Abstract
Additive manufacturing has become a cutting-edge technique to produce biomaterials for various clinical applications. Recent investigations have shown their significance and highlighted their future requirements. Many additive manufacturing technologies are mostly related to manufacturing polyether ether ketone (PEEK) based implants. Among them, fused filament fabrication (FFF) or fused deposition modelling (FDM) is the preferred method. Specifically, FFF builds complex scaffolds for tissue engineering and customized implants, which are not achievable with traditional fabrication methods. PEEK is a rigid, tissue-compatible, lightweight polymer with good wear characteristics and a long implant life. In general, PEEK has many valuable properties and the potential to solve many medical problems, especially orthopaedic implantation. This paper provides a brief study that gives an overview of PEEK-based biomaterials for FFF-based orthopaedic procedures, materials evolution, recent advancements, and the current research progress is also addressed systematically.
Acknowledgements
The authors would like to send their gratitude to National Institute of Technology, Agartala (MHRD – Govt of India) for given constant support to prepare this detailed manuscript.
-
Research ethics: Not applicable.
-
Author contributions: Sathishkumar Sankar: Conceptualization, Methodology, Validation, Formal analysis, Resources, Investigation, Data curation, Writing–original draft, Visualization. Jawahar Paulraj: Supervision, Writing – review & editing, Resources. Prasun Chakraborti: Validation, Project administration.
-
Competing interests: The authors declare that they have no known competing for financial interests or personal relationships that could have appeared to influence the work reported in this paper.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Park, J., Lakes, R. S. Biomaterials an Introduction, 3rd ed.; Springer: New York, NY, 2000.Search in Google Scholar
2. Qadir, M., Li, Y., Munir, K., Wen, C. Crit. Rev. Solid State Mater. Sci., 2017, 43, 392–416. https://doi.org/10.1080/10408436.2017.1358148.Search in Google Scholar
3. Ma, H., Suonan, A., Zhou, J., Yuan, Q., Liu, L., Zhao, X., Lou, X., Yang, C., Li, D., Zhang, Y. Arab. J. Chem. 2021, 14, 102977. https://doi.org/10.1016/j.arabjc.2020.102977.Search in Google Scholar
4. Kurtz, S. M. An Overview of PEEK Biomaterials, PEEK Biomaterials Handbook, 2nd ed.; Kurtz, S. M., Ed. William Andrew Publishing: Pennsylvania, United States, 2019; pp. 1–7.10.1016/B978-1-4377-4463-7.10001-6Search in Google Scholar
5. Green, S. Compounds and Composite Materials. PEEK Biomaterials Handbook, 2nd ed.; Kurtz, S. M., Ed. William Andrew Publishing: Pennsylvania, United States, 2019; pp. 23–48.10.1016/B978-1-4377-4463-7.10003-XSearch in Google Scholar
6. Penumakala, P., Santo, J., Thomas, A. Composites, Part B 2020, 201, 108336. https://doi.org/10.1016/j.compositesb.2020.108336.Search in Google Scholar
7. Sathishkumar, S., Jawahar, P., Chakraborti, P. Polym.-Plast. Technol. Mater. 2022, 61, 1367–1384. https://doi.org/10.1080/25740881.2022.2061995.Search in Google Scholar
8. Oladapo, B. I., Adeoye, A. O. M., Ismail, M. Composites, Part B 2018, 150, 248–254. https://doi.org/10.1016/j.compositesb.2018.05.041.Search in Google Scholar
9. Li, L., Qin, S., Peng, J., Chen, A., Nie, Y., Liu, T., Song, K. Int. J. Biol. Macromol. 2020, 145, 262–271. https://doi.org/10.1016/j.ijbiomac.2019.12.174.Search in Google Scholar PubMed
10. Toth, J. M. Biocompatibility of PEEK polymers. In PEEK Biomaterials Handbook, 2nd ed.; William Andrew Publishing: Pennsylvania, United States, 2019; pp. 107–119.10.1016/B978-0-12-812524-3.00008-9Search in Google Scholar
11. Navarro, M., Michiardi, A., Castano, O., Planell, J. A. J. R. Soc., Interface 2008, 5, 1137–1158. https://doi.org/10.1098/rsif.2008.0151.Search in Google Scholar PubMed PubMed Central
12. Toth, J. M., Wang, M., Estes, B. T. Biomaterials 2006, 27, 324–334. https://doi.org/10.1016/j.biomaterials.2005.07.011.Search in Google Scholar PubMed
13. Almasi, D., Iqbal, N., Sadeghi, M., Sudin, I., Kadir, M. R. A., Kamarul, T. Int. J. Biomater. 2016, 2016, 8202653. https://doi.org/10.1155/2016/8202653.Search in Google Scholar PubMed PubMed Central
14. Sathishkumar, S., Jawahar, P., Chakraborti, P. Synthesis, properties and application of PEEK based bio materials. In Advanced Materials for Biomedical Applications, 1st ed.; Kumar, A., Gori, Y., Kumar, A., Meena, C. S., Dutt, N., Eds. CRC Press: New York, United States, 2022; pp. 81–107.10.1201/9781003344810-5Search in Google Scholar
15. Mezrakchi, R. A., Creasy, T., Sue, H. J., Bremner, T. J. Appl. Polym. Sci. 2021, 138, e49930. https://doi.org/10.1002/app.49930.Search in Google Scholar
16. Singh, S., Prakash, C., Ramakrishna, S. Eur. Polym. J. 2019, 114, 234–248. https://doi.org/10.1016/j.eurpolymj.2019.02.035.Search in Google Scholar
17. Sivasankar, M., Arunkumar, S., Bakkiyaraj, V., Muruganandam, A., Sathishkumar, S. Int. Res. J. Adv. Eng. Technol. 2016, 2, 589–664.Search in Google Scholar
18. Ruben, B. K., Imaduddin, F., Ariawan, D., Ubaidillah, Arifin, Z. Open Eng. 2021, 11, 639–649. https://doi.org/10.1515/eng-2021-0063.Search in Google Scholar
19. Anakhu, P. I., Bolu, C. A., Abioye, A. A., Azeta, J. Int. J. Appl. Eng. Res. 2018, 13, 5113–5119.Search in Google Scholar
20. Wang, P., Zou, B., Xiao, H., Ding, S., Huang, C. J. Mater. Process. Technol. 2019, 271, 62–74. https://doi.org/10.1016/j.jmatprotec.2019.03.016.Search in Google Scholar
21. Wang, Y., Muller, W. D., Rumjahn, A., Schmidt, F., Schwitalla, A. D. J. Mech. Behav. Biomed. Mater. 2021, 115, 104250. https://doi.org/10.1016/j.jmbbm.2020.104250.Search in Google Scholar PubMed
22. Li, Y., Lou, Y. Polymers 2020, 12, 2497. https://doi.org/10.3390/polym12112497.Search in Google Scholar PubMed PubMed Central
23. Khunt, C. P., Makhesana, M. A., Mawandiya, B. K., Patel, K. M. Adv. Mater. Process. Technol. 2021, 8, 320–336. https://doi.org/10.1080/2374068X.2021.1927651.Search in Google Scholar
24. Wang, P., Pan, A., Xia, L., Cao, Y., Zhang, H., Wu, W. High Perform. Polym. 2022, 34, 337–351. https://doi.org/10.1177/09540083211067388.Search in Google Scholar
25. Monich, P. R., Henriques, B., Oliveira, A. P. N., Souza, J. C. M., Fredel, M. C. Mater. Lett. 2016, 185, 593–597. https://doi.org/10.1016/j.matlet.2016.09.005.Search in Google Scholar
26. Ma, R., Tang, T. Int. J. Mol. Sci. 2014, 15, 5426–5445. https://doi.org/10.3390/ijms15045426.Search in Google Scholar PubMed PubMed Central
27. Song, P. Y., Jing, W., Ling, P. C. Appl. Mech. Mater. 2013, 325–326, 3–7. https://doi.org/10.4028/www.scientific.net/AMM.325-326.3.Search in Google Scholar
28. Oladapo, B. I., Zahedi, S. A., Ismail, S. O., Omigbodun, F. T., Oluwole, B., Olawumi, M. A., Muhammad, M. A. Bio-Design and Manufacturing. s42242-020-00098-0, 2020, England.Search in Google Scholar
29. Zheng, J., Zhao, H., Dong, E., Kang, J., Liu, C., Sun, C., Li, D., Wang, L. Mater. Sci. Eng. C 2021, 128, 112333. https://doi.org/10.1016/j.msec.2021.112333.Search in Google Scholar PubMed
30. Zhou, Z. R., Jin, Z. M. Biosurface and Biotribology 2015, 1, 3–24. https://doi.org/10.1016/j.bsbt.2015.03.001.Search in Google Scholar
31. Puertolas, J. A., Castro, M., Morris, J. A., Rios, R., Casaos, A. A. Carbon 2018, 141, 107–122. https://doi.org/10.1016/j.carbon.2018.09.036.Search in Google Scholar
32. Verma, S., Sharma, N., Kango, S., Sharma, S. Eur. Polym. J. 2021, 147, 110295. https://doi.org/10.1016/j.eurpolymj.2021.110295.Search in Google Scholar
33. Rahman, K. M., Letcher, T., Reese, R. Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition. IMECE2015-52209, 2016.Search in Google Scholar
34. Arif, M. F., Kumar, S., Varadarajan, K. M., Cantwell, W. J. Jmad 2018, 146, 249–259. https://doi.org/10.1016/j.matdes.2018.03.015.Search in Google Scholar
35. Basgul, C., Yu, T., Donal, D. W. M., Siskey, R., Marcolongo, M., Kurtz, S. M. J. Mater. Res. 2018, 33, 2040–2051. https://doi.org/10.1557/jmr.2018.178.Search in Google Scholar PubMed PubMed Central
36. Haleem, A., Javaid, M. Clin. Epidemiol. Global Health 2019, 7, 571–577. https://doi.org/10.1016/j.cegh.2019.01.003.Search in Google Scholar
37. Panayotov, I. V., Orti, V., Cuisinier, F., Yachouh, J. J. Mater. Sci. Mater. Med. 2016, 27, 118. https://doi.org/10.1007/s10856-016-5731-4.Search in Google Scholar PubMed
38. Steinberg, E. L., Rath, E., Shlaifer, A., Chechik, O., Maman, E., Salai, M. J. Mech. Behav. Biomed. Mater. 2013, 17, 221–228. https://doi.org/10.1016/j.jmbbm.2012.09.013.Search in Google Scholar PubMed
39. Wang, P., Zou, B., Ding, S., Huang, C., Shi, Z., Ma, Y., Yao, P. Composites, Part B 2020, 198, 108175. https://doi.org/10.1016/j.compositesb.2020.108175.Search in Google Scholar
40. Boudeau, N., Liksonov, D., Barriere, T., Maslov, L., Gelin, J. C. Mater. Des. 2012, 40, 148–156. https://doi.org/10.1016/j.matdes.2012.03.028.Search in Google Scholar
41. Dworak, M., Blazewicz, S. Acta Bioeng. Biomech. 2016, 18, 71–79.Search in Google Scholar
42. Pascual, A. M. D., Naffakh, M., Gomez, M. A., Marco, C., Ellis, G., Martinez, M. T., Anson, A., Dominguez, J. M. G., Ma, Y. Carbon 2009, 47, 3079–3090. https://doi.org/10.1016/j.carbon.2009.07.020.Search in Google Scholar
43. Arif, M. F., Alhashmi, H., Varadarajan, K. M., Koo, J. H., Hart, A. J., Kumar, S. Composites, Part B 2020, 184, 107625. https://doi.org/10.1016/j.jmbbm.2021.104601.Search in Google Scholar PubMed
44. Han, X., Sharma, N., Xu, Z., Scheideler, L., Geis-Gerstorfer, J., Rupp, F., Thieringer, F. M., Spintzyk, S. J. Clin. Med. 2019, 8, 771. https://doi.org/10.3390/jcm8060771.Search in Google Scholar PubMed PubMed Central
45. Liu, D., Fu, J., Fan, H., Li, D., Dong, E., Xiao, X., Wang, L., Guo, Z. J. Bone Oncol. 2018, 2, 78–82. https://doi.org/10.1016/j.jbo.2018.07.012.Search in Google Scholar PubMed PubMed Central
46. Manzoor, F., Golbang, A., Jindal, S., Dixon, D., McIlhagger, A., Jones, E. H., Crawford, D., Mancuso, E. J. Mech. Behav. Biomed. Mater. 2021, 121, 104601. https://doi.org/10.1016/j.jmbbm.2021.104601.Search in Google Scholar
47. Zhao, M., Li, H., Liu, X., Wei, J., Ji, J., Yang, S., Hu, Z., Wei, S. Sci. Rep. 2016, 6, 22832. https://doi.org/10.1038/srep22832.Search in Google Scholar PubMed PubMed Central
48. Ma, R., Weng, L., Bao, X., Ni, Z., Song, S., Cai, W. Mater. Lett. 2012, 71, 117–119. https://doi.org/10.1016/j.matlet.2011.12.007.Search in Google Scholar
49. Wong, K. L., Wong, C. T., Liu, W. C., Pan, H. B., Fong, M. K., Lam, W. M., Cheung, W. L., Tang, W. M., Chiu, K. Y., Luk, K. D., Lu, W. W. Biomaterials 2009, 23–24, 3810–3817. https://doi.org/10.1016/j.biomaterials.2009.04.016.Search in Google Scholar PubMed
50. Wang, L., Weng, L., Song, S., Sun, Q. Mater. Lett. 2010, 64, 2201–2204. https://doi.org/10.1016/j.matlet.2010.06.067.Search in Google Scholar
51. Kurtz, S. M., Devine, J. N. Biomaterials 2007, 28, 4845–4869. https://doi.org/10.1016/j.biomaterials.2007.07.013.Search in Google Scholar PubMed PubMed Central
52. Kumar, U. K., Murgod, S. Int. J. Oral Health Sci. 2020, 10, 68–77. https://doi.org/10.4103/ijohs.ijohs_4_20.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- Additive manufacturing and allied technologies
- Original Papers
- Influence of process parameters on ageing and free vibration characteristics of fiber-reinforced polymer composites by fusion filament fabrication process
- 3D biomimetic scaffold’s dimensional accuracy: a crucial geometrical response for bone tissue engineering
- Investigation of mechanical and microstructure properties of metal inert gas based wire arc additive manufactured Inconel 600 superalloy
- Study on the influence of surface roughness on tensile and low-cycle fatigue behavior of electron beam melted Ti‐6Al‐4V
- Effect of tool pin profile on the heat generation model of the friction stir welding of aluminium alloy
- Effect of clamping position on the residual stress in wire arc additive manufacturing
- Effect of welding speed on butt joint quality of laser powder bed fusion AlSi10Mg parts welded using Nd:YAG laser
- Mechanical behaviour, microstructure and texture studies of wire arc additive manufactured 304L stainless steel
- Evolution of microstructure and properties of CoCrFeMnNi high entropy alloy fabricated by selective laser melting
- Effect of laser energy density on surface morphology, microstructure and mechanical behaviour of direct metal laser melted 17-4 PH stainless steel
- The influence of rheology in the fabrication of ceramic-based scaffold for bone tissue engineering
- Behaviour of glass fiber reinforced polymer (GFRP) structural profile columns under axial compression
- Desirability function analysis approach for optimization of fused deposition modelling process parameters
- Effect of robotic weaving motion on mechanical and microstructural characteristics of wire arc additively manufactured NiTi shape memory alloy
- Rapid tooling of composite aluminium filled epoxy mould for injection moulding of polypropylene parts with small protruded features
- Investigation of microstructural evolution in a hybrid additively manufactured steel bead
- Fused filament fabricated PEEK based polymer composites for orthopaedic implants: a review
- Design of fixture for ultrasonic assisted gas tungsten arc welding using an integrated approach
- Effect of post-processing treatment on 3D-printed polylactic acid parts: layer interfaces and mechanical properties
- Investigating the effect of input parameters on tool wear in incremental sheet metal forming
- Microstructural evolution and improved corrosion resistance of NiCrSiFeB coatings prepared by laser cladding
- Microstructure and electrochemical behaviour of laser clad stainless steel 410 substrate with stainless steel 420 particles
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Editorial
- Additive manufacturing and allied technologies
- Original Papers
- Influence of process parameters on ageing and free vibration characteristics of fiber-reinforced polymer composites by fusion filament fabrication process
- 3D biomimetic scaffold’s dimensional accuracy: a crucial geometrical response for bone tissue engineering
- Investigation of mechanical and microstructure properties of metal inert gas based wire arc additive manufactured Inconel 600 superalloy
- Study on the influence of surface roughness on tensile and low-cycle fatigue behavior of electron beam melted Ti‐6Al‐4V
- Effect of tool pin profile on the heat generation model of the friction stir welding of aluminium alloy
- Effect of clamping position on the residual stress in wire arc additive manufacturing
- Effect of welding speed on butt joint quality of laser powder bed fusion AlSi10Mg parts welded using Nd:YAG laser
- Mechanical behaviour, microstructure and texture studies of wire arc additive manufactured 304L stainless steel
- Evolution of microstructure and properties of CoCrFeMnNi high entropy alloy fabricated by selective laser melting
- Effect of laser energy density on surface morphology, microstructure and mechanical behaviour of direct metal laser melted 17-4 PH stainless steel
- The influence of rheology in the fabrication of ceramic-based scaffold for bone tissue engineering
- Behaviour of glass fiber reinforced polymer (GFRP) structural profile columns under axial compression
- Desirability function analysis approach for optimization of fused deposition modelling process parameters
- Effect of robotic weaving motion on mechanical and microstructural characteristics of wire arc additively manufactured NiTi shape memory alloy
- Rapid tooling of composite aluminium filled epoxy mould for injection moulding of polypropylene parts with small protruded features
- Investigation of microstructural evolution in a hybrid additively manufactured steel bead
- Fused filament fabricated PEEK based polymer composites for orthopaedic implants: a review
- Design of fixture for ultrasonic assisted gas tungsten arc welding using an integrated approach
- Effect of post-processing treatment on 3D-printed polylactic acid parts: layer interfaces and mechanical properties
- Investigating the effect of input parameters on tool wear in incremental sheet metal forming
- Microstructural evolution and improved corrosion resistance of NiCrSiFeB coatings prepared by laser cladding
- Microstructure and electrochemical behaviour of laser clad stainless steel 410 substrate with stainless steel 420 particles
- News
- DGM – Deutsche Gesellschaft für Materialkunde