 1.04359 (14) 0.0225 (3)
H5A −0.0746 0.4285 1.0380 0.027*
C6 −0.17909 (14) 0.33804 (7) 1.09783 (16) 0.0264 (3)
H6A −0.2520 0.3656 1.1287 0.032*
C7 −0.17765 (13) 0.25808 (7) 1.10688 (16) 0.0267 (3)
H7A −0.2488 0.2331 1.1454 0.032*
C8 −0.07178 (13) 0.21637 (7) 1.05926 (15) 0.0234 (3)
H8A −0.0720 0.1634 1.0635 0.028*
C9 0.03548 (12) 0.25497 (7) 1.00475 (13) 0.0187 (3)
C10 0.35136 (13) 0.18836 (6) 0.86772 (14) 0.0201 (3)
H10A 0.4041 0.2123 0.7989 0.024*
H10B 0.2901 0.1469 0.8059 0.024*
C11 0.46848 (12) 0.15642 (6) 1.02013 (14) 0.0190 (3)
C12 0.57831 (12) 0.09619 (6) 1.00437 (15) 0.0200 (3)
C13 0.59231 (14) 0.06808 (7) 0.85820 (15) 0.0241 (3)
C14 0.70054 (15) 0.01417 (7) 0.85227 (18) 0.0310 (3)
H14A 0.7070 −0.0033 0.7523 0.037*
C15 0.79879 (15) −0.01304 (7) 0.9988 (2) 0.0345 (3)
H15A 0.8725 −0.0491 0.9975 0.041*
C16 0.78827 (15) 0.01296 (7) 1.14764 (19) 0.0335 (3)
H16A 0.8546 −0.0056 1.2456 0.040*
C17 0.67896 (14) 0.06658 (7) 1.14991 (16) 0.0259 (3)
H17A 0.6720 0.0834 1.2501 0.031*

Source of material

A mixture of 2-hydroxyacetophenone, carbon disulfide, potassium carbonate and bromoethane was dissolved in DMSO in 250 mL round bottom flask and stirred at 35 °C (monitored by thin layer chromatography). After completion of the reaction, ice water was poured into the reaction mixture and the crude product was extracted by ethyl acetate. Organic layers were combined, washed with water and brine and dried over anhydrous MgSO4. The solvent was removed in vacuo and the product was purified by column chromatography (petroleum ether/ethyl acetate 5:1) to give the title compound as a light yellow solid.

Experimental details

Hydrogen atoms were placed in their geometrically idealized positions and constrained to ride on their parent atoms, with isotropic displacement parameters constrained as U iso(H) = 1.2U eq(C).

Comment

Chromone derivatives are widely distributed in nature and have excellent biological activity and pharmacological properties and are widely used in biomedical fields, such as anti-inflammatory [4], antioxidant [5], cardiovascular and liver protection [6]. At the same time, chromones are also important fluorophores for the production of fluorescent probes, which can be used for the development of fluorescent probes and solvochromic dyes [7, 8]. In the title compound (see the figure), the bond length and bond angle of the compound are within the normal range [9], [10], [11], [12]. The molecule consists of chromone skeleton, fluoro-substituted benzene ring and acetyl. The detailed analysis of the molecular structure showed that the bicyclic fragment is planar with the accuracy of 0.009 Å, and the dihedral angle between the benzene ring C12/C13/C14/C15/C16/C17) and the chromone skeleton is 75°. The bond length of C–F is 1.351(1) Å. No strong hydrogen bond was observed in the compound.


Corresponding author: Tao Xiao, Department of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China, E-mail:

Funding source: Nanjing Senega Medical Technology Co. Ltd.

Acknowledgements

This work was supported by Nanjing Senega Medical Technology Co. Ltd. Also, we appreciate Wang Huaqin in Nanjing University and Wu Wenyuan in Nanjing Tech University for some data analysis.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by Nanjing Senega Medical Technology Co. Ltd.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Agilent Technologies. CrysAlisPro; Agilent Technologies: Santa Clara, CA, USA, 2017.Search in Google Scholar

2. Sheldrick, G. M. Crystal structure refinement with SHELX. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

3. Sheldrick, G. M. SHELX – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

4. Borghi, S. M., Carvalho, T. T., Staurengo-Ferrari, L., Hohmann, M. S., Pinge-Filho, P., Casagrande, R., Verri, W. A.Jr. Vitexin inhibits inflammatory pain in mice by targeting TRPV1, oxidative stress, and cytokines. J. Nat. Prod. 2013, 76, 1141–1149; https://doi.org/10.1021/np400222v.Search in Google Scholar PubMed

5. Stefanachi, A., Leonetti, F., Pisani, L., Catto, M., Carotti, A. Coumarin: a natural, privileged and versatile scaffold for bioactive compounds. Molecules 2018, 23, 250; https://doi.org/10.3390/molecules23020250.Search in Google Scholar PubMed PubMed Central

6. Gaspar, A., Matos, M. J., Garrido, J., Uriarte, E., Borges, F. Chromone: a valid scaffold in medicinal chemistry. Chem. Rev. 2014, 114, 4960–4992; https://doi.org/10.1021/cr400265z.Search in Google Scholar PubMed

7. Giordano, L., Shvadchak, V. V., Fauerbach, J. A., Jares-Erijman, E. A., Jovin, T. M. Highly solvatochromic 7-aryl-3-hydroxychromones. J. Phys. Chem. Lett. 2012, 3, 1011–1016; https://doi.org/10.1021/jz3002019.Search in Google Scholar PubMed

8. Kucherak, O. A., Richert, L., Mely, Y., Klymchenko, A. S. Dipolar 3- methoxychromones as bright and highly solvatochromic fluorescent dyes. Phys. Chem. Chem. Phys. 2012, 14, 2292–2300; https://doi.org/10.1039/c2cp23037b.Search in Google Scholar PubMed

9. Dziewulska-Kułaczkowska, A., Mazur, L. Structural studies and characterization of 3-formylchromone and products of its reactions with chosen primary aromatic amines. J. Mol. Struct. 2010, 985, 233–242.10.1016/j.molstruc.2010.10.049Search in Google Scholar

10. Binbuga, N., Schultz, T. P., Henry, W. P. Intra- and intermolecular hydrogen bonding in 3-hydroxy- and 5-hydroxychromone. Tetrahedron Lett. 2008, 49, 5762–5765; https://doi.org/10.1016/j.tetlet.2008.07.100.Search in Google Scholar

11. Yagishita, F., Baba, N., Ueda, Y., Katabira, S., Kasashima, Y., Mino, T., Sakamoto, M. Diastereoselective photodimerization reactions of chromone-2- carboxamides to construct a C2-chiral scaffold. Org. Biomol. Chem. 2014, 12, 9644–9649; https://doi.org/10.1039/c4ob01827c.Search in Google Scholar PubMed

12. Gomes, L. R., Low, J. N., Cagide, F., Borges, F. The crystal structures of four N-(4-halophenyl)-4-oxo-4H-chromene-3-carboxamides. Acta Crystallogr. 2015, E71, 88–93; https://doi.org/10.1107/s2056989014027054.Search in Google Scholar

Received: 2022-10-07
Accepted: 2022-11-22
Published Online: 2022-12-02
Published in Print: 2023-01-27

© 2022 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of undecacalcium decaarsenide, Ca11As10
  4. Crystal structure of catena-poly[diiodido-(μ2-1,5-dimethyl-2-phenyl-4-((pyridin-4- ylmethylene)amino)-1,2-dihydro-3H -pyrazol-3-one-κ2 N: O)zinc(II)], C17H16I2N4OZn
  5. The crystal structure of 5,10,15,20-tetrakis(4-(tert-butyl)phenyl)porphyrin-21,23-diido-κ4 N 4-naphthalocyanido-κ4 N 4-neodymium(IV) - chloroform (1/6) C114H90N12Cl18Nd
  6. The crystal structure of 1-(4-bromophenyl)-3-(2-chlorobenzyl)urea, C14H12BrClN2O
  7. Crystal structure of bis[benzyl(methyl)carbamodithioato-κ 2 S,S′]-di-n-butyltin(IV), C26H38N2S4Sn
  8. Crystal structure of (E)-3-(2-(4-(diethylamino)-2-hydroxystyryl)-3,3-dimethyl-3H-indol-1-ium-1-yl)propane-1-sulfonate – methanol (1/2), C25H32N2O4S⋅2CH3OH
  9. Synthesis and crystal structure of {(N′,N″-(((ethane-1,2-diylbis(oxy))bis(2,1-phenylene))-bis(methaneylylidene))bis(2-hydroxybenzohydrazonato)-κ6 N 2 O 4}copper(II), C30H24CuN4O6
  10. The crystal structure of ((E)-2,4-dibromo-6-(((5-(nitro)-2-oxidophenyl)imino)methyl)phenolato-κ 3 N,O,O′)tris(pyridine-κN)manganese(II), C28H21Br2MnN5O4
  11. Synthesis and crystal structure of 1-((3R,10S,13R,17S)-10,13-dimethyl-3-(p-tolylamino)hexadecahydro-1H-cyclopenta-[a]phenanthren-17-yl)ethan-1-one, C28H41NO
  12. The crystal structure of 3-nitrobenzene-1,2-dicarboxylic acid—pyrazine-2-carboxamide(1/1), C13H10N4O7
  13. Crystal structure of poly[tetrakis(μ3-2-aminonicotinato-κ3N,O,O′)-(μ2-oxalato-κ4 O,O′:O″,O′″)-(μ4-oxalato-κ6 N:N′:O,O′:O″,O′″)dicopper(I)-disamarium(III)], [SmCu(C6N2H5O2)2(C2O4)] n
  14. The crystal structure of 2,3,4-trihydroxybenzoic- acid—pyrazine-2-carboxamide—water (1/1/1), C12H13N3O7
  15. Crystal structure of N-ethyl-4-[3-(trifluoromethyl)-phenyl]piperazine-1-carbothioamide, C14H18F3N3S
  16. The crystal structure of 3-anilino-1,4-diphenyl-4H-1,2,4-triazol-1-ium iodide, C20H17N4I
  17. The crystal structure of (tris(2-benzimidazolylmethyl)amine)-benzoato-copper(II) perchlorate monohydrate, CuC31H28N7O7Cl
  18. Crystal structure of [2-hydroxy-3-methyl-benzoato-k1 O-triphenyltin(IV)], C26H22O3Sn
  19. Crystal structure of diaqua-bis(4-(hydroxymethyl)-benzoato-k1 O)zinc(II), C16H18O8Zn
  20. The crystal structure of dicarbonyl-(N-nitroso-N-oxido-phenylamine-κ 2 O,O)-rhodium(I), C8H5N2O4Rh
  21. The crystal structure of oxalic acid – 2-ethoxybenzamide (2/1), C20H24N2O8
  22. The crystal structure of ethyl 7-ethyl-5-methyl-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxylate, C10H15N5O2
  23. Crystal structure of poly[(N,N-dimethylacetamide-κO) (μ4-2-nitroisophthalato-κ 4 O:O′:O″:O′″)manganese(II)], C11H10N2O7Mn
  24. Crystal structure of 14-O-acetyldelcosine, C26H41NO8
  25. The crystal structure of poly[(1,10-phenanthroline-κ2 N,N′)-(μ 4-2-chlorobenzene-1,3-dicarboxylato-κ5 O:O′:O″:O‴) cadmium(II)] monohydrate, C20H13CdClN2O5
  26. Crystal structure of propane-1,3-diylbis(diphenylphosphine sulfide) ethanol solvate, C27H26P2S2
  27. Crystal structure of bis{[(4-diethylamino-2-hydroxy-benzylidene)-hydrazinocarbonylmethyl]-trimethylammonium} tetrabromozincate, C32H54N8O4ZnBr4
  28. Synthesis and crystal structure of dimethyl 2,2′-(2,5-bis(4-hydroxyphenyl)-2,5-dihydrofuran-3,4-diyl)dibenzoate, C34H30O7
  29. Synthesis and crystal structure of 2-(2-oxo-2-phenylethyl)-4H-chromen-4-one, C17H12O3
  30. The crystal structure of tetra(imidazole-κ1 N)zinc(II) μ2-oxido-hexaoxido-divanadium(VI) C12H16N8O6V2Zn
  31. Crystal structure of S-2-(1-(5-methylpyridin-2-ylamino)octyl)-3-hydroxynaphthalene-1,4-dione, C24H28N2O3
  32. Crystal structure of bis(μ2-5-chloro-2-oxido-N-(1-oxido-2-oxo-2-phenylethylidene)-benzohydrazonato-κ5 N,O,O′:N′,O′′)-oktakis(pyridine-κ1 N)trinickel(II) – methanol – pyridine (1/1/1) C76H65N13Cl2Ni3O9
  33. The crystal structure of methyl 3,5-diaminobenzoate, C8H10N2O2
  34. Crystal structure of 10-(9H-carbazol-9-yl)-5H-dibenzo[a,d][7]annelen-5-one, C27H17NO
  35. Crystal structure of ethyl 1-(2-hydroxyethyl)-4-((4-methoxyphenyl)amino)-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxylate, C16H20N2O5
  36. The crystal structure of 1-(4-bromophenyl)-3-cycloheptylurea, C14H19BrN2O
  37. The crystal structure of 1,4-bis(1,2,3,4,5-pentamethylcyclopenta-2,4-dien-1-yl)-3,6-bis ((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methylene)-1,4-dialuminacyclohexane – benzene (1/2), C50H72Al2B2O4
  38. Crystal structure of bis(μ 3-diphenylphosphinato)-tetrakis(μ 2-diphenylphosphinato)-bis(diphenylphosphinato)-bis(μ 2-hydroxo)dicopper(II)-ditin(IV), C104H100O18P8Cu2Sn2
  39. Crystal structure of 3-((3,4-dichloroisothiazol-5-yl)methoxy)benzo[d] isothiazole 1,1-dioxide, C11H6Cl2N2O3S2
  40. Synthesis and crystal structure of 2-(2-(2-fluorophenyl)-2-oxoethyl)-4H-chromen-4-one, C17H11FO3
  41. The crystal structure of tris(carbonyl)-bis(carbonyl)-[μ-propane-1,2- dithiolato]-(benzyldiphenylphosphine)diiron (Fe—Fe), C27H23Fe2O5PS2
  42. Crystal structure of 1-(2-(4-chlorophenethyl)-2-hydroxy-3,3-dimethylbutyl)-1H-1,2,4-triazol-4-ium nitrate, C16H23N4O4Cl
  43. The crystal structure of 3,3′-disulfanediyldi(1H-1,2,4-triazol-5-amine) monohydrate, C4H8N8OS2
  44. The crystal structure of trans-[bis(4-methylpyridine-κN)bis(quinoline-2-carboxylato- κ 2 N,O)cadmium(II)], C32H26CdN4O4
  45. The crystal structure of ethyl 2′-hydroxy-4′,6′-dimethoxy-3-(4-methoxynaphthalen-1-yl)-5-oxo-2,3,4,5-tetrahydro-[1,1′-biphenyl]-4-carboxylate, C28H28O7
Downloaded on 3.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0490/html?lang=en&srsltid=AfmBOoqD7biGF_dKUrpS2QpVqk9It0KYEKS_jjnfnRZ0YP-yV_uXvIYV
Scroll to top button