Startseite The layered crystal structure of bis(theophyllinium) hexachloridostannate (IV), C14H18N8O8SnCl6
Artikel Open Access

The layered crystal structure of bis(theophyllinium) hexachloridostannate (IV), C14H18N8O8SnCl6

  • Guido J. Reiss ORCID logo EMAIL logo und Maik Wyshusek
Veröffentlicht/Copyright: 6. Juli 2021

Abstract

C14H18N8O8SnCl6, monoclinic, P21/n (no. 14), a = 8.1810(2) Å, b = 12.6195(3) Å, c = 11.3811(2) Å, β = 90.258(2)°, Z = 2, V = 1174.97(5) Å3, Rgt(F) = 0.0266, wRref = 0.0620, T = 290 K.

CCDC no.: 2089778

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.30 × 0.16 × 0.10 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 1.81 mm−1
Diffractometer, scan mode: Xcalibur EOS, ω
θmax, completeness: 33.0°, 98%
N(hkl)measured, N(hkl)unique, Rint: 17679, 4333, 0.025
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 3278
N(param)refined: 165
Programs: Diamond [1], CrysAlisPRO [2], SHELX [3, 4], ShelXle [5]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
Sn1 0.500000 0.500000 0.500000 0.02128 (5)
Cl1 0.43257 (7) 0.48605 (6) 0.70878 (5) 0.04115 (14)
Cl2 0.51798 (9) 0.30903 (4) 0.48832 (6) 0.04624 (17)
Cl3 0.21278 (6) 0.49002 (5) 0.44895 (5) 0.03561 (12)
O1 0.52203 (19) 0.04847 (13) 0.64313 (15) 0.0351 (4)
O2 0.63937 (19) 0.31667 (13) 0.90004 (14) 0.0324 (3)
N1 0.5731 (2) 0.19005 (14) 0.76250 (16) 0.0268 (3)
N2 0.7595 (2) 0.13645 (13) 0.61508 (15) 0.0259 (3)
N3 0.9486 (2) 0.35070 (15) 0.75585 (16) 0.0276 (4)
H3 0.953 (3) 0.405 (2) 0.800 (2) 0.037 (7)*
N4 1.0039 (2) 0.24896 (15) 0.60733 (17) 0.0296 (4)
H4 1.052 (4) 0.227 (2) 0.542 (3) 0.054 (9)*
C1 0.6133 (3) 0.12098 (16) 0.67220 (19) 0.0265 (4)
C2 0.8569 (2) 0.21706 (16) 0.65178 (18) 0.0251 (4)
C3 0.8203 (2) 0.28065 (16) 0.74453 (17) 0.0243 (4)
C4 0.6753 (2) 0.26708 (16) 0.81081 (18) 0.0251 (4)
C5 1.0552 (3) 0.33142 (18) 0.6724 (2) 0.0316 (4)
H5 1.151389 0.369097 0.660252 0.043 (7)*
C6 0.4111 (3) 0.1765 (2) 0.8148 (2) 0.0389 (5)
H6A 0.367669 0.244483 0.835927 0.064 (6)*
H6B 0.419974 0.132962 0.883729 0.064 (6)*
H6C 0.339429 0.143028 0.758983 0.064 (6)*
C7 0.7991 (3) 0.0684 (2) 0.5151 (2) 0.0408 (6)
H7A 0.707185 0.065270 0.462509 0.100 (8)*
H7B 0.824267 −0.001657 0.542783 0.100 (8)*
H7C 0.891865 0.096789 0.474470 0.100 (8)*

Source of material

All chemicals were obtained from commercial sources and used as purchased. The Raman spectra were measured using a Bruker MULTIRAM spectrometer (Nd: YAG-laser at 1064 nm; InGaAs detector) with an apodized resolution of 8 cm−1 in the region of 4000–70 cm−1. The title compound was synthesized by dissolving 0.18 g (1 mmol) theophylline 180.16 and 0.14 SnCl4 (0.5 mmol) in 1 mL concentrated hydrochloric acid. Short-time warming until both components were dissolved yielded a colourless solution. From the aforementioned colourless solution a large number of colourless block crystals grew upon slow cooling to room temperature within minutes.

Experimental details

A single crystal of the title compound was directly selected from the mother liquor and rapidly transferred to the Xcalibur four-circle diffractometer equipped with an EOS detector [2]. An absorption correction (Gaussian method) was applied [2]. The structure solution and the refinement were successfully carried out using the SHELX program system [3], [4], [5]. The pseudo-orthogonal unit cell (see the Figure and the Abstract) and the occupancy of special positions by the SnCl62 anions causes a couple of minor difficulties during the semi-automated data collection strategy calculation. But an extended exposure time provides a reasonable I/σ ratio for the systematically weak reflections (R(σ) = 0.0259; R(σ) = Σ [σ(Fo2)]/Σ [Fo2]) and guarantees a plausible chemical model [6], [7]. In this case the resolution limit was set to 0.65 Å yielding a reflections/parameter ratio of 26.3/1. All hydrogen atoms were seen in the Fourier map after all non-hydrogen atoms were located. C-bound hydrogen atoms were included using a riding model. Coordinates of nitrogen-bound hydrogen atoms were refined using distance restraints and individually refined Uiso parameters. The maximum residual peak of 0.81 eÅ−3 and the deepest hole of −0.71 eÅ−3 are found 0.66 and 0.70 Å, respectively, from atom Cl2.

Comment

Introduction

Theophylline is a well-known natural product and was first described by Kossel in 1888 [8], [9]. He was able to isolate theophylline from tea leaves, which origins the naming up to now. There is still a fundamental interest in this compound and the corresponding solid state phases [10], [11] and co-crystals [12], [13], [14], [15]. Nowadays theophylline is often used as pharmaceutical agent due to its effects on the respiratory system [16], [17], [18], [19]. Recently, theophylline was also used in SARS–CoV-2 therapy [20].

We have already shown that heterocyclic cations like some pyridinium derivatives [21], [22] and the derived N-protonated cations of naturally occurring bases like nicotine [23], [24], caffeine [25] and theophylline [26], [27] are excellent tectons to construct hydrogen bonded networks. A database check (Cambridge Structural database [28]) showed that not more than about 20 crystal structures have been deposited so far, that contain a theophyllinium cation. The SnCl62 counterion used for this study is a bulky, medium-strong hydrogen-bond acceptor, which is sometimes used by us [29] and many other groups [30], [31], [32], [33], [34], [35], [36]. It should be mentioned that anionic Sn(IV) complexes are of current interest with mixed ligands that contain chlorido ligands and for example C2F5 [37] groups or benzyl groups [38], respectively. This contribution is part of our longstanding interest in the structures and hydrogen-bonding schemes of hexahalogenidometallates [6, 39].

From the reaction of theophylline (systematic name: 1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione) with hydrochloric in the presence of one equivalent of SnCl4, colorless block crystals of the title compound were obtained.

Structural comments

The asymmetric unit of the title compound consists of one N-protonated theophyllinium cation (TheoH) residing on a general position, and one half of a hexachloridostannate(IV) anion located on an inversion center. Bond lengths within the TheoH cation are all in the expected ranges [26], [27]. The same is true for the [SnCl6]2− anion [29], [30], [31], [32], [33], [34], [35], [36]. In detail, the Sn–Cl distances range from 2.4182(5)–2.4482(6) Å and the cis-angles range from 89.63(2)–90.37(2)°. Each theophyllinium cation is connected to four neighbouring cations by classical NH···O hydrogen bonds (see the Figure). These connections construct a layered, hydrogen bonded structure in the (101) plane. In detail, the N–H donor groups of TheoH are involved in unbifurcated classical hydrogen bond (see the Figure; N3···O1′ = 2.758(2) Å; ′ = 1.5 − x, 0.5 + y, 1.5 − z; N4···O2″ = 2.739(2) Å; ″ = 0.5 + x, 0.5 − y, −0.5 − z). Each mesh of the hydrogen-bonded net consists of four cations. It is obvious that larger and smaller meshes are present in this structure (see the Figure). Consequently, the [SnCl6]2− anions (Wyckoff site: 2a) are located beneath and above of the larger meshs, whereas two inversion symmetry related methyl groups of two TheoH cations fill the smaller meshes around the Wyckoff sites 2b and 2c.

The [SnCl6]2− anion as a weak to medium-strong hydrogen-bond acceptor is not involved in any strong hydrogen bonds in the title structure. This was bound to happen as all classsic hydrogen donors in the title struc-ture are involved in medium-strong unbifurcated NH···O hydrogen bonds. Nevertheless the chlorido ligand Cl2, which features the shortest Sn–Cl distance shows the longest Cl···H distance, which is in total accord with our expectations of a bulky anion interacting with neighbours via weak intermolecular forces. Thus we suppose that the shape and the group radius of the [SnCl6]2− determines or at least supports the formation of the hydrogen-bonded, two-dimensional network.

This suggestion is supported by the fact the in the case of another theophyllinium salt (I102; [26]) a related hydrogen bonded 2D network is obtained, which features only one type of a mesh formed by six theophyllinium cations. Also in the case of the (TheoH)2I10, the cyclic I102 anions excellently fits with the shape of the hydrogen-bonded network formed by the TheoH cations.

Raman spectroscopy

There are three very strong signals in the Raman spectrum at 312, 162, and 135 cm−1 respectively as well as one medium-strong signal at 239 cm−1. These four signals must be assigned to the SnCl62− anion and are similar to those for detected for (PCl4)2SnCl6 [40] and K2SnCl6 [41].

Conclusion and outlook

We have shown that the counter anion may influence the hydrogen-bonding scheme of the theophyllinium sub system. Also typical for this class of compounds is the pseudosymmetric arrangement [42], [43], [44], [45] of the anionic sub structure of the hexachloridostannate(IV) anions [39], [46]. We expect that further theophyllinium hexahalogeni-dometallate salts will be accessible using other metalchlorides as educts: M = Ir [39], Pb [46], Os [30], Pt [30].


Corresponding author: Guido J. Reiss, Institut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich–Heine–Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany, E-mail:

Funding source: Ministry of Innovation, Science and Research of North-Rhine Westphalia

Award Identifier / Grant number: INST 208/533-1

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: We gratefully acknowledge support by the Ministry of Innovation, Science and Research of North-Rhine Westphalia and the German Research Foundation (DFG) for financial support (Xcalibur diffractometer; INST 208/533-1, project no. 162659349). Finally, funding by the open access fund of the Heinrich-Heine-Universität Düsseldorf is also gratefully acknowledged.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Brandenburg, K. DIAMOND. Visual Crystal Structure Information System. Ver.4.5.2; Crystal Impact: Bonn, Germany, 2018.Suche in Google Scholar

2. Oxford Diffraction. CrysAlisPRO. (version 1.171.33.42); Oxford Diffraction Ltd.: Oxford, UK, 2009.Suche in Google Scholar

3. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

5. Hübschle, C. B., Sheldrick, G. M., Dittrich, B. ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 2011, 44, 1281–1284; https://doi.org/10.1107/s0021889811043202.Suche in Google Scholar PubMed PubMed Central

6. Reiss, G. J. A reinvestigation of Wilm’s salt, (NH4)4 [RhCl6]NO3 – structure, spectroscopy and thermal analysis -. Z. Kristallogr. - Cryst. Mater. 2002, 217, 550–556.10.1524/zkri.217.10.550.20794Suche in Google Scholar

7. Megen, M., Reiss, G. J. The pseudosymmetric structure of bis(pentane-1,5-diaminium) iodide tris(triiodide). Acta Crystallogr. E 2012, 68, o1331–o1332; https://doi.org/10.1107/s1600536812014420.Suche in Google Scholar PubMed PubMed Central

8. Kossel, A. Ueber eine neue Base aus dem Pflanzenreich. Ber. Dtsch. Chem. Ges. 1888, 21, 2164; https://doi.org/10.1002/cber.188802101422.Suche in Google Scholar

9. Kossel, A. Ueber das Theophyllin, einen neuen Bestandtheil des Thees. Z. Physiolog. Chem. 1889, 13, 298–308; https://doi.org/10.1515/bchm1.1889.13.3.298.Suche in Google Scholar

10. Fucke, K., McIntyre, G. J., Wilkinson, C., Henry, M., Howard, J. A., Steed, J. W. New insights into an old molecule: interaction energies of theophylline crystal forms. Cryst. Growth Des. 2012, 12, 1395–1401; https://doi.org/10.1021/cg201499s.Suche in Google Scholar

11. Matsuo, K., Matsuoka, M. Solid-state polymorphic transition of theophylline anhydrate and humidity effect. Cryst. Growth Des. 2007, 7, 411–415; https://doi.org/10.1021/cg060299i.Suche in Google Scholar

12. Darwish, S., Zeglinski, J., Krishna, G. R., Shaikh, R., Khraisheh, M., Walker, G. M., Croker, D. M. A new 1:1 drug-drug cocrystal of Theophylline and Aspirin: discovery, characterization, and construction of ternary phase diagrams. Cryst. Growth Des. 2018, 18, 7526–7532; https://doi.org/10.1021/acs.cgd.8b01330.Suche in Google Scholar

13. Wang, L., Luo, M., Li, J., Wang, J., Zhang, H., Deng, Z. Sweet Theophylline cocrystal with two tautomers of acesulfame. Cryst. Growth Des. 2015, 15, 2574–2578; https://doi.org/10.1021/acs.cgd.5b00207.Suche in Google Scholar

14. McTague, H., Rasmuson, A. C. Nucleation of the theophylline : salicylic acid 1:1 cocrystal. Cryst. Growth Des. 2021, 21, 2711–2719 https://doi.org/10.1021/acs.cgd.0c01594.Suche in Google Scholar PubMed PubMed Central

15. Lange, L., Sadowski, G. Polymorphs, hydrates, cocrystals, and cocrystal hydrates: thermodynamic modeling of theophylline systems. Cryst. Growth Des. 2016, 16, 4439–4449; https://doi.org/10.1021/acs.cgd.6b00554.Suche in Google Scholar

16. Persson, C. G. A. Overview of effects of theophylline. J. Allergy Clin. Immunol. 1986, 78, 780–787; https://doi.org/10.1016/0091-6749(86)90061-8.Suche in Google Scholar PubMed

17. Sofian, Z. M., Benaouda, F., Wang, J. T. W., Lu, Y., Barlow, D. J., Royall, P. G., Farag, D. B., Rahman, K. M., Al Jamal, K. T., Forbes, B., Jones, S. A. A Cyclodextrin stabilized spermine tagged drug triplex that targets Theophylline to the lungs selectively in respiratory emergency. Adv. Ther. 2020, 3, 2000153.10.1002/adtp.202000153Suche in Google Scholar PubMed PubMed Central

18. Benaouda, F., Jones, S. A., Chana, J., Dal Corno, B. M., Barlow, D. J., Hider, R. C., Page, C. P., Forbes, B. Ion-pairing with spermine targets Theophylline to the lungs via the polyamine transport system. Mol. Pharm. 2018, 15, 861–870; https://doi.org/10.1021/acs.molpharmaceut.7b00715.Suche in Google Scholar PubMed

19. Tanaka, R., Hattori, Y., Otsuka, M., Ashizawa, K. Application of spray freeze drying to theophylline-oxalic acid cocrystal engineering for inhaled dry powder technology. Drug Dev. Ind. Pharm. 2020, 46, 179–187; https://doi.org/10.1080/03639045.2020.1716367.Suche in Google Scholar PubMed

20. Zhou, C., Gao, C., Xie, Y., Xu, M. COVID-19 with spontaneous pneumomediastinum. Lancet Infect. Dis. 2020, 20, 510; https://doi.org/10.1016/s1473-3099(20)30156-0.Suche in Google Scholar PubMed PubMed Central

21. Reiss, G. J., Leske, P. B. The twinned crystal structure of bis(4-aminopyridin-1-ium) iodide triiodide, C20H28I8N8. Z. Kristallogr. N. Cryst. Struct. 2014, 229, 452–454, https://doi.org/10.1515/ncrs-2014-0193.Suche in Google Scholar

22. Reiss, G. J., van Megen, M. Two new polyiodides in the 4,4′-bipyridinium diiodide/iodine system. Z. Naturforsch. B Chem. Sci. 2012, 67, 5–10; https://doi.org/10.1515/znb-2012-0102.Suche in Google Scholar

23. Reiss, G. J. I5- polymers with a layered arrangement: synthesis, spectroscopy, and structure of a new polyiodide salt in the nicotine/HI/I2 system. Z. Naturforsch. B Chem. Sci. 2015, 70, 735–740; https://doi.org/10.1515/znb-2015-0092.Suche in Google Scholar

24. Reiss, G. J., Sergeeva, A. Hydrogen bonding versus packing effects in the crystal structure of 3-((1R, 2S)-1-methylpyrrolidin-1-ium-2-yl) pyridin-1-ium tetraiodidozincate(II). Z. Kristallogr. N. Cryst. Struct. 2020, 235, 959–962; https://doi.org/10.1515/ncrs-2020-0123.Suche in Google Scholar

25. Merkelbach, J., Majewski, M. A., Reiss, G. J. Crystal structure of caffeinium triiodide-caffeine (1/1), C16H21I3N8O4. Z. Kristallogr. N. Cryst. Struct. 2018, 233, 941–944; https://doi.org/10.1515/ncrs-2018-0125.Suche in Google Scholar

26. Reiss, G. J. A cyclic I102− anion in the layered crystal structure of theophyllinium pentaiodide, C7H9I5N4O2. Z. Kristallogr. N. Cryst. Struct. 2019, 234, 737–739; https://doi.org/10.1515/ncrs-2019-0082.Suche in Google Scholar

27. Wyshusek, M., Reiss, G. J., Frank, W. The triple salt 2(C7H9N4O2)[MoOCl4(H2O)] · 2(C7H9N4O2)Cl · (H17O8)Cl containing a C2 -symmetrical unbranched H+(H2O)8 Zundel type species in a framework composed of Theophyllinium, aquatetrachloridooxidomolybdate and chloride ions. Z. Anorg. Allg. Chem. 2021, 647, 575–581; https://doi.org/10.1002/zaac.202100007.Suche in Google Scholar

28. Groom, C. R., Bruno, I. J., Lightfoot, M. P., Ward, S. C. The Cambridge structural database. Acta Crystallogr. B 2016, 72, 171–179; https://doi.org/10.1107/s2052520616003954.Suche in Google Scholar

29. Megen, M., Prömper, S., Reiss, G. J. Bis(3-azaniumylpyridin-1-ium) hexachloridostannate(IV) dichloride. Acta Crystallogr. E 2013, 69, m217. https://doi.org/10.1107/s1600536813006806.Suche in Google Scholar PubMed PubMed Central

30. Dolling, B., Gillon, A. L., Orpen, A. G., Starbuck, J., Wang, X.-M. Homologous families of chloride-rich 4,4′-bipyridinium salt structures. Chem. Commun. 2001, 567–568; https://doi.org/10.1039/b009467f.Suche in Google Scholar

31. Szafrański, M. St åahl K. Phase transitions in layered diguanidinium hexachlorostannate(IV). Cryst. Growth Des. 2016, 16, 2157–2166.10.1021/acs.cgd.5b01830Suche in Google Scholar

32. Moussa, O. B., Chebbi, H., Arfaoui, Y., Falvello, L. R., Tomas, M., Zid, M. F. Structural study, vibrational and optical properties, Hirshfeld surface analysis and DFT investigation of a novel organic cation hexachloridostannate(IV), (C5H8N3)2[SnCl6]. J. Mol. Struct. 2019, 1195, 344–354; https://doi.org/10.1016/j.molstruc.2019.05.066.Suche in Google Scholar

33. Ferjani, H. Crystal structure, optical property and Hirshfeld surface analysis of bis[1-(prop-2-en-1-yl)-1H-imidazol-3-ium] hexachloridostannate(IV). Acta Crystallogr. E 2020, 76, 1624–1628; https://doi.org/10.1107/s2056989020012177.Suche in Google Scholar PubMed PubMed Central

34. Ghallab, R., Boutebdja, M., Denes, G., Merazig, H. Synthesis, crystal structure and Hirshfeld surface of bis(2-aminopyridinium) hexachloridostannate(IV). Acta Crystallogr. E 2020, 76, 1279–1283; https://doi.org/10.1107/s205698902000941x.Suche in Google Scholar PubMed PubMed Central

35. Manonmani, M., Balakrishnan, C., Dhanalakshmi, M., Ahamed, S. R., Vinitha, G., Sockalingam, R. M. Synthesis, structure, third-order nonlinear optical properties and Hirshfeld surface analysis of tetrakis(azepanium) hexachlorostannate(IV) dichloride and tetrakis(azepanium) hexabromostannate(IV) dibromide. J. Mol. Struct. 2021, 1227, 129515; https://doi.org/10.1016/j.molstruc.2020.129515.Suche in Google Scholar

36. Hajji, R., Fersi, M. A., Hajji, S., Hlel, F., Ben Ahmed, A. Hirshfeld surface analysis, vibrational spectra, optical, DFT studies and biological activities of (C7H12N2)2[SnCl6]Cl2.1.5H2O compound. Chem. Phys. Lett. 2019, 722, 160–172; https://doi.org/10.1016/j.cplett.2019.02.045.Suche in Google Scholar

37. Klösener, J., Wiesemann, M., Neumann, B., Stammler, H.-G., Hoge, B. Hypercoordinated fluoro(pentafluoroethyl)stannanes and -stannates. Eur. J. Inorg. Chem. 2018, 2018, 3960–3970; https://doi.org/10.1002/ejic.201800795.Suche in Google Scholar

38. Lee, S. M., Lo, K. M., Tiekink, E. R. T. Crystal structure of 2-(pyridin-2-ylamino)pyridinium chloride dibenzyldichlorostannane, [C10H10N3]Cl, C14H14Cl2Sn. Z. Kristallogr. N. Cryst. Struct. 2020, 235, 1515–1517; https://doi.org/10.1515/ncrs-2020-0375.Suche in Google Scholar

39. Reiss, G. J. The pseudosymmetric structure of bis(diisopropylammonium) hexachloroiridate(IV) and its relationship to potassium hexachloroiridate(III). Acta Crystallogr. E 2002, 58, m47–m50. and cited references; https://doi.org/10.1107/s0108767302095569.Suche in Google Scholar

40. Brockner, W., Demiray, A. F. Raman–Spektroskopische Untersuchungen an PCl5. IV. Das System PCl5–SnCl4. Z. Naturforsch. 1979, 34, 976–978; https://doi.org/10.1515/zna-1979-0808.Suche in Google Scholar

41. Pelzl, J., Engels, P., Florian, F. Raman spectroscopic study of the structural phase transitions in K2SnCl6. Phys. Status Solidi B 1977, 82, 145–148; https://doi.org/10.1002/pssb.2220820114.Suche in Google Scholar

42. Baggio, R. A simple graphical method to pinpoint local pseudosymmetries in Z′ >1 cases. Acta Crystallogr. C 2019, 75, 837–850; https://doi.org/10.1107/s2053229619007861.Suche in Google Scholar

43. Baggio R, R. Playing around with MP, a tool for the analysis of pseudosymmetry: recurrent appearance of local pseudo-space groups in the asymmetric unit of Z′ = 4 structures. Acta Crystallogr. C 2020, 76, 258–268; https://doi.org/10.1107/s2053229620001904.Suche in Google Scholar

44. Somov, N. V., Chuprunov, E. V. The translational and inversion pseudosymmetry of the atomic crystal structures of organic and organometallic compounds. Crystallogr. Rep. 2009, 54, 773–779; https://doi.org/10.1134/s1063774509050022.Suche in Google Scholar

45. Ruck, M. Kristallographische Konsequenzen von Pseudosymmetrie in Kristallstrukturen. Z. Kristallogr. - Cryst. Mater. 2000, 215, 148–156; https://doi.org/10.1524/zkri.2000.215.3.148.Suche in Google Scholar

46. Ouasri, A., Rhandour, A., Schloots, S., Reiss, G. J. The crystal structure of bis(diethylammonium) hexachloridoplumbate(IV) derived from powder diffraction data and its relation to structurally related hexachloridometallate salts. J. Chem. Crystallogr. 2017, 47, 173–181; https://doi.org/10.1007/s10870-017-0695-x.Suche in Google Scholar

Received: 2021-05-13
Accepted: 2021-06-14
Published Online: 2021-07-06
Published in Print: 2021-09-27

© 2021 Guido J. Reiss and Maik Wyshusek, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of [aqua-(4-iodopyridine-2,6-dicarboxylato-κ3 O,N,O′)-(1,10-phenanothroline-κ2 N,N′)copper(II)] dihydrate, C19H16O7N3CuI
  4. The crystal structure of tetrakis(1-isopropyl-1H-imidazolium) octamolybdate, C24H44Mo8N8O26
  5. Crystal structure of catena-poly[bis(µ2-3,5-bis(1-imidazolyl)pyridine-κ2 N:N′)-(µ2-3-nitrophthalato-k3 O,O′:O″)cadmium(II)] dihydrate, C30H25N11O8Cd
  6. The crystal structure of diaqua-bis(2-(3-(1H-pyrazol-4-yl)-1H-1,2,4-triazol-5-yl)pyridine-κ2 N:N′)-bis(3,5-dicarboxybenzoato-κ1 O)cobalt(II), C38H30CoN12O14
  7. Crystal structure of the nickel(II) complex aqua-(2,6-di(pyrazin-2-yl)-4,4′-bipyridine-κ3 N,N′,N′′)-(phthalato-κ2 O,O′)nickel(II) tetrahydrate, C26H26N6O9Ni
  8. The crystal structure of 1-[5-(2-fluorophenyl)-1-(pyridine-3-sulfonyl)-1H-pyrrol-3-yl]-N-methylmethanaminium 3-carboxyprop-2-enoate, C21H20FN3O6S
  9. The crystal structure of 1,2-bis(4-pyridyl)ethane - 4,4-dihydroxydiphenylmethane (1/1), C25H21N2O2
  10. Crystal structure of bis(2-((E)-5-chloro-2-hydroxybenzylidene)hydrazineyl)methaniminium trifluoroacetate dihydrate, C34H36Cl4N10O12
  11. Crystal structure of 1-cyclopropyl-7-ethoxy-6,8-difluoro-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid, C15H13F2NO4
  12. Crystal structure of methyl 3-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)benzoate, C18H15BN2O2
  13. Crystal structure of (E)-N′-(2-chloro-6-hydroxybenzylidene)-2-hydroxybenzohydrazide, C14H11ClN2O3
  14. Crystal structure of Al-rich fluorophlogopite, K1.0(Mg2.8Al0.2)(Si2.8Al1.2)O10F2
  15. The crystal structure of 4,5-diiodo-1,3-dimesityl-1H-1,2,3-triazol-3-ium hexafluoridoantimonate(V), C20H22F6I2N3Sb
  16. Crystal structure of tris(3-iodopyridin-1-ium) catena-poly[(hexachlorido-κ1 Cl)-(μ2-trichlorido-κ2 Cl:Cl)diantimony(III)], C15H15Cl9I3N3Sb2
  17. Crystal structure of methyl 2-(1H-naphtho[1,8-de][1.3.2]diazaborinin-2(3H-yl)benzoate C18H15BN2O2
  18. The crystal structure of 1,8-bis(4-methoxybenzoyl)naphthalene-2,7-diyl dibenzoate, C40H28O8
  19. Crystal structure of 2-bromo-1,3,6,8-tetramethylBOPHY (BOPHY = bis(difluoroboron)-1,2-bis((1H-pyrrol-2-yl)methylene)hydrazine), C14H15B2BrF4N4
  20. The crystal structure of (E)-3-chloro-2-(2-(2-fluorobenzylidene)hydrazinyl)pyridine, C12H9ClFN3
  21. Crystal structure of bis(µ2- 4-iodopyridine-2,6-dicarboxylato-κ3O:N:O′)-bis(4-iodopyridine-2,6-dicarboxylato-κ3O:N:O′)-bis(µ2-1-(4-pyridyl)piperazine-κ2N:N′)-hexa-aqua-tetra-copper(II), C46H46Cu4I4N10O22
  22. Crystal structure of poly[diaqua-(μ2-2,5-dihydroxyterephthalato-κ2O:O′)(μ2-bis(4-pyridylformyl)piperazine-κ2N:N′)cadmium(II)] dihydrate, C24H28CdN4O12
  23. Crystal structure of poly[aqua-(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2N:N′)-(μ3-2,3,5,6-tetrafluoroterephthalato-κ3O:O′:O′′)cadmium(II)], C17H14N4O5F4Cd
  24. Crystal structure of 6-(quinolin-8-yl)benzo[a]phenanthridin-5(6H)-one, C26H16N2O
  25. The crystal structure of aqua-bis(6-chloropicolinato-κ2N,O)copper(II), C12H8Cl2N2O5Cu
  26. Crystal structure of catena-poly[diaqua-bis(μ2-4,4′-bipyridyl-κ2N:N′) disilver(I)] 4-oxidopyridine-3-sulfonate trihydrate, C25H29Ag2N5O9S
  27. The crystal structure of 4-(3-bromophenyl)pyrimidin-2-amine, C10H8BrN3
  28. Crystal structure of 6-oxo-4-phenyl-1-propyl-1,6-dihydropyridine-3-carbonitrile, C15H14N2O
  29. Crystal structure of 4-(2,2-difluoroethyl)-2,4-dimethyl-6-(trifluoromethyl)isoquinoline-1,3(2H,4H)-dione, C14H12F5NO2
  30. Crystal structure of dibromido-(1-methyl-1H-imidazole-κ1N)-(3-(3-methyl-1H-imidazol-3-ium-1-yl)propanoato-κ1O)zinc(II), C11H16Br2N4O2Zn
  31. The crystal structure of 1,1′-(((2 (dimethylamino)ethyl)azanediyl)bis(methylene)) bis(naphthalen-2-olato-κ4 N,N′,O,O′)-(pyridine-2,6-dicarboxylato-N,O,O′)- titanium(IV) ─ dichloromethane (2/1), C33H29N3O6Ti
  32. The layered crystal structure of bis(theophyllinium) hexachloridostannate (IV), C14H18N8O8SnCl6
  33. The crystal structre of 3-(1-ethenyl-1H-imidazol-3-ium-3-yl)propane-1-sulfonate, C8H12N2O3S
  34. Synthesis and crystal structure of di-tert-butyl 1″-acetyl-2,2″,9′-trioxo-4a′,9a′-dihydro-1′H,3′H,9′H-dispiro[indoline-3,2′-xanthene-4′,3″-indoline]-1,3′-dicarboxylate, C39H38N2O9
  35. The crystal structure of 4-chloro-2-(quinolin-8-yl)isoindoline-1,3-dione, C17H9ClN2O2
  36. The crystal structure of 1-fluoro-4-(p-tolylethynyl)benzene, C15H11F
  37. The crystal structure of bis[4-bromo-2-(1H-pyrazol-3-yl) phenolato-κ2N,O] copper(II), C18H12Br2CuN4O2
  38. The crystal structure of poly[(μ 3-imidazolato-κ 3 N:N:N′)(tetrahydrofuran- κ 1 O)lithium(I)], C7H11LiN2O
  39. Crystal structure of N′,N′′′-((1E,1′E)-(propane-2,2-diylbis(1H-pyrrole-5,2diyl))bis(methaneylylidene))di(nicotinohydrazide) pentahydrate, C25H24N8O2·5H2O
  40. Crystal structure of 3-(2-ethoxy-2-oxoethyl)-1-ethyl-1H-imidazol-3-ium hexafluoridophos-phate(V), C9H15F6N2O2P
  41. Crystal structure of (1,10-phenanthroline-κ2N,N′)-bis(3-thiophenecarboxylato-κ2O,O′)copper(II), C22H14N2O4S2Cu
  42. The crystal structure of 2-amino-3-carboxypyridin-1-ium iodide hemihydrate, C6H8IN2O2.5
  43. Crystal structure of (E)-7-methoxy-2-((6-methoxypyridin-2-yl)methylene)-tetralone, C18H17NO3
  44. The crystal structure of [μ-hydroxido-bis[(5,5′-dimethyl-2,2′-bipyridine-κ2N,N′)-tricarbonylrhenium(I)] bromide hemihydrate, C30H26N4O9Re2Br
  45. The crystal structure of 2,5-bis(3,5-dimethylphenyl)thiazolo[5,4-d]thiazole, C20H18N2S2
  46. The crystal structure of 5-benzoyl-1-[(E)-(4-fluorobenzylidene)amino]-4-phenylpyrimidin-2(1H)-one, C24H16FN3O2
  47. Crystal structure of monocarbonyl(N-nitroso-N-oxido-phenylamine-κ 2 O,O′)(tricyclohexylphosphine-κP)rhodium(I), C25H39N2O3PRh
  48. Crystal structure of poly[bis[μ3-1,3,5-tris[(1H-imidazol-1-yl)methyl]benzene-κ3N:N′:N″]nickel(II)] hexafluorosilicate, C36H36N12NiSiF6
  49. The crystal structure of 13-(pyrazole-1-yl-4-carbonitrile)-matrine, C19H25N5O
  50. Crystal structure of 3,5-bis((E)-4-methoxy-2-(trifluoromethyl)benzylidene)-1-methylpiperidin-4-one, C24H21F6NO3
  51. The crystal structure of N,N′-(Disulfanediyldi-2,1-phenylene)di(6′-methylpyridine)-2-carboxamide, C26H22N4O2S2
  52. Crystal structure of (E)-7-fluoro-2-(4-methoxy-2-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2
  53. Crystal structure of ethyl 1-(4-fluorophenyl)-4-phenyl-1H-pyrrole-3-carboxylate, C19H16FNO2
  54. The crystal structure of cis-diaqua-bis (N-butyl-N-(pyridin-2-yl)pyridin-2-amine-κ2N,N′)cobalt(II)] dichloride trihydrate, C28H44Cl2N6O5Co
  55. Crystal structure of (E)-7-methoxy-2-((6-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C18H17NO3
  56. Crystal structure of (E)-2-((3-fluoropyridin-4-yl)methylene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  57. The crystal structure of 6-bromohexanoic acid, C6H11BrO2
  58. The crystal structure of 4-chloro-thiophenol, C6H5ClS
  59. The crystal structure of 4-bromobenzyl chloride, C7H6BrCl
  60. The crystal structure of di-tert-butyl dicarbonate, C10H18O5
  61. The crystal structure of (2-(4-chlorophenyl)-5-methyl-1,3-dioxan-5-yl)methanol, C12H15ClO3
  62. The crystal structure of the co-crystal: 2-hydroxybenzoic acid – N′-(butan-2-ylidene)pyridine-4-carbohydrazide, C10H13N3O·C7H6O3
  63. Crystal structure and anti-inflammatory activity of (E)-7-fluoro-2-((5-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  64. Crystal structure of (E)-7-fluoro-2-((6-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  65. Crystal structure of 1,1′-(butane-1,4-diyl)bis(3-propyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C32H56F24N8P4
  66. The crystal structure of dichlorido-bis(3-methyl-3-imidazolium-1-ylpropionato-κ2)-cadmium(II), C14H20CdCl2N4O4
  67. Crystal structure of 1-(2-cyanobenzyl)-3-cyano-4-phenyl-4-(2-cyanobenzyl)-1,4-dihydropyridine monohydrate, C56H42N8O
  68. The crystal structure of 3-(carboxymethyl)-1-ethenyl-1H-imidazol-3-ium chloride, C7H9N2O2Cl
  69. The crystal structure of adamantylmethoxydiphenylsilane, C23H28OSi
  70. Redetermination of the crystal structure of (2E,4Z,13E,15Z)-3,5,14,16-tetramethyl-2,6,13,17-tetraazatricyclo[16.4.0.07,12]docosa-1(22),2,4,7,9,11,13,15,18,20-decaene, C22H24N4
  71. Crystal structure of (E)-7-hydroxy-2-((6-methoxypyridin-2-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H15NO3
  72. Crystal structure of catena-poly[diaqua-bis(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2 N:N′)cobalt(II)] dinitrate, C18H28N10O8Co
Heruntergeladen am 21.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0185/html?lang=de
Button zum nach oben scrollen